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Regularly timed events amid chaos
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We show rigorously that the solutions of a class of chaotic oscillators are characterized by regularly timed
events in which the derivative of the solution is instantaneously zero. The perfect regularity of these events is in
stark contrast with the well-known unpredictability of chaos. We explore some consequences of these regularly
timed events through experiments using chaotic electronic circuits. First, we show that a feedback loop can be
implemented to phase lock the regularly timed events to a periodic external signal. In this arrangement the external
signal regulates the timing of the chaotic signal but does not strictly lock its phase. That is, phase slips of the
chaotic oscillation persist without disturbing timing of the regular events. Second, we couple the regularly timed
events of one chaotic oscillator to those of another. A state of synchronization is observed where the oscillators
exhibit synchronized regular events while their chaotic amplitudes and phases evolve independently. Finally, we
add additional coupling to synchronize the amplitudes, as well, however in the opposite direction illustrating the
independence of the amplitudes from the regularly timed events.
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I. INTRODUCTION

The characterization of a dynamical system as chaotic
suggests erratic, unpredictable evolution. However, it is well
known that many chaotic oscillations have an approximately
cyclic nature such that a phase can be defined similar to the
phase of a sinusoidal oscillation [1]. Typically, the phase of
a chaotic oscillator increases nearly steadily in time, but with
small erratic fluctuations determined by initial conditions. For
example, the phase of a Rossler oscillator has been modeled
as a random walk superimposed on steady growth according
to an average frequency [2]. A remarkably different behavior
was observed in an unusual hybrid dynamical system [3–8].
Unlike most chaotic systems, an analytic expression is known
for typical chaotic solutions of this hybrid system. Remarkably,
each such solution must pass through points with zero slope at
regularly spaced time intervals. These extrema and inflection
points constitute a set of regularly timed events that occur amid
an irregular chaotic oscillation. This phenomenon is striking
since strict regular timing is a property one associates more
with periodic systems (e.g., clocks) than with autonomous
chaotic oscillators.

In this paper, we demonstrate that this phenomenon is
general to a larger class of oscillators and has some interesting
consequences. First, we identify the dynamic origin of regular
events amid chaos, showing explicitly that they occur in all
members of a class of solvable hybrid chaotic systems. Second,
we show how a clock signal can be derived from the regular
extrema and inflection points of a wave form generated by an
electronic circuit that implements a solvable chaotic system.
By making one parameter of the chaotic circuit adjustable, we
introduce a feedback loop that phase locks the regular events
in the chaotic wave form to an external periodic source. Next,
a variation on this feedback scheme is used to produce a novel
form of synchronization between two such chaotic circuits
where their amplitudes are independent but their regular events
coincide. Finally, we add an additional amplitude-dependent
coupling that induces complete synchronization. However, we
reverse the roles of drive and response in the second coupling

to highlight the independence of the regular timing and the
amplitude in the dynamics.

Solvable chaotic oscillators of the class considered here
have a number of properties that make them fundamentally
interesting as dynamical systems. For example, quantities
such as the Lyapunov exponent and the metric entropy
that are usually estimated statistically can be determined
analytically. These oscillators may also have significant
practical applications. Physical implementations include elec-
tronic circuits and electromechanical oscillators [3–5,7,9,10].
Proposed technological applications include radar [11–13]
and communications [7,9,14–16]. Acoustic ranging using
solvable chaos has been demonstrated experimentally [17].
In applications such as these, the presence of regularly timed
events amid chaos enables easy integration of these oscillators
into existing conventional, clocked, electronic technology and,
therefore, may be the single most attractive feature of these
dynamical systems from a practical standpoint.

II. A CLASS OF CHAOTIC OSCILLATORS WITH
REGULAR EVENTS

A variety of hybrid oscillators with analytic chaotic
solutions has appeared in the literature [3–8]. A general
framework that incorporates all of these systems contains two
components, as follows. The first component is the linear,
second-order differential equation

d2u

dt2
− 2β

du

dt
+ (ω2 + β2)(u − s) = 0, (1)

where u(t) is a continuous state variable, s(t) is a discrete state,
and ω and β are fixed parameters. The second component is
a rule or guard condition that specifies how the discrete state
s(t) is updated. Here we consider the condition

du

dt
= 0 ⇒ s(t) = H (u(t) − d), (2)

meaning the discrete state s(t) is set to H (u(t) − d) when-
ever the derivative of u(t) vanishes, where H (x) is the
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left-continuous Heaviside function and d is a fixed threshold.
Various choices of the parameters ω, β, and d lead to the
different solvable chaotic oscillators reported in the literature.
For example, ω = 2π , β = ln 2, and d = 1/2 give an oscillator
with a Lorenz-like phase portrait whose return map is exactly
equivalent to the Bernoulli shift map. Also, ω = 2π , β =
0.81 ln 2, and d = 1 give an oscillator with a Rossler-like,
folded-band phase portrait. These two examples illustrate
how different choices for these three parameters may lead to
topologically distinct chaotic sets in phase space. However,
we show that, regardless of topological diversity, all such
oscillators display regularly timed events in their chaotic
solutions.

All oscillatory solutions of Eq. (1), a linear ordinary
differential equation, have regularly spaced extrema or inflec-
tion points separated in time by half the natural period of
oscillation. The guard condition Eq. (2) can only be triggered
at such points. Importantly, the switching occurs in such a
way that it does nothing to either hasten or delay the next such
event. Thus, the set of regular events occurs in the full nonlinear
system formed by Eqs. (1) and (2) through an interplay of the
linear part and the discrete switching, as we will now show
explicitly.

Consider an initial condition at time t0 where u(t0) = u0,
du/dt(t0) = 0, and s(t0) = s0 = H (u0 − d). From t = t0 until
t = t1, where t1 is the next time at which du/dt = 0 and the
guard condition is triggered, the solution is

u(t) = s0 + (u0 − s0)eβ(t−t0)

×
(

cos ω(t − t0) − β

ω
sin ω(t − t0)

)
.

As long as this solution is valid, the derivative is

du

dt
(t) = −ω2 + β2

ω
(u0 − s0)eβ(t−t0) sin ω(t − t0). (3)

From Eq. (3) it follows that the next time at which du/dt = 0
is t1 = t0 + π/ω. This argument can then be repeated using
the initial condition at time t1 where u(t1) = u1, du/dt(t1) =
0, and s(t1) = s1 = H (u1 − d), to arrive at the conclusion
that the next extremum or inflection point occurs at time
t2 = t1 + π/ω, regardless of whether s0 = s1 or not. Thus,
starting from one extremum or inflection point of u(t), there
is an infinite train of extrema or inflection points at regularly
spaced intervals of width π/ω. These points constitute a set of
regularly timed events amid chaos.

Figure 1 shows chaotic solutions (solid black lines) of two
hybrid oscillators. The first [shown in Fig. 1(a)] bears some
resemblance to a Rossler oscillation insofar as it displays
a sinusoidal oscillation that grows exponentially until it is
folded back in by nonlinearity. The second [see Fig. 1(b)]
is more like the antipodal Lorenz-type oscillation which has
two growing oscillations about symmetric fixed points that
are limited by jumping from one to the other rather than
by a folding action. Despite the topological differences of
these oscillations, both exhibit regularly occurring extrema
and inflection points (indicated by red circles with dashed drop
lines to underscore regular spacing in time). We emphasize that
this phenomenon is generic to all the solvable systems that fit
within the framework of Eqs. (1) and (2). Having established

FIG. 1. (Color online) Time series of two solvable chaotic oscil-
lators with extrema and inflection points highlighted (red circles).
In both cases, ω = 2π . The other parameters of the two oscillators
are (a) β = 0.7019 and d = 1.2632 and (b) β = 0.7645 and d =
0.5344. Dashed guidelines indicate the regular spacing between the
highlighted points.

the generality of this phenomenon, in the following sections
we describe experiments with chaotic electronic circuits that
illustrate some consequences of regularly timed events amid
chaos.

III. A PERFECT CLOCK DERIVED FROM CHAOS

Oscillators governed by Eqs. (1) and (2) have been physi-
cally implemented as electronic circuits and electromechanical
systems [3–5,7,9,10]. For any one of these devices, additional
circuitry can be implemented to track the regularly timed
events. Ideally, such a clock would be perfectly periodic with a
period of exactly π/ω. Previously, a clock signal was derived
from a Lorenz-like, antipodal chaotic wave form [17]. The
approach used there cannot not be applied to all oscillators
of the class considered here; specifically, it fails for those
whose solutions contain a Rossler-like folding mechanism
such as that shown in Fig. 1(b). Therefore, we now describe
an electronic circuit with Rossler-like dynamics and a means
for deriving a clock signal from the regularly timed events in
the wave form. Some combination of this approach with that
of Ref. [17] should suffice for any member of the class of
oscillators considered in Sec. II.

The oscillator circuit, shown in Fig. 2, follows the same
design as previously published solvable oscillators consisting
of an analog resistor-capacitor-inductor circuit interfaced
through comparators and buffers with a digital logic feedback
circuit. The analog part implements the ordinary differential
equation, Eq. (1), and the comparators, logic gates, and buffers
implement the guard condition, Eq. (2). The continuous state
variable u(t) is proportional to the voltage Vu(t) across the
capacitor, C. A constant voltage Vd is supplied to set the
threshold d. The discrete state variable s(t) is proportional to
Vs(t), the output of the logic circuit which feeds back through
the inductor L. The resistor −R is an active negative resistance
device. Extensive further details of the circuit implementation
are given in the Supplemental Material [18].

052904-2



REGULARLY TIMED EVENTS AMID CHAOS PHYSICAL REVIEW E 92, 052904 (2015)

FIG. 2. Schematic diagram of a solvable chaotic oscillator cir-
cuit. A more detailed schematic is included in the Supplemental
Material [18].

Typical behavior of the circuit is represented in Fig. 3.
Figure 3(a) shows an experimental time series of the voltage
Vu(t) measured across the capacitor C. This oscillation resem-
bles the Rossler oscillation insofar as it displays a growing
sinusoid that is reinjected near the origin when it reaches
a threshold size [19]. Figure 3(b) shows the corresponding
phase portrait for this oscillator, where the voltage is plotted
versus its derivative. Note that the phase portrait displays a
folded-band structure similar to the oscillator in Ref. [8], but
with the central eye opened considerably.

The regular events embedded in an oscillation like that
of Fig. 3(a) are monitored with the simple circuit shown in
Fig. 4 consisting of a comparator, a binary counter, and an XOR

gate. To explain the function of the circuit, we refer to Fig. 5.
A typical chaotic oscillation in Vu(t) is shown in Fig. 5(a)
and the corresponding discrete state Vs is shown in Fig. 5(b).
The voltage Vs is supplied to the clock input of the binary
counter. The output of the counter is a signal whose logic level
switches on every falling edge of Vs , as shown in Fig. 5(c).
The comparator outputs a logic signal whose state indicates the
sign of the derivative of Vu(t), with a low logic level indicating

FIG. 3. Typical experimental (a) time series and (b) phase portrait
of an electronic solvable chaotic oscillator.

FIG. 4. Schematic diagram of a circuit that derives a periodic
signal from the regular events found in the oscillations of the circuit
of Fig. 2. Further circuit details are included in the Supplemental
Material [18].

a positive sign, as shown in Fig. 5(d). This signal is a regular
square wave whose polarity is flipped every time the guard
condition triggers a rising edge in the discrete state Vs(t). The
XOR gate acts as either a logical follower or an inverter of this
square wave depending on the input from the T flip flop. When
the guard condition triggers a transition in Vs(t), the polarity
of the square wave at the output of the comparator is flipped,
but the XOR gate flips it back, making the output h(t) a regular
square wave with a transition at each extrema or inflection
point of the voltage over the capacitor, as seen in Fig. 5(e).

FIG. 5. Experimental data showing signals involved in deriving a
periodic signal using the circuit of Fig. 4 from the regular events in the
chaotic oscillations of the circuit of Fig. 2. Time series shown include
(a) a chaotic time series with regular events, (b) the corresponding
discrete state, and (e) the resulting periodic signal. The remaining
time series [panels (c) and (d)] are intermediate steps corresponding
to components in Fig. 4.
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This circuit for extracting the regular timing of the oscillator
in Fig. 2 can be compared with the similar circuit in Fig. 3 of
Ref. [17]. The significant difference between these two circuits
is the use here of a binary counter. The function of the counter
is essentially to track the phase slips that occur each time the
oscillation traverses the fold in the attractor seen in Fig. 3. No
such folding or phase slips occur in the Lorenz-like attractor
of Ref. [17], so no counter is needed. Thus, although regularly
timed events are generic to a large class of solvable systems, the
method of extracting them must take into account the specific
topology of the attractor of interest.

Having established a means of extracting the regular timing
of the chaotic signal, we can now contemplate exploiting
it to modify the behavior of the chaotic oscillator in a
desirable fashion. We describe two examples of such efforts
below.

IV. PHASE LOCKING REGULAR EVENTS

In the previous section, a periodic signal was derived from
the regular events in a chaotic oscillation. In many oscillator
applications, it is useful to entrain one periodic oscillator to
another. For example, in an FM receiver a local oscillator is
phase locked to a received oscillation to enable demodulation.
Here we show that the regular timing of a chaotic oscillation
can likewise be entrained or phase locked. We first modify the
oscillator circuit shown in Fig. 2 to enable small adjustments of
the frequency of the regular events. Then we use the difference
between the signal derived from the regular events and a
reference signal to form a feedback control signal that adjusts
the frequency of events in a manner that entrains or phase locks
it to the reference signal.

Following the argument of Sec. II, the frequency of the
regular events generated by Eqs. (1) and (2) is determined by
the parameter ω. In our circuit implementation, this parameter
is set primarily by the values of the capacitance C and the
inductance L in Fig. 2. The capacitance C can be made
variable by adding an electronically tunable capacitance in
parallel with the existing fixed capacitance. The details of such
a tunable capacitance are given in the Supplemental Material
[18].

The voltage input that tunes the variable capacitance is
used to feedback a control signal g(t) related to the difference
between the signal h(t) derived from the regular events of the
chaotic oscillator and a periodic reference signal e(t). This
scheme is illustrated schematically in Fig. 6. This feedback
circuit has two inputs. The first is h(t), the output of the circuit
shown in Fig. 4. The second is e(t), the reference signal whose

FIG. 6. Schematic diagram of a feedback circuit that locks the
periodic signal h(t) output by the circuit of Fig. 4 to an external signal
e(t). The output of this circuit g(t) controls that variable capacitance
in Fig. 2. Further circuit details are included in the Supplemental
Material [18].

FIG. 7. Experimental time series demonstrating phase locking of
(b) the periodic signal derived from the regular events in (a) a chaotic
oscillation to (c) an external signal. In the locked state, a constant
π/2 phase difference is apparent between the regular events and the
external signal.

frequency is close to ω/π . The XOR gate and low pass filter
then produce an output signal that is minimized when the two
input signals have the same frequency and differ in phase by
π/2 radians.

Figure 7 shows typical experimental examples of each of
these signals. The consistent π/2 phase difference between
the timing signal h(t) and the reference signal e(t) [shown
in Figs. 7(b) and 7(c), respectively] is the hallmark of phase
locking. It is important to note that the phase of the chaotic
oscillation of the voltage Vu(t) is not locked to the external
signal as there is a π phase shift every time the oscillation
goes through a fold [e.g., as occurs about 15 ms into the wave
form of Fig. 7(a)]. However, apart from these instantaneous
phase slips, the phase of the chaotic oscillation is governed
by the external signal. Meanwhile, the chaotic oscillation of
the voltage Vu(t) continues unchanged. A detailed study of the
transition to phase locking is beyond the scope of this article.
However, we generally observed that the range of drive fre-
quencies over which locking occurs increases with increasing
feedback gain in a manner similar to other forms of phase
locking.

Phase locking in one form or another is ubiquitous in
modern communication technology. Thus, the demonstration
of phase locking here suggests a degree of compatibility with
conventional signal generation or processing schemes. This
example of phase locking is directly applicable to a recently
proposed scheme for generating antipodal chaotic wave forms
for transmission of information [20]. In this scheme, the timing
of a bank of solvable chaotic oscillators is assumed to be
phase locked while the amplitudes are controlled to generate
antipodal signals that are better suited for transmission and
reception than the signal from an individual oscillator. This
scheme was proposed without details on how to achieve phase
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locking. Our results here provide a means of phase locking
suitable to enable this scheme.

V. SYNCHRONIZATION OF REGULAR EVENTS

Phase locking is a particular example of the more general
phenomenon of synchronization. Countless forms of synchro-
nization have been observed in recent decades under a myriad
of different coupling schemes. Many of these approaches
are presumably applicable to solvable chaotic systems. Here
we consider two particular coupling schemes that together
highlight the significant degree of independence between the
chaotic oscillation and its regularly timed events.

We first consider two identical solvable oscillators whose
timing signals are coupled while their chaotic amplitudes are
left free running. The coupling is implemented by using the
timing signal of a free running solvable chaotic oscillator
circuit in place of the external signal in Fig. 6. In this manner,
the regular events of one chaotic oscillator are phase locked to
the regular events of another.

Typical experimental time series of the coupled system
are shown in Fig. 8. The continuous states of the drive and
response oscillators, V1 and V2, respectively, exhibit a high
degree of independence from each other, as seen in Figs. 8(a)
and 8(b). This independence is even more apparent when V1

is plotted versus V2 as in Fig. 9(a). However, close inspection
reveals a constant lag between the extrema and the inflection

FIG. 8. (Color online) Experimental time series showing syn-
chronization of regular events. (a) A first chaotic circuit oscillates
freely. (b) A second chaotic oscillator evolves independently except
with regular events occurring in step with those of the first oscillator
(apart from a π/2 phase shift). Phase locking is apparent in the time
series of the periodic signals [panels (c) and (d)] derived from each
chaotic oscillator.

FIG. 9. Plots of one chaotic oscillation versus another in cases
where (a) regular events are phased locked but no amplitude coupling
is present and (b) both regular events and amplitudes are coupled.

points of V1 and those of V2. This synchronization of the
timing signals, h1 and h2, is immediately apparent in Fig. 8.
It is important to recognize that this state of synchronization
does not exactly fit the definition of any previously reported
form of chaos synchronization. It most closely resembles
phase synchronization; however, the phases of the chaotic
oscillations are not strictly locked as a phase shift of precisely
π radians occurs every time either one of the oscillations goes
through a fold.

Another interesting state of synchronization occurs when
the timing signals of two solvable oscillators are locked and an
additional unidirectional coupling is added proportional to the
difference V1 − V2. The π/2 phase shift between the locked
timing signals in Figs. 8(c) and 8(d) poses a difficulty to such
a scheme since the regular events of the two oscillations do
not coincide. In order to make the regular events coincide
exactly, we introduce a binary counter before each input of
the feedback circuit, as shown in Fig. 10(a). These counters
reduce the frequency of timing oscillation by a factor of 2.
Then a π/2 phase shift at this reduced frequency is equivalent
to a π phase shift at the original frequency which is sufficient to
make the regular events coincide. Then proportional feedback
is easily introduced between the continuous states of the two

FIG. 10. Circuits for coupling (a) the periodic signals derived
from regular events and (b) voltages corresponding to the continuous
states of two chaotic oscillator circuits. Further circuit details are
included in the Supplemental Material [18].
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FIG. 11. (Color online) Time series of completely synchronized
chaotic oscillations from two circuits under the coupling shown in
Fig. 10.

circuits, V1 and V2, as shown in Fig. 10(b). Interestingly, due
to the relative independence between the continuous state of
the oscillator and its timing signal, this second coupling can
be implemented in either the same direction as the phase
locking, or in the opposite direction. Either configuration
allows a state of identical synchronization. Figure 11 shows
typical experimental time series for the system when the timing
coupling is in the direction opposite that of the coupling of the
continuous states. The continuous states of both oscillators,

V1 and V2, shown in Figs. 11(a) and 11(b), respectively,
follow identical trajectories with simultaneous regular events.
Figure 9(b), showing V1 plotted versus V2, confirms the exact
synchronization of the oscillators.

VI. CONCLUSION

In this paper, we have shown that the solutions of a topolog-
ically diverse class of chaotic oscillators are characterized by
regularly timed events in which the derivative of the solution
is zero. The perfectly periodic timing of these events is unex-
pected in light of the well-known unpredictability of chaos. We
explored some consequences of these regularly timed events
through experiments using chaotic electronic circuits. First,
we showed that a feedback loop can be implemented to phase
lock the regularly timed events to a periodic external signal. In
this arrangement the external signal regulates the timing of the
chaotic signal but does not lock its phase; only the phase of the
regular events is locked. Second, we couple the regularly timed
events of one chaotic oscillator to those of another. A state
of synchronization is observed where the oscillators exhibit
synchronized regular events while their chaotic amplitudes
and phases evolve independently. Finally, we add additional
coupling to synchronize the amplitudes as well, however in
the opposite direction, illustrating the independence of the
amplitudes from the regularly timed events. Regular timing
is a common feature of most modern electronic systems. The
ability of solvable chaotic systems to easily accommodate an
external clock is likely to be a clear advantage over more
typical chaotic systems in technological applications.
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