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Flow-induced arrest of spatiotemporal chaos and transition to a stationary
pattern in the Gray-Scott model
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We examine the prototypical Gray-Scott model, which mimics cubic autocatalytic reaction with linear decay
of the autocatalyst, to model the kinetics of a reaction-diffusion system subjected to advective streamline flow.
For a proper choice of boundary conditions and parameter space, the system admits wave-induced spatiotemporal
chaos in the absence of flow. We show that flow above a critical value leads to an arrest of the spatiotemporal chaos
due to a change in the instability from absolute to convective type. Furthermore, stationary spatial structures are
borne out of a second successive bifurcation for yet another critical flow value. The theoretical formulations are
corroborated by extensive numerical simulation of the full reaction-diffusion-advection system in one dimension.
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I. INTRODUCTION

Temporal and spatial self-organization is ubiquitous in
systems open to exchange of mass and/or energy with the
surroundings. Although dissipative structures are observed
in both zero-dimensional and spatially extended systems
encompassing a rich variety of interesting physics [1,2], the
plethora of novel dynamical scenarios that the latter provides
over the former is manifold due to the involvement of the
spatial degrees of freedom. The two most well studied routes to
spatial structures in activator-inhibitor systems are differential
diffusivity of participating species leading to a Turing pattern
[3], and differential flow of the reactants leading to a
traveling-wave-type pattern [4]. A third mechanism capable of
producing spatial patterns involves equal diffusivities and flow
rates for a system that exhibits autonomous oscillations for
homogeneous conditions in the absence of flow [5,6]. Among
the spatiotemporal structures that develop, perhaps the most
intriguing and least understood is spatiotemporal chaos.

In the zero-dimensional systems the possible routes to chaos
are the Ruelle-Takens-Newhouse scenario (three successive
Hopf bifurcations), Feigenbaum (infinite sequence of pe-
riod doubling bifurcations), and Pomeau-Manneville scenario
(saddle-node bifurcation), with a minimum requirement of
three variables (necessary but not sufficient) [7]. However, in
case the system has spatial extension, spatiotemporal chaos
can occur even in a two-variable model. Spatiotemporal
chaos has been realized in numerous studies on reaction-
diffusion systems [8–16]. Systems with spatiotemporal chaos
are characterized by rapid decay of the spatial correlation
function, sensitivity to initial conditions [16], and at least
one positive Lyapunov exponent [17,18]. However, it has been
shown by Wackerbauer and Showalter [10] that for no-flux and
periodic boundary conditions, the Gray-Scott model ceases to
exhibit spatiotemporal chaos in the asymptotic limit, although
the average transient lifetime increases exponentially with the
size of the system.

Nonetheless, sustained spatiotemporal chaos is obtained by
imposing a constant value boundary (Dirichlet boundary) at
one end which acts as a source of continuous perturbations
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and precludes the possible return to the homogeneous steady
state. Although such a contraption was originally meant
to obtain stationary space-periodic structures in systems
with equal diffusion coefficients [6], it comes at a cost of
producing sustained spatiotemporal chaos, e.g., in the spatially
extended Gray-Scott system. Suppression of spatiotemporal
chaos [19,20] has been affected by some methods involving
delay, such as global delayed feedback [19] and time-delay
autosynchronization [20].

In the present paper we consider the two-variable Gray-
Scott model in one dimension that serves as a paradigm
for open, autocatalytic reaction systems. Additionally, with
the advent of chemical reactors that admit sustained pattern
formation, the possibility to explore novel dynamical scenarios
has opened up. For example, the Couette reactor [21–23],
which is effectively a one-dimensional system having well-
defined boundary conditions and controlled diffusion coeffi-
cient (having the same value for all the participating species,
identical to the scenario presented in this study), might serve
as a possible setup to test our theory experimentally, provided
the setup can accommodate advection. For the system of our
interest, the Gray-Scott model, a proper choice of parameters
together with a constant boundary at one end and a zero-flux
boundary (Neumann boundary) at the other end, we obtain
sustained spatiotemporal chaos that is marked by rapid loss
of spatial correlation, extreme sensitivity to initial conditions,
and a positive Lyapunov exponent [17,18]. By switching on a
constant streamline flow, we not only eliminate spatiotemporal
chaos but also retrieve stationary spatial structures by the same
mechanism that stabilizes stationary pattern structures by the
successive occurrence of absolute and convective instabilities
[24]. To this end the present study can be envisaged as
a physically plausible prescription to select spatiotemporal
regimes of interest solely by the control of flow strength.

The outline of the paper is as follows: In Sec. II we
describe the reaction-diffusion-advection model for a system
with Gray-Scott kinetics. In the subsequent section (Sec. III)
we carry out linear stability analysis to derive conditions for the
crossover from absolute to convective instability, followed by
development of stationary patterns. The theoretical predictions
formulated on the one-dimensional Gray-Scott model are
corroborated by the results of the numerical simulations in
Sec. IV. The paper is concluded in Sec. V.
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II. REACTION-DIFFUSION-ADVECTION MODEL:
GOVERNING EQUATIONS

We consider the Gray-Scott reaction [25], i.e., a cubic
autocatalytic reaction with linear decay of the autocatalyst, to
model the kinetics of a reaction-diffusion-advection system.
The corresponding dimensionless mass-balance equations for
the open flow system in one dimension is represented by

∂α

∂t
+ σ

∂α

∂x
= 1 − α − μαβ2 + Dα

∂2α

∂x2
, (2.1)

∂β

∂t
+ σ

∂β

∂x
= β0 − φβ + μαβ2 + Dβ

∂2β

∂x2
, (2.2)

where the dimensionless concentration variables are α and β,
and the dimensionless kinetic parameters are given by β0, μ,

and φ. Also, σ denotes the dimensionless flow rate of the
intermediates, and the dimensionless diffusion coefficients of
α and β are given by Dα and Dβ , respectively. In this study
we consider the case where Dα = Dβ = D.

A. Temporal dynamics

In the present paper we consider the special case wherein
β is absent in the inflow stream, i.e., β0 = 0. This special
case provides certain analytical advantages, as now one steady
state corresponds to the “no-conversion” state (αn

ss = 1,βn
ss =

0), and the remaining steady states are given by αss
± =

μ∓
√

μ2−4μφ2

2μ
, βss

± = μ±
√

μ2−4μφ2

2μφ
. Thus, the condition for

existence of multiple steady states for the homogeneous
Gray-Scott kinetics is μ > μsn = 4φ2, where μsn denotes the
saddle-node bifurcation. Of these, the lowest root (an

ss,β
n
ss)

is always a stable node (Sn), the middle root (a−
ss ,β

−
ss) is a

saddle point (Ss), and the highest root (a+
ss ,β

+
ss) is a focus

(Sf ), which is stable for μ > μH , where μH = φ4

φ−1 denotes
the Hopf bifurcation line. The focus loses stability due to a
Hopf bifurcation. The resulting limit cycle is unstable in the
case where the Hopf bifurcation mode is subcritical, whereas
a stable limit cycle occurs when the Hopf bifurcation mode is
supercritical. The phase-space diagrams for the system with a
stable node as the only attractor are shown in Fig. 1.

B. Spatiotemporal dynamics (σ = 0)

The spatially extended Gray-Scott model admits a variety of
dissipative structures in the form of traveling waves, spirals,
and target patterns. Traveling waves relevant to the present
study are the simple pulse and the front. The former connects
the stable node (Sn) in front to the same state behind the wave
(homoclinic connections in the α-β phase plane), whereas
the latter connects the stable node to the focus (heteroclinic
connections in the phase plane). Two different situations arise,
depending on the local (temporal) stability of the focus. In the
case where the focus is stable, the system stays in the vicinity
of this state as against the “no-conversion” state. The front
carries the signature of the focus in the form of a damped
oscillatory spatial distribution in its rear end. An unstable
focus, on the other hand, changes the scenario rather curiously;
considering temporal dynamics alone it is expected that the
system would be forced to the stable node, the only stable
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FIG. 1. (Color online) Phase-space diagram for the Gray-Scott
model showing a stable node as the only attractor (μ = 155.0,φ =
5.2).

attractor in the system. However, due to the spatial extension
of the system, even when a particular region returns to the
stable node, its adjacent region, having nonzero concentration
of the autocatalyst due to the recent passage of a front, can
initiate a reaction front into the newly formed stable node.
Repetition of this mechanism at different space points gives
rise to a sustained spatiotemporal dynamics comprised of
spatial evolution of the system to the vicinity of the stable node
followed by reinjection of the system to the neighborhood of
the unstable focus by propagation of reaction-diffusion fronts.
This mechanism can result in wave-induced spatiotemporal
chaos [8] for some parameter sets. For a more detailed
description we refer to Merkin et al. [8,9].

III. STABILITY ANALYSIS: BIFURCATION CONDITIONS

We start our analysis using Eqs. (2.1) and (2.2) and linearize
them about the focus (Sf ) by introducing perturbations (A,B)
given by α = α+

ss + A and β = β+
ss + B. Here it is important

to note that we do not consider the remaining steady states,
since their stability properties preclude the possibility of
spatiotemporal chaos, the pivotal point of this study. The
resulting linearized equations are given by

∂A

∂t
+ σ

∂A

∂x
= D

∂2A

∂x2
+ J11A + J12B, (3.1)

∂B

∂t
+ σ

∂B

∂x
= D

∂2B

∂x2
+ J21A + J22B, (3.2)

where Jij ,(i,j = 1,2) are elements of the Jacobian matrix J

determined at the steady state (α+
ss ,β

+
ss),

J =
[
J11 J12

J21 J22

]
=

[−(1 + μβss
2) −2μαssβss

μβss
2 2μαssβss − φ

]
. (3.3)

We assume solutions to Eqs. (3.1) and (3.2) to be of the form
given by

A = Ãexp[i(κx − λt)]; B = B̃exp[i(κx − λt)], (3.4)

052914-2



FLOW-INDUCED ARREST OF SPATIOTEMPORAL CHAOS . . . PHYSICAL REVIEW E 92, 052914 (2015)

where Ã, B̃ are constants, κ is the wave number, and λ is
the growth rate of the perturbation. Substituting these trial
solutions in Eqs. (3.1) and (3.2), we get

[−iλ + iκσ + κ2D − J11]Ã − J12B̃ = 0, (3.5)

J21Ã − [−iλ + iκσ + κ2D − J22]B̃ = 0. (3.6)

Nontrivial solutions of Ã and B̃ are obtained by setting
det|M − λI | = 0, where

M =
[

M11 M12

M21 M22

]

=
[−iλ + iκσ + κ2D − J11 −J12

J21 −iλ + iκσ + κ2D − J22

]
.

The resulting dispersion relation is given by

D(λ,κ) ≡ λ2 + {[2Dκ2 − τ ]i − 2κσ }λ − D2κ4 − 2iDσκ3

+ [σ 2 + Dτ ]κ2 + iσ τκ − 
 = 0, (3.7)

where τ = J11 + J22 and 
 = J11J22 − J12J21 are the trace
and determinant of the Jacobian matrix J , respectively. The
fate of the steady state (focus in this case) is determined by the
sign of the real part of the eigenvalue [Re (λ)].

A. Effect of flow: Transition from absolute
to convective instability

Absolute instability corresponds to the situation wherein
perturbations drive the system away from the initial state,
resulting in the growth of amplitudes at all fixed points in space,
which transforms the system to a state different from the steady
state. On the other hand, convective instability corresponds to
the situation where perturbations lift the system away from
the steady state in the form of a wave that propagates with
increase in size. However, in contrast to absolute instability,
after passage of the wave front the system returns to the original
steady state, meaning that an amplitude at a fixed point decays
asymptotically towards zero [26,27]. The transition from the
absolute to the convective instability occurs at a critical value
of the dimensionless flow velocity, denoted by σAC . To derive
the bifurcation curve, we start with the solution of Eq. (3.7),
which is given by

λ(κ) = 1
2 (2κσ − i[2Dκ2 − τ ] ±

√
4
 − τ 2). (3.8)

Next we determine the group velocity by differentiating this
with respect to κ and setting it equal to zero for κ = κ0, i.e.,

∂λ(κ)

∂κ

∣∣∣∣
κ=κ0

= 0. (3.9)

The resulting κ0 = − iσ
2D

is substituted back in Eq. (3.9) to give

λ(κ0) = 1

2

[
i

(
τ − σ 2

2D

)
±

√
4
 − τ 2

]
. (3.10)

The condition for the transition from absolute to convective
instability corresponds to the situation wherein the real part
governing the time dependence of the trial solution in Eq. (3.4)
becomes zero, i.e., Im[λ(κ0)] = 0. Provided 4
 − τ 2 > 0, the
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FIG. 2. (Color online) Bifurcation diagram showing regions of
absolute instability, convective instability, and stationary pattern
depending on the dimensionless flow σ . The region of wave-induced
spatiotemporal chaos is denoted by blue dashed line. The solid (red)
arrow depicts the transition to different regions in the bifurcation
diagram as the critical flow values, given by σAC (line with unfilled
circle) and σs (line with unfilled star), respectively, are crossed
(μ = 155.0).

expression for the critical value of the dimensionless velocity
(σ ) to affect such a change is given by

σAC =
√

2Dτ. (3.11)

The locus of the critical velocity for transition from absolute to
convective instability σAC for the Gray-Scott model is shown
in Fig. 2.

B. Effect of flow: Transition to a stationary pattern

In mathematical terms a stationary pattern corresponds to
setting the temporal growth rate equal to zero, i.e., λ = 0,
together with Im(κ) = 0. Physically this situation is equivalent
to concentrations being stationary in time but periodic in
space due to the presence of purely exponential perturbations
(exp[iκx]). To this end, by setting λ = 0 in Eq. (3.7), we get

D2κ4 + 2iDσκ3 − (σ 2 + Dτ )κ2 − iσ τκ + 
 = 0. (3.12)

The critical wave number (κs) that can accommodate stationary
patterns is obtained by setting the coefficients of the imaginary
part of the above equation equal to zero. The explicit
expression for the critical wave number is given by

κs =
√

τ

2D
. (3.13)

Substitution of this result in Eq. (3.13), then, gives the critical
flow velocity for the transition to a stationary pattern:

σs =
√

D(4
 − τ 2)

2τ
. (3.14)

The bifurcation curve corresponding to the critical velocity
(σs) needed to obtain a stationary pattern for the Gray-Scott
model is depicted in Fig. 2.
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FIG. 3. (Color online) Initial condition sensitivity. Space-time
plot of the absolute difference in α for two systems. The color
coding represents the absolute difference between the two systems
on a logarithmic scale from dark (blue) color (low difference) to
light (red) color (high difference) with the same set of parameters
(μ = 155, φ = 5.20) but differing in initial condition at a single point
(x̃ = L

2 ).

IV. RESULTS: NUMERICAL SIMULATIONS

In this section we verify the theoretical results of linear
stability analysis obtained in the preceding section. To this end,
we carried out extensive numerical integration of the reaction-
diffusion-advection model in both the presence and absence
of flow. For numerical integration of the partial differential
equations [Eqs. (2.1) and (2.2)], we first discretized the spatial
domain with grid spacing dx = 0.10 and then employed an
explicit Euler method with a time increment of dt = 0.001. A
Dirichlet (constant value) boundary is imposed at the inlet on
the left [(α,β) = (0.25,0)], which acts as a pacemaker, while
a Neumann (zero-flux) boundary is imposed at the outlet on
the right.

A. Spatiotemporal dynamics: In absence of flow (σ = 0)

For the parameter set μ = 155, φ = 5.2 the Gray-Scott
model has three steady states since μ > μsn. However, the
system for the given set of parameters has only one stable
attractor in the form of stable node (sn). The absence of flow
(σ = 0) and the constant boundary values of the participating
species at the inlet give rise to spatiotemporal chaos by the
mechanism described in Sec. II B. Nevertheless, to proceed

FIG. 4. Space-time plot of the spatiotemporal α variable for different values of flow pertaining to different zones of the bifurcation diagram
(Fig. 2): (a) absolute instability region (σ = 0.0), (b) absolute instability region (σ < σAC), (c) convective instability region (σAC < σ < σs),
and (d) stationary pattern region (σ > σs). Black color and white color correspond to low and high concentrations of the spatiotemporal α

variable, respectively. System parameters: μ = 155, φ = 5.20.
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FIG. 5. The largest Lyapunov exponent (Amax) as a function of
dimensionless flow σ . Parameter set used μ = 155 and φ = 5.20.

further the genuineness of the spatiotemporal chaos needs
to be ascertained, although there seems to be no consensus
on the conditions that must be satisfied for qualification of a
spatiotemporal behavior as chaotic. Loss of spatial correlation,
extreme sensitivity to initial conditions, and a positive value
of the Lyapunov exponent (A) [10,17,18] are well-accepted

criteria for spatiotemporal chaos. The extreme sensitivity of
the system to initial conditions for the same set of parameters
characterizing spatiotemporal chaos is shown in Fig. 3. Next
we define the spatial correlation function:

C(x − x̃; t − t̃) = 〈[α(x,t) − 〈α〉][α(x̃,t̃) − 〈α〉]〉, (4.1)

where α(x,t) and α(x̃,t̃) are the values of α at positions x and
x̃, respectively, and 〈α〉 is the average over all x and t . The time
averaging 〈 〉 has been done for 106 time steps (dt = 0.001) and
the point chosen is x̃ = L

2 (L = 1000; dx = 0.10). The rapid
loss of spatial correlation function indicating the occurrence
of spatiotemporal chaos is observed for σ < σAC shown in
Sec. IV B. The numerically determined largest Lyapunov ex-
ponent is Amax = 0.05 for the parameter set μ = 155.0, φ =
5.20, confirming the existence of spatiotemporal chaos in the
system.

B. Spatiotemporal dynamics: In the presence of flow (σ �= 0)

To proceed further, we set the system parameters (μ =
155, φ = 5.2) such that the system without flow admits
spatiotemporal chaos [Fig. 4(a)]. Now we gradually increase
the value of the dimensionless velocity σ to study the effect
of advection on a system characterized by wave-induced
spatiotemporal chaos. To start with, the value of the flow
is well below the critical curve for transition from absolute

20 40 60 80 100

0.0

1.0x10-2

2.0x10-2

3.0x10-2

4.0x10-2

x

C
(x

-x
; t

-t)

20 40 60 80 100
-1.0x10-2

0.0

1.0x10-2

2.0x10-2

3.0x10

(a) (b)

(c) (d)

-2

4.0x10-2

C
(x

-x
; t

-t)

x

20 40 60 80 100
-1.5x10-4

-1.0x10-4

-5.0x10-5

0.0

5.0x10-5

1.0x10-4

1.5x10-4

C
(x

-x
; t

-t)

x
0 20 40 60 80 100

-8.0x10-2

-4.0x10-2

0.0

4.0x10-2

8.0x10-2

x

C
(x

-x
; t

-t)

FIG. 6. (Color online) Spatial correlation functions for the system corresponding to space-time plots in [Figs. 4(a)–4(d)]: (a) absolute
instability region, (b) absolute instability region, (c) convective instability region, and (d) stationary pattern region. Parameter set: μ = 155 and
φ = 5.20.
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to convective instability (σAC), and the system continues to
show spatiotemporal chaos [Fig. 4(b)]. For flow values above
σAC , the systems enter the zone of convective instability
and the corresponding space-time plot depicts such a change
[Fig. 4(c)]. On further increasing the flow velocity above
the critical velocity (σs), the system makes a transition to
a stationary patterned state [Fig. 4(d)]. The effect of the
dimensionless flow (σ ) has been monitored by observing the
sign of the largest Lyapunov exponent (Amax) with the change
in the strength of the advective flow. From Fig. 5 it is evident
that the system ceases to admit the spatiotemporally chaotic
dynamics for advection strengths σ > σAC corresponding
to change of sign of Amax from positive to negative. The
numerically obtained critical value of flow σAC = 1.49 is
in good agreement with the σAC value calculated using
Eq. (3.11). The spatial correlation functions for the system
are shown in Figs. 6(a)–6(d) and correspond to the space-
time plots of α for the different flow strengths depicted in
Figs. 4(a)–4(d).

V. CONCLUSION

We have considered the two-variable Gray-Scott autocat-
alytic model in one dimension with equal diffusivities in a
parameter space characterized by wave-induced spatiotempo-
ral chaos. Again, since an open system entails advection, we
have modeled our system using a reaction-diffusion-advection
model to account for the flow. Linear stability analysis of
the unstable focus has revealed that for a particular choice of
flow velocity, transition from absolute to convective instability
and subsequently to stationary patterns can be affected. Using
this protocol we have been able to arrest wave-induced
spatiotemporal chaos, as is evident from the space-time plots

of the spatiotemporal α variable [Figs. 4(a)–4(c)], and the
change in sign of the largest Lyapunov exponent Amax as
determined from the numerical simulations. Additionally, on
increasing the flow above a second critical value we were
able to realize a state characterized by stationary patterns
[Fig. 4(d)]. The mechanism corresponding to the crossover
from spatiotemporal chaos to stationary patterns is described
by two successive transitions—one pertaining to a transition
from absolute to convective instability and the other pertaining
to the eventual flow-induced transition to a stationary patterned
state. Thus, we have shown that by proper tuning of the
velocity of the flow stream one can control and select
different spatiotemporal regimes. Previous studies of reaction-
diffusion-advection systems have focused on the transition
to spatially inhomogeneous structures (patterns) in a mixed
flow with temporally chaotic evolution of concentrations [28],
which is distinctly different from the study presented in this
paper. Possible experimental verification of this theoretical
study can be sought by using a setup similar to the Couette
reactor [21–23], as mentioned in the Introduction. Although
the present paper deals exclusively with advective flow, one can
devise similar control strategies by incorporating electric field
[29] as an advective term for concerned spatially extended
systems. The fact that advection can drastically change the
stability properties of spatially extended systems is central to
its use in directing the system [30–32] to a desired dynamical
scenario [27].
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