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In this paper, we report the synchronized dynamics of cells with activator-inhibitor pathways via an adaptive
environment-mediated coupling scheme with feedbacks and control mechanisms. The adaptive character of the
extracellular medium is modeled via its damping parameter as a physiological response aiming at annihilating
the cellular differentiation existing between the chaotic biochemical pathways of the cells, in order to preserve
homeostasis. We perform an investigation on the existence and stability of the synchronization manifold
of the coupled system under the proposed coupling pattern. Both mathematical and computational tools suggest
the accessibility of conducive prerequisites (conditions) for the emergence of a robust synchronous regime.
The relevance of a phase-synchronized dynamics is appraised and several numerical indicators advocate for the
prevalence of this fascinating phenomenon among the interacting cells in the phase space.
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I. INTRODUCTION

The biochemical pathways involved in cellular metabolism
can, depending on their parameter values, exhibit chaotic
dynamics. This erratic behavior is more naturally and widely
observed in many biological systems such as neural networks,
cardiac pacemaker cells, animal gaits, metabolic networks
[1–10], etc. The latter set includes arrays of cells with
activator-inhibitor pathways [1,11,12]. In reality, there is
nothing strange about it as it is well known that disorder
is more likely than order. Incidentally, disorder happens
more spontaneously while organization requires energy. Thus,
energy and organization are closely related. Epitome of the
latter concept is synchronization, which is a prerequisite
for the coordinated collective behavior of cells. So, the
synchronization dynamics of cells with activator-inhibitor
pathways entails the existence of a potential energy of
interaction among these biochemical systems, with suitable
strength. This energy is brought in through several signaling
schemes listed in the literature such as the electrical, chemical,
environmental coupling types [1,11–13]. Depending on the
nature of the interactions involved, these couplings can be of
direct (or indirect), linear (or nonlinear) types. The literature
is a great source of references reporting the ability of these
couplings schemes to foster a synchronized dynamics in
cellular ensembles [11–14].
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However, it is well known that cells live in a common
environment through which they interact indirectly with
the diffusion and transport of chemical species across their
membrane, and with the effects of the activation of receptors on
their cellular membranes. Quite a sizable number of modeling
studies of biochemical oscillators have been proposed in the
literature [15–23]. For example, Guy Katriel investigated the
environmental synchronization dynamics of the periodicities
of a model for the pulsatile secretion of gonadotropin-releasing
hormone from synchronized hypothalamic neurons. He could
also explain the experimentally observed ability of thousand
of cells to synchronize their periodic activity, crucial for
the generation of macroscopic oscillations like circadian
periodicities [24]. Cells perform numerous functions, and in
order to carry out these tasks aiming at perpetuating life, cells
need resources, most of which is obtained from their living
environment. Competition for resources is therefore likely to
occur among cells that interact through the same environment.
Cell’s fate, function, and phenotype is therefore affected by
environmental cues. These interactions with the milieu create
indirect ties between the cells. These connections among the
biochemical pathways striving for resources shape biological
niches. These interspecific interactions often limit the portion
of their niche that they can actually use. Therefore, over time,
the cells will make many complex adjustments to community
living, evolving together and forging relationships that give the
community its character and stability. Both competition and
cooperation then play key roles as cooperation favors available
resource partitioning, by this means reducing competition that
can lead to extinction. Thus, in order to reach a balance, that is
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homeostasis in the milieu, cells need to communicate. The state
of each cell influences the state of the environment, and the
environment in turns influences the cells. This phenomenon is
called “coevolution,” where different biochemical organisms
evolve adjustments to one another over long periods of time.
Biological systems have shown in many cases this ability to
display a sufficiently rich variety of mechanical regulatory
directives bequeathing them with the advantageous and useful
skills of adaptation and learning [10].

The aim of this study is to explore the capacity of this
indirect type of connection through an adaptive dynamic
environment to foster a synchronized dynamics among cells
with activator-inhibitor pathways as they diffuse in the en-
vironment their biochemical species referred to in this case
as “synchronizing agents.” In our analysis, we shall take
into account the ability of these environmental connections
to adapt to the biochemical changes occurring in the inter-
cellular medium. This adaptation feature is crucial as we
seek the synchronization dynamics of cells with activator-
inhibitor pathways in their chaotic regime. Adaptive law
have been widely used in the line of synchronization of
chaotic systems ranging from chaotic oscillations, to chaotic
circuits, to chaotic biological systems [25–28]. However,
in this case, the adaptation law is brought in the system
through environmental coupling. Their respective trajectories
are known to continuously distribute along unstable directions
in the phase space, due to their extreme sensitivity to initial
conditions, inherently biasing them to flout synchronization.
We find the synchronization dynamics of chaotic oscillators
more appealing than that of periodic oscillators, especially
with this weak form of coupling, interactions being indirect.
To the best of our knowledge, this analysis has never been
performed by other investigators and we deeply believe that
its output will cast more light on the environmental processes
sustaining high-quality cellular operations and determining the
preservation of our existence.

This paper is organized as follows: in Sec. II, we present
the coupled model portraying the adaptive environmental
coupling of two cells with activator-inhibitor pathways. In
Sec. III, we examine the existence and stability of the
complete synchronous solution for our model based on the
Lyapunov exponents. Subsequently, Sec. IV is devoted to
the investigation on the appearance in the coupled system of
a phase synchronized dynamics, whose importance has been
proven by many researchers in biological networks. Section V
concludes the work.

II. THE COUPLED MODEL

In the present study, we consider two chaotic cells with
activator-inhibitor pathways, indirectly coupled through a
common environment u with feedback and adaptive control
mechanism, according to the following set of differential
equations:

dxi

dt
= F (zi) − kxi,

dyi

dt
= xi − G(yi,zi),

dzi

dt
= G(yi,zi) − qzi − ε1βiu,

du

dt
= −κu − ε2

(β1z1 + β2z2)

2
,

dκ

dt
= α(β1z1 + β2z2)2, (1)

where i = 1,2, with β1 = −β2 = 1 and 0 < α � 1.
F (z) and G(y,z) are given by

F (z) = 1

1 + z4
and G(y,z) = Ty(1 + y)(1 + z)2

L + (1 + y)2(1 + z)2
.

They stand for the negative and positive feedback processes
present in the sequence of biochemical reactions that internally
contribute to maintain homeostasis in cellular functions by
suppressing stochastic variations [29] and regulating activ-
ities in cellular processes that show periodic and complex
dynamics. This is the case of glycolytic oscillations in cell-free
extracts of yeast cells, peroxidase-oxidase reactions, calcium
oscillations, etc. xi , yi , and zi represent the normalized
concentrations of the substrates and end-product of these cells’
pathways. The parameters k and q are, respectively, the rate of
degradation of the first substrate and the rate of degradation of
the end product. T and L are related to the maximum velocity
of the enzyme and the allosteric constant. u is a variable
standing for the concentration of various biochemical species
in the exterior of the cells, thereby globally determining the
intrinsic dynamics of the environment, which is decaying with
κ as its damping parameter. κ varies depending on the feedback
from the systems, which in return enable the environment to
sustain itself for extended periods of time. ε1 is the strength of
the feedback to the system and ε2 is that to the environment.
Here, we assume that the biochemical components of the
cells that take part in the coupling are the end-products, as
they diffuse through the environment with their respective
normalized concentrations zi . The nature of the feedback from
and to the environment is prescribed by the values of β1 and
β2. In the present case, the coupling is of difference type, that
is (β1,β2) = (1,−1). A similar model has been used by V.
Resmi and G. Ambika [30] to couple Rössler and Lorenz
systems through a common environment without adaptive
feature. This coupling mechanism has the interesting property
that the common environment does not alter the local chaotic
dynamics of the systems as it attempts to synchronize them. In
their synchronized regime, the systems preserve more or less
the same phase space structure of the uncoupled system. Our
idea consists in tuning the gain of a linear damping coefficient
of the environmental coupling during the control procedure.
We wish to update this gain with a proper adaptation law
such that the proposed feedback control law can track and
predetermine the optimal gain of the environmental controller.

Several references in the literature indicate that cells with
activator-inhibitor pathways are complex systems capable
of exhibiting complex dynamics ranging from simple limit
cycle to chaotic behavior [11–13]. For their chaotic regime,
the parameter values of their biochemical pathways carrying
nonlinearities will be taken as: q = 0.1, k = 0.003, 106,
and T = 10. It is noteworthy that cell signaling can occur
in different forms. In the present work, we assume that
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signal molecules released by cells can diffuse through the
extracellular fluid to other cells. If those molecules are taken
up by neighboring cells, destroyed by extracellular enzymes,
or quickly removed from the extracellular fluid in some other
way, their influence is restricted to cells in the immediate
vicinity of the releasing cell. Such short-lived signals with
local effects are called paracrine signals. They play crucial
roles in the early development of the cell, coordinating the
activities of clusters of cells. If a released signal molecule
remains in the extracellular fluid, it may enter the organism’s
circulatory system and travel widely throughout the body.
These longer-lived signal molecules, which may affect cells
very distant from the releasing cell, are called hormones,
and this type of intercellular communication is referred to as
endocrine signaling. Both animals and plants use this signaling
mechanism extensively.

It is worth mentioning that homeostasis is crucial for the
survival of any living being. It refers to the maintenance of
stable internal conditions in an organism living in a changing
environment. The relevance of this importance lies on the fact
that cells function best within a limited range of conditions.
Therefore, for an active entity, temperature, blood sugar,
acidity, and other conditions must be controlled. Failure to
regulate these parameters may elicit detrimental functional
disorder within the cellular ensemble pertaining to illness.
To prevent this scenario, cells constantly convey their needs
to the extracellular space in terms of organic resources by
releasing some chemical signals, such as hormones across their
plasma membrane in order to achieve their numerous tasks.
Consequently, all cells regularly respond to their environment
through steady feedback reports about their states and needs.
These reactions are systematic processes that help our bodies
to uphold their metabolic equilibrium states. Incidentally, it is
the duty of their common dynamic extracellular medium to
cater for their consistent demands by providing the required
chemical resources. The aptitude of the environment to wisely
make provisions for these cells sets the pace that is paramount
to instate a harmonious cooperation among their pathways,
thereby avoiding competition among them. Careful attention
should be given to the fact that rivalry within the cellular milieu
can be harmful for the smooth evolution and stability of the
functional mechanisms involved in the developmental stages of
the cells, aiming at maintaining homeostasis and perpetuating
life.

Based on these facts, the steadiness of these cellular
responses toward the environment in the course of time thereby
enables us to assume in the present analysis that the strength
of the feedbacks of the biochemical pathways to their living
milieu, and vice versa, are constant throughout, and that only
the extracellular medium adjusts its parameter values in terms
of available resources in order to care for the biochemical
systems which there live as a community. To achieve this,
only the damping parameter κ of the dynamic environment
will exhibit this adaptive feature, enabling the environment to
constantly look for the optimal level in terms of availability and
allocation of resources. Let us note that this optimal level also
clearly depends on the cellular demand, that is the strength of
the feedbacks ε1 and ε2. This is the reason why the subsequent
study will be concerned with looking for the suitable values of
ε1 and ε2 vital (necessary) to achieve this goal. Nonetheless,

in other circumstances, these couplings (feedbacks) strengths
could equally be considered to be adaptive and assumed to
be influenced by hormones from other distant cells that bind
to receptors on the target cell’s membrane and trigger it to
produce a needed chemical compound. However, this aspect
of their operations shall not be taken into account in the present
study. This may be the core of a later probe.

III. STABILITY OF THE COMPLETE
SYNCHRONOUS SOLUTION

In coupled systems, synchronization refers to an adjustment
of the time scales of their oscillations due to interaction
between the oscillating processes. It is the most fundamental
phenomenon that occurs in oscillating processes. At this stage,
we wish to investigate the simultaneous existence and stability
of a complete synchronous regime. In order to achieve this,
we need to remind ourselves about the fact that the complete
synchronized state lies on the synchronization manifold where
the cells have exactly identical biochemical pathways, that is
x1 = x2, y1 = y2, and z1 = z2.

A. Linear stability analysis of the coupled adaptive systems

Here, we investigate the stability of the synchronous state
of two systems coupled via the scheme of Eq. (1). Let ξ1,
ξ2, v, and η be the deviations from the synchronized state of
the two coupled systems, the environment, and the damping
parameter, respectively, which are all dynamic. Their dynamics
is governed by the linearized equations obtained from Eq. (1),
which in matrix form can be written as

dX1

dt
= f (X1) + ε1γβ1u,

dX2

dt
= f (X2) + ε1γβ2u,

(2)
du

dt
= −κu − ε2

2
γ T (β1X1 + β2X2),

dκ

dt
= α[γ T (β1X1 + β2X2)]2,

where X1, X2, u, and κ have dimension 3, 3, 1, and 1,
respectively. γ is a column matrix (3 × 1) with elements zero
or one and it decides the components of Xi that take part in
the coupling. We then get

dξ1

dt
= f ′(X1)ξ1 + ε1γβ1v,

dξ2

dt
= f ′(X2)ξ2 + ε1γβ2v,

(3)
dv

dt
= −κv − ε2

2
γ T (β1ξ1 + β2ξ2) − vη,

dη

dt
= 2α[γ T (β1X1 + β2X2)]γ T (β1ξ1 + β2ξ2).

For a completely synchronized regime, that is X1 = X2,
Eq. (3) can be reduced by defining

ξ0 = β1ξ1 + β2ξ2, (4)
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then Eq. (3) reads

dξ0

dt
= f ′(X1)ξ0 + ε1

(
β2

1 + β2
2

)
γ v,

dv

dt
= −κv − vη − ε2

2
γ T ξ0, (5)

dη

dt
= 2αγ T (β1X1 + β2X2)γ T ξ0.

The fixed point (0,0,0) of Eq. (5) corresponding to the
synchronized state will be stable if all the Lyapunov exponents
derived from Eq. (3) are negative. A significant development
can be made if we assume that the time average values of
f ′(X1) and f ′(X2) are approximately the same and can be
replaced by an effective constant value μ [30]. Similarly,
β1X1 + β2X2 can be replaced by its time average constant
value ω. In this approximation, we treat ξ1 and ξ2 as scalars.
This type of approximation has been employed in Ref. [36],
and it was observed that it describes the overall features of
the phase diagram judiciously well. Thus, using ξ0 defined by
Eq. (4), Eq. (3) can be written as

dξ0

dt
= μξ0 + 2ε1v, (6)

dv

dt
= −κv − vη − ε2

2
ξ0, (7)

dη

dt
= 2αωξ0, (8)

where we have β2
1 + β2

2 = 2.
Differentiating Eq. (6) with respect to time and eliminating

v from Eq. (6) and Eq. (7), we derive an equation for ξ0 given as

ξ̈0 = (μ − κ − η)ξ̇0 + [μ(κ + η) − ε1ε2]ξ0. (9)

After differentiating again Eq. (9) with respect to time and
discarding all the deviation terms of order two (namely ξ0ξ̇0,
ξ 2

0 , ξ̈0η, and ηξ̇0), we find the equation

d3ξ0

dt3
+ (κ − μ)ξ̈0 + [ε1ε2 + αω2 − μκ]ξ̇0 − μαω2ξ0 = 0.

(10)

Assuming a solution of the form ξ0 = Aemt , we obtain the
eigenvalue equation

m3 + (κ − μ)m2 + [ε1ε2 + αω2 − μκ]m − μαω2 = 0.

(11)

The parameter values of μ and ω can be obtained nu-
merically from the time series of the coupled system as the
temporal averaging values of the functions żi and β1z1 + β2z2

over a long period of time (because the coupling scheme is
implemented via the third variable, that is the end-product
concentration) when weak perturbations are performed on
the synchronization manifold. In this regard, the values of
μ ≈ 0.00612611845 and ω ≈ 1.0 are found. For the sake
of simplicity, we will choose the value κ = 1.0 in order to
ensure that the value of the damping parameter be greater
than all of the optimal values of κ observed numerically
(depending on the initial conditions) and necessary to obtain a
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FIG. 1. (Color online) The spectrum of eigenvalues as a function
of ε: (a) Eigenvalue spectrum for which the synchronized state is
unstable, ε � 0.0771 in dark line (blue online); Eigenvalue spectrum
for which the synchronized state is stable, ε > 0.0771 in gray line
(orange online). (b) Zoom of the small box in (a) as an evidence
of the existence of at least one eigenvalue that exceeds zero, thereby
yielding an unstable synchronization manifold when ε � 0.0771. The
parameter values are μ = 0.00612611845, ω = 1.0, κ = 1.0, and
α = 3.5001 × 10−9.

synchronous solution, when the coupling strength is suitable
to instate a synchronized regime in the coupled system. We
take α = 3.5001 × 10−9.

Based on the above considerations and on the assumption
that ε1 = ε2 = ε, we solve Eq. (11) for the eigenvalues
of our system making use of the dichotomy scheme, for
different values of ε. The solutions obtained are depicted
on Fig. 1(a) and it is observed that all the eigenvalues m

(orange online) are always less than or equal to zero provided
that the coupling strength ε > 0.0771. This indicates that
for this range of values of the coupling the synchronous
state is stable. This is in close agreement with the previous
result observed numerically on Fig. 2 through the plot of the
evolution of the Lyapunov spectrum as a function of ε where
a similar trend was noticed for ε > 0.07. To ascertain this
fact, an enlargement of the region ε < 0.0771 indicated by
the rectangular box in Fig. 1(a) is shown in Fig. 1(b). This
figure clearly suggests that for ε � 0.0771, there exists at least
one eigenvalue that visibly exceeds zero and will contribute
to the generation of an unstable synchronization manifold. As
inference, we can say that both numerical and analytical tools
advocate for the suitable interval of value of ε > 0.0771, for
which the synchronized regime attained through our adaptive
feedback-control scheme of two environmentally coupled cells
with activator-inhibitor pathways is stable.

B. Numerical simulation of the Lyapunov Spectrum

Our study of the stability of this manifold will be based
on the calculation of the Lyapunov spectrum of the cou-
pled system. Lyapunov exponents are known to assess the
fast exponential divergence of two trajectories of the same
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FIG. 2. (Color online) The three largest Lyapunov exponents of
the coupled system as a function of the coupling strength ε. The
parameter values are q = 0.1, k = 0.003, L = 106, T = 10.

dynamical system, which started from almost indistinguish-
ably close initial conditions in the phase space and with the
course of time. In the actual case study, when the coupled
systems are completely synchronized, they act as one unique
entity on the synchronization manifold, thereby causing the
dimension of the coupled cells to settle from 8 to 4. In the event
where perturbations are produced on the manifold in directions
transverse to it, that dimension unfolds again in phase space
and grows above 4, leaving the system unsynchronized. A
survey of how these perturbations grow in the phase space
over a long period of time can be perceived through the
calculation of the whole spectrum of Lyapunov exponents
corresponding to the coupled system for a given value of
the coupling strength. The technique for the obtention of this
spectrum is described in Ref. [35]. It produces 8 Lyapunov
exponents. First and foremost, the largest of them, λ1, is
an indicator of whether there is a chaotic dynamics on at
least one of the coupled systems. In our case, because of the
chaotic dynamics of the cells, λ1 is always strictly positive
for all the values of ε. Second, and extremely important, the
second largest exponent λ2 of our coupled system detects
whenever a fully stable synchronized regime is instated among
the cells by the coupling. This occurs when λ2 becomes
strictly negative. Finally, and not the least, the third Lyapunov
exponent λ3 provides information about the presence of a phase
synchronized dynamics among the cells.

Before closing this discussion, we support the previous
relevant comments made on the ability of this feedback-control
adaptive environmental coupling to preserve the local intrinsic
chaotic behavior of cells while synchronizing them, by plotting
the three largest Lyapunov exponents of our 8-dimensional
coupled system as a function of the environmental coupling
scheme. This is presented in Fig. 2 where it is observed that
the largest Lyapunov exponent is always strictly positive
irrespective of the value of ε, showing that the global
dynamics of the coupled system is always chaotic. Also, we

FIG. 3. (Color online) The Lyapunov diagrams of the coupled
system Eq. (1), defined by the second-largest Lyapunov exponent of
the spectrum, showing domains of stability of the synchronization
manifold as function of the coupling strength ε and (a) the rate of
degradation of the first substrate k and (b) the maximum velocity
of the enzyme T . The other parameters are fixed as L = 106 and
q = 0.1.

observe that the third largest Lyapunov exponent definitely
becomes negative when ε > 0.066, indicating the onset
of phase synchronization. In addition, when ε > 0.07,
the second largest Lyapunov exponent becomes steadily
negative, indicating in its turns the onset of complete chaotic
synchronization for the coupled cells. These results are in
agreement with our previous observations.

Therefore, in order to enquire about the existence and
stability of the synchronous solution, we will rely on the
observations made on the evolution of λ2 as we vary the
strength of the coupling among the cells. Figure 3(a) depicts
the domains of stability of the synchronized state in the (ε,k)
parameter space based on λ2. It is observed that cells find it
easy to synchronize for most of the couple of values (ε,k)
of the coupling strength and the rate of degradation of the
first substrate, except mainly when (ε,k) ∈ [0.028,0.055] ×
[0,0.18]; and for some few isolated points spread in the
lower region of the parameter space. Figure 3(b) shows
the same analysis performed in the (ε,T ) parameter space,
where we see that the domain of stability is still large. But, the
stable synchronized state is not accessible when the maximum
velocity of the enzyme is such that T ∈ [1,3.8], and mostly
when (ε,T ) ∈ [0,0.065] × ([1,7.5] ∪ [9.1,11.2]).

Evidence of these observations are portrayed in Fig. 4,
where we plot both the time series superpositions of the cells
and their phase portrait correlations for two different values
of ε. The parameter values are still those for the chaotic
dynamics of the pathways. When ε = 0, Fig. 4(a) shows
that the cells are not synchronized and their phase portrait
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FIG. 4. (Color online) Complete synchronization in two indi-
rectly coupled cells with activator-inhibitor pathways coupled
through an adaptive environment with feedback control mechanism.
Figures (a) ε = 0, no synchronization, and (b) ε = 0.15, synchro-
nization, are the plots of the superposition of the time series of
the two coupled cells. Figures (c) ε = 0, no synchronization, and
(d) ε = 0.15, are the correlation graphs for different values of the
coupling. For a suitable coupling strength, a complete synchronized
dynamics is obtained.

correlation graph shows that they are uncorrelated as seen
on Fig. 4(c). However, when ε = 0.15, Figs. 4(b) and 4(d)
show that the cells have their biochemical pathways perfectly
synchronized and correlated via their end-product normalized
concentration.

It then becomes obvious that the proposed adaptive envi-
ronmental coupling scheme is capable of producing a robust
synchrony among the coupled cells with activator-inhibitor
pathways. The adaptation and learning skills of this coupling
involve dynamical processes that tend to reinforce themselves
through long-term repeated experience of encoding, assimilat-
ing, and decoding of information produced both endogenously
and exogenously. Figure 5 portrays the adaptive character of
this indirect coupling scheme with feedback control, where
it is observed that for the value of the coupling ε = 0, the
damping parameter κ of the environment continuously grows
with time, indicating that the coupled system cannot reach
a stable synchronized dynamics. But for a suitable value of
the coupling, κ increases and rapidly attains a constant value,
corresponding to its optimal value when synchronization is
established among the cells.

IV. PHASE SYNCHRONIZATION

When seeking procedures to assess to degree of synchro-
nization between two oscillators, sufficient attention must be
given to their respective “stages” of oscillations, that is their
positions inside the specified cycle of oscillations; namely the
beginning, the first quarter, the middle, the third quarter, the
end, etc. The quantity responsible of characterizing the stage of
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FIG. 5. (Color online) Time series of the damping parameter of
the environment κ for (a) ε = 0 and (b) ε = 0.15.

oscillations of each oscillator at any instant of time is called the
phase of that oscillator [φ(t)]. For harmonic oscillations, the
phase is a linear function of time, while for more complex
dynamics such as quasiharmonic and chaotic oscillations,
it has a more complex shape. Accordingly, the concept
of phase is intimately associated with the phenomenon of
synchronization. Phase therefore represents a convenient tool
for the detection of whether two oscillators are synchronized
or not. Specifically, considering the phase difference between
oscillators, if the phase difference happens to be a constant
or to slightly swing around a constant, this would typically
suggest that the oscillators are 1:1 synchronized. In this case,
there is the appearance of frequency locking mechanisms due
to the effect of suitable coupling scheme and strength, forcing
the oscillators to vibrate “in phase.” Alternatively, if the phase
difference grows in time, there is no 1:1 synchronization.

As well as in nature it is hard to find two exactly identical
systems, complete synchronization is more challenging to
find compared to phase synchronization. Mindful of this
fact, phase synchronization therefore occurs more naturally
in coupled biological systems. It is the weakest form of
synchronization and is usually obtained when the strength of
interactions is low. As the coupling strengths become large,
more ordered levels of synchronization regimes appear such as
lag synchronization, followed by the strongest synchronized
dynamics: the complete synchronization [11]. The intermit-
tency in the phase synchronized dynamics usually takes place
at the values of the coupling strength where transitions between
these different types of synchronized regimes are obtained.
This intermittency is characterized by intervals of loss of
synchronization disconnecting epochs of synchronization.

In coupled dynamical systems, several indicators of the
presence of a phase synchronized dynamics can be used
such as the average phase difference between two systems,
the stroboscopic poincaré maps, the Lyapunov exponents, the
phase-space diffusion and correlation parameters, namely the
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FIG. 6. (Color online) Onset of phase synchronization in two
indirectly coupled cells with activator-inhibitor pathways coupled
through an adaptive environment with feedback control mechanism.
(a) Occupation of the conditional observations with respect to the
attractor, χ . (b) End-product Normalized concentration z

j

2 of the
second cell when the first cell makes the j th crossing with the section
z = 10, for ż > 0. (c) Mean value of the Kuramoto parameter 〈R〉. (d)
The Kuramoto amplitude δR, as a function of the coupling strength
ε1 = ε2 = ε, detecting the emergence of phase synchronization in
the coupled biochemical system. The parameter values are q = 0.1,
k = 0.003, L = 106, T = 10.

Kuramoto parameter, to name just a few. First, it is noteworthy
that a strong evidence of the existence of phase synchronization
in coupled chaotic oscillators is the localization of conditional
sets obtained from the observations of the position of one cell’s
trajectory at the time another cell makes any physical event
[31]. This concept is an extension of the approach of localized
map by Pereira et al. [32] who demonstrated that localized sets
can be constructed while in phase synchronization by means
of any physical observation. In the present study, we define our
physical event based on the poincaré section of the attractor
of the first cell through the plane defined by z = 10, with the
constraint that ż > 0. In this manner, based on the repeated
realizations in the phase space of the defined event by the
trajectory of the first cell, a stroboscopic map is derived for the
second cell through observations of its positions at the times
the event takes place. A set of points is therefore constructed
in phase space for the second cell for a given value of the
coupling strength. For the sake of simplicity, we assume that
ε1 = ε2 = ε as in the preceding analysis.

To have a clear picture of when phase synchronization might
appear between the two coupled chaotic cells, we show in
Fig. 6(a) the plot of the quantity:

χ = max
(
z
j

2

) − min
(
z
j

2

)

max[z2(t)] − min[z2(t)]
, (12)

where z
j

2 represents the value of z2 at the instant the trajectory
of the first cell makes the j th event. Thus χ is related to
how broad the conditional observations spread over the whole

attractor [33]. Figure 6(b) depicts the captured values of z
j

2
on the attractor of the second cell in phase space at the times
the event occurs, for different values of ε. It appears from
both figures that when ε > 0.066, phase synchronization takes
place, as the conditional observations obtained for the second
cell when the first one makes the event always produce a
localized set of points. Alongside this analysis, we carry out a
temporal survey of the data using the parameter

R =
√(∑2

i=1 sin(φi)
)2 + [ ∑2

i=1 cos(φi)
]2

2
, (13)

defined by Kuramoto in 1984 as a rigorous quantity for the
assessment of mutual phase entrainment and synchronization
among coupled phase oscillators [34]. φi stands for the phase
of the ith cell. For a given set of parameters, we compute the
temporal average 〈R〉 of R and its amplitude δR = maxt (R) −
mint (R). For full (complete) synchronization to be established,
we consider that the following conditions must be fulfilled:

〈R〉 is strictly greater than 〈R〉threshold = 0.98 and that
δR < δRthreshold = 0.001
Both 〈R〉threshold and δRthreshold have values chosen arbi-

trarily. Figures 6(c) and 6(d) show the evolutions of 〈R〉 and
δR, respectively, obtained over a long period of time, as the
environmental coupling ε varies. As previously indicated in
the case of the generation of conditional sets, it is observed
that when ε > 0.066, phase synchronization takes place,
immediately followed by the emergence of a high quality full
synchronization.

As illustrative evidences of the above remarks, we present,
respectively, in Figs. 7(a) and 7(c) the set of points obtained
in dark dots (blue online) from the second cell’s attractor
through the Poincaré section of the first cell’s attractor at
the times the defined event takes place, and the time series
of the phase difference between the cells, when ε = 0. It
is observed that the set of points are not localized and the
time series of the phase difference show divergence as it
is not bounded. The calculations indeed show in Fig. 7(c)
that the phase difference goes up to 4 × 104. For a larger
value of the environmental coupling, namely ε = 0.15, the
set of points become localized as seen on Fig. 7(b). Hence,
the corresponding phase difference between the biochemical
pathways on Fig. 7(d) becomes perfectly zero due to the fact
that they are completely synchronized for the given value of
the environmental coupling.

We finalize our study on the appearance of phase syn-
chronization in the coupled system by investigating in the
parameter spaces (ε,k) and (ε,T ) suitable requirements for
the emergence of this synchronized regime, based on the
mean value of the Kuramoto parameter. On both parameter
space diagrams, the domains of phase synchronization are
depicted in black (blue). From Fig. 8(a), it appears that a
phase synchronized regime is almost always present in the
coupled system as soon as ε > 0.066, except in general
for k ∈ [0.0028,0.029] where the synchronized dynamics is
more or less reluctant to appear for a large range of values
of ε. The exception made is that the domain of existence
of phase synchronization in the parameter space (ε,k) is
very large. Thus, the coupled cells are more inclined to
synchronize their biochemical pathways for a wide range of
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FIG. 7. (Color online) Onset of phase synchronization in two
indirectly coupled cells with activator-inhibitor pathways coupled
through an adaptive environment with feedback control mechanism.
Figures (a) ε = 0 and (b) ε = 0.15 are the plots of the attractor of the
first cell in gray lines (pink online) and the stroboscopic projection
of the attractor of the second cell in dark dots (blue online) on the
cross section of the first cell, for different values of the coupling
strength (the points are localized as the coupling increases, indicating
the onset of phase synchronization in the system). Figures (c) ε = 0
and (d) ε = 0.15 are time series of the phase difference of the two
coupled cells for different values of the coupling. As the coupling
increases, the phase difference is bounded, confirming the onset
of phase synchronization in the biochemical system. The parameter
values are the same as described in the caption of of Fig. (6).

parameter points (ε,k). Figure 8(b) equally shows that in the
parameter space (ε,T ) there is a narrow band of points for
which the maximum velocity of the enzyme T ∈ [1.7,3.4]
and the coupling strength ε ∈ [0,0.07233], where the coupled
system defies synchronization. But exception made of these
regions is that a wide part of the parameter space (ε,T ) is
greatly in favor of the emergence of a phase synchronized
dynamics. The above analysis performed on the concept
of phase synchronization in coupled systems is particularly
important since it determines immensely the spatiotemporal
organization of coupled biological systems and the efficiency
with which information is transferred from one cell to another.

V. DISCUSSIONS AND CONCLUSION

The foregone outcomes derived from our model provide
good reenactments about the internal processes pertaining
in high-quality physiological activities occurring in living
beings, as observed through many practical inspections. It
is worth mentioning that our model, which is inspired by
several preceding works addressing a broad area of valid
problems encompassing indirectly coupled biological and
complex systems, and sometimes unveiling prominent chaotic
activities with time-delay schemes, is supported by key data
collected in culture experiments [24,37–39]. Specifically,
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FIG. 8. (Color online) The Kuramoto diagrams of the coupled
system Eq. (1), based on the mean value of the Kuramoto parameter,
showing phase synchronization regions in black (blue) and regions of
unsynchronized dynamics white (white) as a function of the coupling
strength ε and (a) the rate of degradation of the first substrate k and (b)
the maximum velocity of the enzyme T . The other parameter being
fixed as L = 106 and q = 0.1.

some data have enabled the authors in [24,37] to draw a
comprehensive set of valuable assumptions on an analogous
model of gonadotropin-releasing hormone (GnRH) from
synchronized hypothalamic nerve cells. The analysis of the
dependence of the equilibrium levels of α subunits, of Ca2+

and cAMP on G proteins on the basis of experimental data has
been implemented. This study showed the adaptive character
of these elements. The simulations of many heterogeneous
neurons have revealed the robustness of their synchronization
mediated by a common pool of diffusible GnRH, which there
plays the role of synchronizing agent in the midst of the
nerve cells. Likewise, Ref. [40] proposes a similar approach
to model biochemical signal transduction systems based on a
defined aggregate objective function that likely accounts for
the evolutionarily optimized efficiency in signal transmission
in the extracellular medium. Starting from the ground that
concentration adjustment in the cellular milieu exists to
maintain effective signal transmission, the author showed that
her model is self-organizing, as perturbations in proteins con-
centrations or changes in extracellular signaling automatically
lead to adaptation. After systematic perturbations in the protein
concentrations, she observed the responses and reaction times
(that is the delays) of 27 molecular species involved in a set
of 23 chemical reactions seemingly driving the optimization.
Hypothesizing that an efficient signal transmission would
maximize the responses of the molecular species to the input,
she defined the objective function so as to minimize the delay
and maximize the response. This procedure had pertinence in
explaining the adaptation scenarios.

Also, Ref. [10] clearly reports some experimental ob-
servations obtained about the functional responses of the
environmental properties, with relevance in the instatement
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of a harmonious development in the cellular milieu. Therein,
it is clearly given account about the fact that the animal body
has evolved over a long period of time, and specialization
(that is the richness in the diversity of species) has increased.
With pertinence in each specie, cells are found to be so-
phisticated machines finely tuned to carry out a precise role
within the body. Such specialization of cells is possible only
when extracellular conditions are kept within narrow limits.
Temperature, pH, the concentration of glucose and oxygen,
and many other factors must be kept constant for cells to
function efficiently and interact properly with one another.
Homeostasis, which is essential for life, may then be defined
as the dynamic constancy of the internal environment. The
term dynamic is used because conditions are never absolutely
constant, but fluctuate continuously within narrow limits.
However, in the present analysis we ideally assume through
our model their constancy for the sake of simplicity, that is the
constancy of the damping parameter κ of the environment
whenever complete synchronization is achieved, as shown
in Fig. 5(b). This optimal value of κ helps stabilizing the
environmental conditions and concomitantly annihilates the
cellular differentiation. In order to maintain homeostasis,
vertebrates possess several sensors that are able to measure
each environmental condition. They constantly monitor the
extracellular conditions and relay this information, usually (via
nerve signals) to an integrating center, which contains the set
point, that is the proper value for that condition (see Chap. 58,
“Maintaining the internal environment,” in Ref. [10]).

The integrating center is often a particular region of the
brain or spinal cord, but it can also sometimes be cells
of the endocrine glands. It receives messages from several
sensors, weighing the relative strengths of each sensor inputs,
and then determines whether the value of the condition is
deviating from the set point. When a deviation in a condition
occurs, which is referred to in this case as a stimulus, the
integrating center sends a message to increase or decrease the
activity of particular effectors, which are generally muscles
or glands that can change the value of the condition in
question, back toward the set-point value: This is referred
to as the response. The effectiveness of this mechanism relies
on a type of control system known as negative (or reverse)
feedback loop. For example, it is well known that if the body
(or blood) temperature (which fundamentally determines the
fate of biochemical reactions in the intra- and intercellular
medium, cells being osmoregulator) exceeds 37 ◦C (98.6◦F),
sensors in a part of the brain detect this deviation. Acting via
an integrating center also located in the brain (namely the
hypothalamus), these sensors stimulate effectors, including
sweat glands, that lower the temperature, thereby protecting
the set points of the body against deviations. Conversely, if
the temperature happens to go below 37 ◦C, a different set of
responses is generated, such as shivering and the constriction
of blood vessels in the skin, which help to raise the body
temperature and correct the initial challenge to homeostasis.

These regulations are in the reverse (or negative) directions,
and are therefore referred to as negative feedback loops crucial
for the maintenance of homeostasis, and that ultimately cause
the effectors to be turned off. In this way, constancy in
environmental conditions is maintained, thereby enhancing a
coordinated collective agreement among the environmentally
connected biochemical pathways of the cells. Therefore, the
regulation of body temperature, blood glucose, and other
environmental parameters in the cellular milieu has as an end
objective the stabilization of environmental patterns aiming at
ensuring optimal conditions for the emergence of a harmonious
cellular development.

Subsequent to this perusal of experimental observations,
and all together with our theoretical results, it appears evident
that our proposed model reliably depicts a fairly faithful
description of the importance of the steadiness in an optimal
level (set point), of the parameter values of the environment,
herein portrayed by its damping parameter κ , and achieved via
adaptive feedback control mechanisms. Its regulatory feature
has as an end result the promotion of a robust synchronized
dynamics among the cells with activator-inhibitor pathways,
which can efficiently communicate via stable environmentally
relayed signallings.

As we summarize the work done so far, it is important to
recall that cells with activator-inhibitor pathways are biochem-
ical systems capable of parading an extremely rich variety of
complex dynamical behaviors such as fixed points and periodic
and chaotic regimes. In lattices, they are also known to display,
depending on their population size, interesting features of
spatiotemporal organization, when directly interacting under
steady coupling conditions [1,11–13]. In the above inquiry, we
have investigated their synchronized dynamics assuming that
they interact indirectly through a dynamic environment with
adaptive feedback control mechanism, aiming at promoting
a cooperative pattern between the biochemical pathways of
the chaotic cells, by stabilizing in the phase space their
trajectories that lean toward disseminating themselves along
unsteady directions, setting them to flout synchronization.
Though a weak form of coupling, this coupling mode has
proven itself capable of engendering robust synchrony among
cells with activator-inhibitor pathways. The stability analysis
of the synchronized state has been carried out in this framework
and the numerical simulations suggest the existence of many
suitable conditions that favor the emergence of this highly
desirable collaborative arrangement among the cells.
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