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In spin systems, the decay of the Loschmidt echo in the time-reversal experiment (evolution–perturbation–
time-reversed evolution) is linked to the generation of multiple-quantum (MQ) coherences. Unlimited growth
of the MQ coherences leads to irreversibility of dynamics. In some cases, one can expect that the deviation of
the Loschmidt echo and the second moment of the MQ intensities distribution are linear in time. The criteria of
such behavior, called weak irreversibility, are formulated. The proposed approach can be extended beyond spin
systems, in order to analyze some general aspects of reversibility of many-body quantum dynamics.
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I. INTRODUCTION

Time-reversed evolution can be achieved by changing a
sign of the Hamiltonian. The echo, resulting from the forward-
backward evolution of an isolated system, is often called the
Loschmidt echo, in relation to the Loschmidt paradox. The first
experimental implementation of such two-way evolution for a
many-body system (“magic echo”) was done by Waugh and
colleagues [1] for a system of dipolar-coupled nuclear spins
of a solid. The scaled Hamiltonian of dipolar interactions with
reversed sign has been created approximately, as the average
Hamiltonian [2], generated by a sequence of radio-frequency
pulses in a nuclear magnetic resonance (NMR) experiment.
The echo has been observed at times about ten times longer
than the characteristic time of spin dynamics T2. It is possible
to extend the echo decay time by about one order of magnitude
by using the average Hamiltonians for both the forward and
backward evolutions [3].

The decay of the Loschmidt echo results from a nonperfect
reversal of the Hamiltonian H or from the coupling of the
system of interest to the rest of the universe. As an example,
one may assume that the Hamiltonian during the time-reversed
evolution is not Hrev = −H but Hrev = −UHU−1, where U

is some unitary transformation close to identity. Equivalently,
one may apply the same perturbation U to the state of the
system after the forward evolution. Therefore, the general
scheme of the time-reversal experiment can be viewed as
evolution–perturbation–exact time-reversed evolution.

In classical mechanics, two initially close points in a phase
space, representing the states of a system, can exponentially
diverge at a later moment of time t , so that the distance
between the points increases as exp(λt), where λ is the
largest Lyapunov exponent. Such dynamics is called mixing.
Mixing and ergodicity are the two important properties of
dynamics which justify application of statistical methods and
thermodynamics. A large change of a state caused by a small
perturbation in the past is often called the “butterfly effect” [4].
Dynamics of a classical system with only a few degrees of
freedom can be mixing. The Sinai billiard is an example with
two degrees of freedom. For the Loschmidt echo, with the
evolution time τ in one direction, one would expect that its
amplitude M(2τ ) exponentially deviates from the ideal echo:
δM = M(0) − M(2τ ) ∝ exp(λτ ), where λ is on the order of
the largest Lyapunov exponent.

From the correspondence principle, one may expect a
similar behavior of large quantum systems. Quantum evolution

is unitary and preserves the distances between the states.
Therefore, for comparison, the values of observables rather
than the distances between the states should be used. As
one example of expected similarity between the quantum and
classical dynamics, it has been shown that the dynamics of
a lattice of “classical spins” (precessing magnetic moments)
represents very closely the dynamics of interacting spins 1

2 in
a process of spin diffusion [5]. Similar to classical, in quantum
systems with time-independent Hamiltonians, small initial
perturbations can also be amplified by a subsequent dynamic
evolution. An example is the exactly solvable “quantum
domino” dynamics in a spin chain [6], where one initially
flipped spin causes a reversal of magnetization of the entire
cluster. The magnetization change is linear in time for this
model. The schemes of amplified quantum measurement [7]
and “quantum butterfly effect” [8] have been demonstrated
experimentally for spin clusters. However, as we will see
below, the behavior of quantum systems in the Loschmidt
echo experiment and the whole concept of reversibility are
very different from those in classical systems.

After the Peres publication [9], there have been numerous
studies of quantum-to-classical transition in quantum systems
with few degrees of freedom, whose classical analogs have
chaotic dynamics. A review of such works can be found
in [10]. In our paper, we focus mostly on macroscopic systems
(thermodynamic limit) where true irreversibility occurs. Use
of the linear response approach in analyzing a decay of
fidelity [11] revealed the role of the correlation functions. We
will apply such approach in the section “Weak Irreversibility”
below. In the “magic echo” experiment [1] the initial condition
is a uniform magnetization of all spins. Since then, time-
reversal NMR experiments have been performed for other
initial conditions. As an example, it has been demonstrated
that spin diffusion, starting with one initially polarized spin,
can be reversed [12]. More detailed studies of this process
have been done in [13–16]. Unfortunately, the analysis of the
NMR experiments is not straightforward. The reason is that the
Hamiltonian with reversed sign is created only approximately,
as the lowest-order average Hamiltonian. Therefore, there is
an unknown and uncontrollable perturbation, which comes
from higher-order terms of the average Hamiltonian, and the
effect of these higher-order terms on spin dynamics is not
small [17].

In a recent simulation [18] a comparison has been made
between the systems of “classical spins” and spins 1
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the Loschmidt echo experiment. While the classical system
demonstrated an exponential growth of δM , consistent with
the estimated value of the Lyapunov exponent, the quantum
system (5×5 lattice of spins 1

2 with periodic boundary condi-
tions) showed strongly nonexponential behavior. A general
consideration, explaining why one should not expect the
exponential growth of δM in infinite spin systems, is also
presented in Ref. [18].

As we will see below, the effect of small perturbations on
quantum systems in a time-reversal experiment can be ana-
lyzed quantitatively. We will also see that the reversibility of
quantum dynamics depends not only on the main Hamiltonian,
but also on the observable of interest and the perturbation
Hamiltonian. We will start with the spin systems and then
generalize the results when possible.

II. HAMILTONIAN

Coupled nuclear spins 1
2 in solids are still the most suitable

systems for the experimental exploration of the time-reversed
dynamics. In solids, spin degrees of freedom can be extremely
well isolated from other degrees of freedom (lattice) and spin
Hamiltonians can be modified by applying sequences of radio-
frequency pulses to create the desired average Hamiltonians.
We will consider spin Hamiltonians of the form

H =
∑
i>j

bij (aSxiSxj + bSyiSyj + cSziSzj ). (1)

As an example, for the secular part of the dipole-dipole
interaction in strong z field Hdz, one has a = b = 1, c = −2,
and the coupling constants bij ∝ (3cos2θij − 1)r−3

ij , where rij

is the distance between spins i and j , and θij is the angle
between rij and the z axis. A pure double-quantum average
Hamiltonian (with respect to the x axis), created by the pulse
sequence in Ref. [3], is described by a = 0, b = 1, and c = −1
(here and below x is chosen to be the quantization axis). An
arbitrary bilinear in spins Hamiltonian can be decomposed into
five terms of different symmetry with respect to the rotation
about the x axis:

H =
n=2∑

n=−2

Hn, [Sx, Hn] = nHn,

or eiϕSx Hne
−iϕSx = einϕHn. (2)

Hn + H−n can be called the n-quantum Hamiltonian.

III. MULTIPLE-QUANTUM COHERENCES

The equation of motion for the density matrix ρ(t) is

d

dt
ρ(t) = −i[H,ρ(t)], (3)

and the time evolution is

ρ(t) = e−iH tρ(0)eiHt = eLtρ(0) =
∞∑

n=0

tn

n!
Lnρ(0), (4)

where ρ(0) is the initial density matrix and L = −i[H, · · ·]
is the Liouvillian. If one starts with the density matrix ρ(0),
which is invariant under x rotations: [Sx,ρ(0)] = 0, then ρ(t) at

any given moment t can be decomposed into terms of different
symmetry with respect to x rotations:

ρ(t) =
∑

n

ρn(t), (5)

[Sx, ρn(t)] = nρn(t), or eiϕSx ρn(t)e−iϕSx = einϕρn(t). (6)

The term ρn(t) is called the n-quantum coherence [19].
Multiple-quantum (MQ) coherences ρn(t) can be viewed as
the Fourier components of the density matrix ρ(t) transformed
by the x rotation. The normalized intensities of the n-quantum
coherences are defined as

In(t) = Tr{ρn(t)ρ−n(t)}/Tr{ρ(0)2}. (7)

Tr{ρ(t)2} does not depend on time:

d

dt
Tr{ρ(t)2} = 2Tr{−i[H,ρ(t)]ρ(t)}

= −2iTr{H [ρ(t),ρ(t)]} = 0. (8)

Since Tr{ρ(t)2} = Tr{ρ(0)2} and Tr{ρnρm} = 0 when m �= –n

(traces are invariant under rotations), Tr{ρ(t)2} =
Tr{�n·ρn(t)ρ−n(t)} = Tr{ρ(0)2}, and the sum of intensities
of the multiple-quantum (MQ) coherences is conserved:
�nIn(t) = 1. It is also obvious that In = I−n.

Experimentally, the intensities of the MQ coherences can
be measured by either converting the coherences back to
magnetization by using a time-reversed evolution [3,20–22],
or directly, by performing a projective quantum measure-
ment [23]. It is also possible to selectively excite the MQ
coherences of desired orders [24].

MQ coherences give a convenient, but incomplete, descrip-
tion of spin correlations. N -spin correlation is represented
by a term in the density matrix which is a product of
N single-spin operators. For n > 0, nQ coherence which
contains the smallest number of correlated spins has the form
S+

1 S+
2 S+

3 · · · S+
n where

S±
i = Syi ± iSzi . (9)

Therefore, nQ coherence can appear only when at least
|n| spins are correlated. A uniform x rotation of all spins
by the angle ϕ results in the added phase nϕ for the nQ
coherence as in Eq. (6). It has been proposed to use this high
sensitivity of the MQ coherences to rotations in spectroscopy
and high-precision frequency measurements [25]. Filtering of
the MQ coherences has been used to create pseudopure states
in clusters of up to twelve nuclear spins [26]. Measurement of
the MQ intensities gives an experimental method of studying
multispin correlations of very high orders [27]. nQ coherences
with n ≈ 100 have been detected [28]. Within the statistical
approach [3], it requires a correlation of about n2 ≈ 104 spins.

IV. LOSCHMIDT ECHO

For now, to be specific, we assume that the initial
high-temperature state is described by the density matrix
ρ(0) = ρ0(0) = Sx ; the forward and backward evolutions, with
durations τ each, are governed by the Hamiltonians H and –H ,
respectively; and that the perturbation of the state after the
forward evolution is a uniform rotation of all spins by a small
angle δ around the x axis. The measurable quantity is the

052903-2



REVERSIBILITY OF DYNAMICS AND MULTIPLE- . . . PHYSICAL REVIEW E 92, 052903 (2015)

x component of the total magnetization Mx(t) = Tr{Sxρ(t)}.
Then, the normalized amplitude of the Loschmidt echo at the
moment 2τ can be written as

Mx(2τ ) = Tr{Sxe
iHτ eiδSx e−iHτ Sxe

iHτ e−iδSx e−iHτ }/Tr
{
S2

x

}
(10a)

= Tr{e−iHτ Sxe
iHτ eiδSx e−iHτ Sxe

iHτ e−iδSx }/Tr
{
S2

x

}
(10b)

= Tr{ρ(τ )eiδSx ρ(τ )e−iδSx }/Tr
{
S2

x

}
= Tr

{∑
n

ρn(τ )
∑
m

ρm(τ )eimδ

}/
Tr

{
S2

x

}
(10c)

= Tr

{∑
n

ρ−n(τ )ρn(τ )einδ

}/
Tr

{
S2

x

}
=

∑
n

In(τ )einδ. (10d)

We are interested in the behavior of the Loschmidt echo
Mx(2τ ) at finite values of τ and in the limit of small
perturbation δ → 0. Since In = I−n, we find from Eq. (10d)
that dMx(2τ )/dδ = 0. The second derivative is

d2Mx(2τ )

dδ2
= −

∑
n

n2In(τ ) = −m2(τ ), (11)

where m2(τ ) is the second moment of the distribution of
normalized MQ intensities. Therefore, the echo amplitude is

Mx(2τ ) = 1 − 1
2δ2m2(τ ), (12)

and the decay δM of the Loschmidt echo is

δMx(τ ) = Mx(0) − Mx(2τ ) = 1
2δ2m2(τ ). (13)

We will call the dynamics irreversible if any given accuracy of
reversal δMx can be achieved only when δ → 0 at τ → ∞. At
small and constant δ, the rate of growth of δMx(τ ), as a function
of τ , can be used to characterize the degree of irreversibility.
One can see from Eq. (13) that irreversibility of the dynamics
requires an unlimited growth of the width of the MQ intensities
distribution: m2(τ ) → ∞ at τ → ∞. Such behavior can be
viewed as the quantum analog of the mixing dynamics. The
unlimited growth of m2(τ ) also means an unlimited growth
of the spin correlation order (the number of correlated spins).
However, as we will see below, the reverse statement is not true.
Unrestricted growth of spin correlations does not guarantee an
unlimited growth of m2(τ ) and, therefore, does not necessarily
lead to the irreversible dynamics.

There are no practical methods of accurately reversing the
sign of the Hamiltonian for large systems of interacting spins.
However, since MQ intensities can be measured directly [23],
without using a time-reversed evolution, the measurement of
the MQ intensities, combined with Eq. (13), allows predicting
the degree of irreversibility in an idealized Loschmidt echo
experiment.

V. GENERALIZATION

In Eq. (10a) we will replace the special initial condition
ρ(0) = Sx by a general initial condition ρ(0), and the generator

of rotations Sx by an arbitrary operator V :

M(2τ ) = Tr{ρ(0)eiHτ eiV δe−iHτ ρ(0)eiHτ e−iV δe−iHτ }/
Tr{ρ(0)2} (14a)

= Tr{ρ(τ )eiV δρ(τ )e−iV δ}/Tr{ρ(0)2}. (14b)

The perturbation of the density matrix at the moment τ can now
be viewed as caused by the Hamiltonian –V , which acts during
the time interval δ. M(2τ ) in Eq. (14a) now has a meaning
of an overlap (fidelity) between the initial density matrix ρ(0)
and the density matrix at the end of the time-reversed evolution
ρ(2τ ). Similar to Eqs. (5) and (6), we can introduce the Fourier
components ρω(t) of the density matrix ρ(t), with respect to
δ, after the transformation eiV δ

ρ(t)e−iV δ
:

ρ(t) =
∫

dω ρω(t), (15)

[V, ρω(t)] = ωρω(t), or eiV δρω(t)e−iV δ = eiωδρω(t).
(16)

The term “MQ coherence” is not meaningful for the compo-
nent ρω(t), so we can call it the “V coherence” to emphasize
that the transformation properties are defined with respect to
the perturbation V . In exactly the same way as it has been done
for the discrete case in Sec. IV, by introducing

Iω(t) = Tr{ρω(t)ρ−ω(t)}/Tr{ρ(0)2} (17)

and

m2(t) =
∫

dω ω2 Iω(t), (18)

one obtains the same Eq. (13) for the decay of the Loschmidt
echo.

VI. WEAK IRREVERSIBILITY

An alternative way of calculating the echo decay is to apply
the perturbation to the Hamiltonian, rather than to the density
matrix ρ(τ ). We can note here that in classical mechanics the
perturbation of state and perturbation of Hamiltonian are not
equivalent, and the exponential behavior is only expected for
the perturbed state. An equivalent form of Eq. (10b) is

Mx(2τ ) = Tr{e−iHτ Sxe
iHτ e−i(H+H ′)τ Sxe

i(H+H ′)τ }/Tr
{
S2

x

}
,

(19)

where

H ′ = iδ [Sx, H ] = iδ

n=2∑
n=−2

nHn. (20)

In the interaction frame (which eliminates the main Hamilto-
nian H ), Eq. (19) reduces to

Mx(2τ ) = Tr{Sx ρ̃(τ )}/Tr
{
S2

x

}
, (21)

where

d

dt
ρ̃(t) = −i[H̃ ′(t), ρ̃(t)], H̃ ′(t) = eiHt H ′e−iH t . (22)

The solution to ρ̃(t) can be obtained by iterations starting
with ρ̃(0) = ρ(0) = Sx : ρ̃(t) = Sx + ρ̃(1) + ρ̃(2) + · · · . This
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expansion is also an explicit expansion in powers of δ. ρ̃(1) does
not contribute to Eq. (21) and

ρ̃(2)(t) = −
∫ t

0
dt ′

∫ t ′

0
dt ′′[H̃ ′(t ′),[H̃ ′(t ′′),Sx]]. (23)

Therefore,

Mx(2τ ) = 1 −
∫ τ

0
dt ′

∫ t ′

0
dt ′′

Tr{Sx[H̃ ′(t ′),[H̃ ′(t ′′),Sx]]}
Tr

{
S2

x

} ,

= 1 +
∫ τ

0
dt ′

∫ t ′

0
dt ′′

Tr{[Sx,H̃
′(t ′)][Sx,H̃

′(t ′′)]}
Tr

{
S2

x

}
= 1 +

∫ τ

0
dt ′

∫ t ′

0
dt ′′

Tr{[Sx,H̃
′(0)][Sx,H̃

′(t ′′ − t ′)]}
Tr

{
S2

x

}
= 1 −

∫ τ

0
dt ′

∫ t ′

0
dt ′′

Tr{[Sx,[Sx,H
′]]H̃ ′(t ′′ − t ′)}

Tr
{
S2

x

} .

(24)

By using Eq. (20) for the perturbation Hamiltonian to calculate
the nested commutator in the last line of Eq. (24)and
introducing the correlation functions

gn(t) = Tr{H̃n(t)H̃−n(0)}
Tr

{
S2

x

} , (25)

one can find that if the correlation functions decay fast, so that
the correlation times

τn = 1

2

∫ ∞

−∞
dtgn(t)/gn(0) (26)

exist, the two-dimensional integral in Eq. (24) at τ � τn

has nonzero contributions only near the diagonal t ′ = t ′′ and,
therefore, has linear dependence on τ :

Mx(2τ ) = 1 − τδ2
n=2∑

n=−2

n4τn Tr{HnH−n}
/

Tr
{
S2

x

}
. (27)

The deviation of the Loschmidt echo in this case grows very
slowly, as a linear function of time. We will call such behavior
with δM(τ ) ∝ τ the “weak irreversibility.” The necessary
condition for the weak irreversibility is the existence of the
correlation times (26); i.e., the correlation functions (25)
should decay faster than t–1. A comparison between Eqs. (27)
and (12) gives

m2(τ ) = τ

n=2∑
n=−2

2n4τn Tr{HnH−n}
/

Tr
{
S2

x

}
. (28)

We see that the weak irreversibility also means that the second
moment of the MQ intensities distribution grows linearly with
time at τ � τn Such linear growth at long times has been
already observed in the early experiments (Fig. 7 in Ref. [3])
(MQ intensities were fitted by a Gaussian, and the growth of its
variance has been reported). For the Hamiltonian (1), there are
only terms with |n| = 2 in Eqs. (27) and (28). It is interesting
that shorter correlation times τn of the “transverse” correlation
functions, which would normally be viewed as shorter dynamic
memory, cause better reversibility of Sx . For very short times
τ < τn, δMx(τ ) has a universal parabolic behavior [9].

For an estimate, we will introduce the strength of the local
fields ω2

loc = Tr{H 2}/Tr{S2
x} and replace τn by a single correla-

tion time τc ≈ ω−1
loc . The approximate asymptotic expressions

for δM(τ ) and m2(τ ) are

δM(τ ) ≈ τδ2ωloc and m2(τ ) ≈ τωloc, (29)

The linear growth of m2(τ ) is consistent with a diffusion or
“random walk” [3,29] in a space where the coordinate is
the MQ coherence order. It should be noted, however, that
MQ dynamics is fully reversible, and cannot be adequately
described by a random process.

For an arbitrary perturbation V , the main Hamiltonian H

can be decomposed into the harmonics

H =
∫

dω Hω, [V,Hω] = ω Hω. (30)

The continuous version of Eq. (27) will be

M2(2τ ) = τδ2
∫

dω

∫
dω′τωω′ ωω′

× Tr{[ρ(0),Hω][ρ(0),Hω′ ]}/Tr{ρ(0)2}. (31)

Therefore, the necessary condition of weak irreversibility is
the convergence of the integral in Eq. (31),∫

dω

∫
dω′τωω′ ωω′ Tr{[ρ(0),Hω][ρ(0),Hω′]}/

Tr{ρ(0)2} < ∞. (32)

We can note here that the convergence depends indirectly
on the spectrum of the perturbation. As an example, for the
uniform rotation, the spectrum of Sx at N → ∞ is unlimited,
but the selection rules leave only a few harmonics Hn, and
the integral in Eq. (32) is finite when the correlation times τn

exist. A different situation is expected when the perturbation
is an interaction with the lattice [the coupling constants bij in
the Hamiltonian (1) should be viewed as the operators in this
case]. The frequency spectrum of nuclear motions is virtually
unlimited, compared to the frequencies of nuclear spin motion,
and the condition (32) will not hold.

VII. EXACTLY SOLVABLE MODELS

As we have shown, irreversibility is directly related to the
growth of MQ coherences. Therefore, it is interesting to look
at a few known exact results. There are two spin models where
the evolution of the MQ coherences can be calculated exactly.

A. zz model

For the Hamiltonian (1) with a = b = 0, and c = 1, the
spin dynamics simplifies. In this case, the intensities of the MQ
coherences can be calculated explicitly for arbitrary coupling
constants bij [30]. The model accurately describes [31,32] the
evolution of the first few experimental MQ intensities in a cubic
lattice [33] and pseudo-1D spin chain [34]. In experiments, the
double-quantum yy-zz average Hamiltonian (a = 0, b = 1,
and c = –1) has been used, and c = 21/2 has been used in the
zz model to match the strength of the local fields. At long
times, the model predicts [35] for concentrated spin systems

m2(t) = t2M2, (33)
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where M2 = ∑
b2

j /4 is the conventional second moment of the
absorption line. For dilute spin systems, m2(t) = t/T2, where
T2 is the decay time of the free induction signal. The reason
why the growth of m2(t) in Eq. (33) is quadratic in time and
not linear, as it would be expected for the weak irreversibility,
is that the zz Hamiltonian preserves individual z components
of spins. Therefore, the correlation functions (25) do not decay
to zero, and the correlation times (26) do not exist.

B. 1D spin chain with nearest-neighbors interactions

For a 1D spin chain with yy-zz Hamiltonian and equal
nearest-neighbors interactions only, the MQ intensities oscil-
late between 0Q and 2Q [36]. No higher-order MQ coherences
are generated. Therefore, m2(t) is limited: m2(t) � 4 and the
system has ideal reversibility, when the observable is Sx and
the perturbation is a uniform x rotation of all spins. Inclusion
of long-range interactions beyond the nearest neighbors spoils
this ideal reversibility. The model is an interesting example
demonstrating that an infinite growth of correlations between
spins does not lead to irreversibility unless these correlations
have needed transformation properties with respect to the
perturbation Hamiltonian.

VIII. FINITE CLUSTERS

For finite clusters of N spins the dynamics is reversible.
Irreversibility emerges in the thermodynamic limit N → ∞.
For a cluster of N spins 1

2 , there are 2N integrals of motion,
which are the diagonal elements of the density matrix in
a frame where the Hamiltonian is diagonal. Each pair of
degenerate levels adds one more integral of motion. The
projection of the density matrix on the subspace of the integrals
is conserved and, therefore, the evolution is nonergodic. The
example of such nonergodic behavior has been studied by
numerically simulating the process of spin diffusion in spin
chains [37,38]. It has been found that the polarization of the
initially polarized spin remains higher than the equilibrium
value 1/N at all times, and that spin diffusion fails to bring
the system to equilibrium. In finite clusters m2(t) is limited by
m2(t) � N2, so the dynamics is also nonmixing. Nonergodic
evolution makes the time-averaged values of the observables
to be different from the equilibrium values, while the absence
of mixing creates irregular oscillations around the average
values. Such behavior has been observed experimentally
for spin diffusion in a ring of six dipolar-coupled nuclear
spins [39]. The experimental dynamics was in close agreement
with the calculation performed for this system [39].

One would expect that with increasing size of the spin
cluster the effect on the dynamics of the exact integrals will
decrease, because the number of the elements of the density
matrix 22N grows much faster than the number of integrals
2N . Such decrease of the role of exact integrals at increasing
cluster size has been demonstrated in simulations [40]. In
the thermodynamic limit N → ∞ the existence of the
“microscopic” integrals of motion becomes unimportant. The
only integrals of motion which impose explicit limitations on
the dynamics are the additive integrals associated with global
symmetries. As an example, the Hamiltonian (1) with a = b is
invariant under z rotations. As a result, in addition to energy,

Sz is conserved. An assumption that, within these limitations,
the system is fully thermalized leads to the two-temperature
thermodynamic theory [41,42] which has been very successful
in describing various phenomena in solid-state NMR.

Dynamics of small spin clusters can be handled by numer-
ical simulations. A direct diagonalization of the Hamiltonian
can be applied to N ∼15 spins 1

2 [43]. In the simulation [18] for
N = 25 spins 1

2 , an estimation of traces [44] has been used.
Even though the number of quantum energy levels is huge
in such clusters, the systems are still too small to adequately
reproduce irreversibility of either the Loschmidt or the partial
echo. As it follows from our discussion, one can only hope
to get the initial part of the evolution with m2(t) < N . As an
example, a 25-spin cluster will adequately represent a larger
system at the initial times, when only the nQ coherences
with |n| = 0, 2, and 4 are present. This time interval is not
sufficient to predict the asymptotic long-time behavior of m2(t)
in macroscopic systems.

IX. PARTIAL ECHO

Irreversibility of dynamics can be also viewed as a loss
of memory about the initial state. There are experimental
examples which show that systems of dipolar-coupled nuclear
spins may have surprisingly long dynamic memory. The
Hamiltonian (1) is invariant under a uniform π rotation of
all spins. This global discrete symmetry makes each of the
energy levels doubly degenerate. If ψ is an eigenstate of the
Hamiltonian Hdz and Sz, exp(iπSx)ψ is also an eigenstate of
Hdz with the same energy. One can choose the eigenstates to be
even and odd superpositions ψg,u = ψ ± exp(iπSx)ψ . Sx has
no matrix elements between the states of different parity, and
its evolution happens independently in the subspaces of even
and odd states. In large spin systems, this has no observable
consequences unless the symmetry is broken. If � is a small
perturbation, linear in spins and [H,�] �= 0, it creates a slow
evolution between the subspaces. � can be a distribution of
resonance frequencies (chemical shifts in NMR). We can note
that, for small spin systems, a similar symmetry breaking has
been used in liquid-state NMR to access the long-lived singlet
state of a spin pair [45] or a three-spin state [46], the states
which are less sensitive to spin-lattice relaxation.

The partial echo of small amplitude [47,48] is created by the
Hahn’s spin-echo pulse sequence (π/2)y–τ–πx [49]. The first
pulse creates the initial state, then, a free evolution follows,
and a subsequent π pulse changes the sign of � without
affecting the main Hamiltonian H . The total Hamiltonian
changes from H + � to H–�, and after another period of
evolution τ , the echo is formed. Compared to the Loschmidt
echo, the partial echo does not require the change of sign of
the entire Hamiltonian and the need to use an approximate
average Hamiltonian to accomplish it. The amplitude of the
partial echo can be estimated [47,48] as Ae ≈ |�|/|H |, and its
decay time Te ≈ |�|−1. In NMR experiments, the echo decay
time Te can be three to four orders of magnitude longer than
the characteristic time of spin dynamics T2.

The Loschmidt echo physically reconstructs the initial state
of the system, but it can be also viewed as the method of re-
covering the information about the initial state after a period of
free evolution. The partial echo does not return the system to its
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initial state. In fact, the density matrix at the center of the echo
is very different from the initial density matrix (the echo shape
is different from the initial free induction signal). However,
the partial echo performs the same task of reconstructing the
information about the initial state. From a practical point of
view, the partial echo greatly expands the time frame at which
such information recovery can be accomplished.

The time scale can be expanded even further in the
suspended echo experiment [50] which uses the Hahn’s
stimulated echo pulse sequence [49]. The information about
the initial state is stored during a long suspension time, and
then retrieved by application of a single “reading” pulse. The
information storage time is practically limited only by the
spin-lattice relaxation time T1, which can be extremely long
for nuclear spins 1

2 in crystals, especially at low temperatures
of the lattice [51,52]. As it has been stated in [51], T1 can
be “astronomic.” In a room-temperature experiment [50] the
echo in naphthalene has been recovered after a suspension time
seven orders of magnitude longer than the characteristic time
of spin dynamics T2.

The existence of the partial echo allows excitation of sharp
NMR signals in systems with dipolar-broadened spectra. Such
signals can be used in magnetic resonance imaging (MRI)
[53,54] and diffusion measurements [55].

X. DISCUSSION

The purpose of science is predicting the future. For a
dynamical system of interest, the extent to which the past
can be reconstructed, or the future predicted, depends on
how deterministic is its evolution. For large classical systems,
the determinism is limited to predicting the values of the
additive integrals of motion and their densities. As an example,
a trajectory of a macroscopic object can be predicted only
because the total momentum of its atoms is conserved. In a
similar way, the densities of additive integrals are the slow
deterministic variables in hydrodynamics. Determinism and
reversibility are two sides of the same question if we formulate
it in the following way. Suppose that at the moment t = 0
the value of the observable of interest (expectation value in
quantum mechanics) is M(0). Can we reconstruct information
about this value from the measurements done at the later
moment t = τ , after a period of free evolution? The Loschmidt
echo experiment (its time-reversed part) can be viewed as a
measuring procedure which performs this task. The rate at
which the echo is spoiled, or the growth rate of δM(τ ) =
M(0)–M(2τ ), can be used to quantify the irreversibility. In
classical systems, δM(τ ) grows exponentially for the majority
of initial states (more accurate statements, including the
possibility of long-lived correlations can be found in the
book [56]). Quantum systems have better reversibility. In
some cases, one can even expect weak irreversibility with
δM(τ ) ∝ τ .

There is another important difference between quantum
and classical systems. While mixing and irreversibility in a
classical system are mostly dictated by its Hamiltonian, in
quantum systems all three factors are important: (1) the main
Hamiltonian which governs the dynamics, (2) the observable
of interest, and (3) the Hamiltonian of perturbation. As we
have seen, the use of the transformation properties of the

density matrix and the main Hamiltonian, with respect to the
perturbation Hamiltonian, allows calculating the decay of the
Loschmidt echo and formulating the criteria of irreversibility.

From a practical perspective, the beauty of the “magic
echo” [1] is that it turned a purely theoretical concept of the
Loschmidt echo into experimental reality and demonstrated a
possibility of recovering the information about the observable
which is not an integral of motion. Despite good reversibility of
spin dynamics, the time scale of the “magic echo” is short. The
reason is that there are no known ways of accurately reversing
the sign of the Hamiltonian. The Hamiltonian with reversed
sign is created as the lowest-order average Hamiltonian, while
in multispin systems, the contribution to the dynamics of
the higher-order terms of the average Hamiltonian is not
small [17].

The discovery of the partial echo [47,48] offered a practical
alternative to the Loschmidt echo. Instead of (inaccurate)
reversal of the sign of the entire main Hamiltonian, one can
precisely reverse the sign of a small perturbation with simpler
structure. The result can be a small-amplitude partial echo with
extremely long lifetime. In terms of recovering the information
about an initial state, the partial echo does the same job as
the Loschmidt echo. The information about the initial state
can be stored for even longer times in the “suspended echo”
experiment [50] and retrieved by an application of a single
“reading” pulse.

The fundamental importance of the problem of reversibility
of quantum dynamics is contrasted by slow progress in
this field. There are many reasons for that. The arsenal of
theoretical methods to analyze correlated long-time dynamics
of many-body quantum systems is limited. Exact solutions
are helpful, but there are only a few, and they cover very
special cases. Direct numerical simulations can only handle the
clusters which are too small to reproduce long-time behavior
of macroscopic systems.

With a limited input from theory and simulations, the
role of experimental findings is crucial. Nuclear spins 1

2 in
crystals are still among the best experimental objects for
such study. Spin Hamiltonians are known with very high
accuracy, and spin degrees of freedom can be extremely well
isolated from the lattice. Systems of coupled spins consist
of the simplest quantum objects, and the question is whether
their spin dynamics is sufficiently rich and representative to
allow generalization of the results. We think it is. As one
of the examples of bridging nuclear spin dynamics to the
dynamics of other systems we can mention the behavior at
high spin polarizations. In this case, spin dynamics is the
dynamics of a low-density Bose gas of magnons [57,58].
The behavior of a nuclear spin system is similar to that of,
say, cold gases and includes the phenomena such as Bose
condensation [58,59]. Theoretical analysis of spin dynamics
in this case is simpler because only a subset of quantum states
is involved. Unfortunately, the experiments at low nuclear spin
temperatures [60] are challenging, and it is not an active area
of research at present.

Development of NMR instrumentation has been driven by
important applications in chemistry and biology. As a result
of this development, modern NMR spectrometers are the
advanced tools capable of revealing very fine details of spin
dynamics. Hopefully, the dynamics of nuclear spins, studied
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by NMR, will continue to add empirical pieces to our still
fragmentary knowledge of the fundamentals of many-body
quantum dynamics.
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