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Synchronization of nearly identical dynamical systems: Size instability
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We study the generalized synchronization and its stability using the master stability function (MSF) in a
network of coupled nearly identical dynamical systems. We extend the MSF approach for the case of degenerate
eigenvalues of the coupling matrix. Using the MSF we study the size instability in star and ring networks for
coupled nearly identical dynamical systems. In the star network of coupled Rössler systems we show that the
critical size beyond which synchronization is unstable can be increased by having a larger frequency for the
central node of the star. For the ring network we show that the critical size is not significantly affected by
parameter variations. The results are verified by explicit numerical calculations.
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I. INTRODUCTION

In the physical world networks are ubiquities. Many
practical complex systems in natural and social sciences and
also humanities can be modeled as networks of interacting
systems. Recently, the study of such complex networks has
attracted much attention [1–4]. The complex networks can
be grouped into different types depending on their structure
into some universal categories, such as random networks [5],
scale-free networks [6], small-world networks [7], etc.

When there are several interacting dynamical systems
on networks, they can exhibit a rich variety of dynamical
behavior such as synchronization [8–10], amplitude death [11],
multistability [12], chimera states [13], phase flip [14], etc.,
which a single dynamical system is unable to show. Occurrence
of synchronization between interacting dynamical units is
an important and fundamental nonlinear phenomenon and
the study of synchronization of coupled dynamical systems
has attracted considerable attention in the past decades [8–
10,15–23]. In particular, the nonlinear behavior of coupled
chaotic systems tends to separate the nearby trajectories of
the coupled systems, while a suitable coupling between them
brings the trajectories back together. In this competition, when
the latter wins the coupled systems undergo synchronization.
Synchronization of coupled dynamical systems can be defined
as a process where two or more coupled systems adjust their
trajectories to a common behavior when they are coupled
or driven by a common signal. In the context of coupled
chaotic systems different types of synchronizations have been
studied in the past years. These include complete or identical
synchronization [15,16,18], phase synchronization [21,24],
lag synchronization [25], anticipatory synchronization [26],
imperfect phase synchronization [27], generalized synchro-
nization [22,23], measure synchronization in Hamiltonian
systems [28], etc. Among these the simplest and the most
studied is the complete synchronization which occurs in two or
more coupled identical dynamical systems and is characterized
by the equality of state variables of the interacting systems.
The stability of synchronization is normally determined by
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the negativity of the largest transverse Lyapunov exponent
[19,29]. Pecora and Carroll have developed an elegant way,
namely the master stability function (MSF), for analyzing
the stability of complete synchronization for a network of
identical dynamical systems [29]. The MSF allows one to
study the stability of synchronization of different networks
using a single function and has been used widely for a
comparative study of synchronization of different networks
of identical dynamical systems [30–36]. It is shown that the
small-world network enhances synchronizability of a network
of coupled identical systems [31]. In Ref. [32] it is shown
that having smaller network distance is not sufficient for
performing best synchronizability properties, it is also required
to have homogeneous degree distribution among the coupled
dynamical systems. Reference [37] introduces a new family
of graphs, namely the entangled networks, which show better
synchronizability. These entangled networks are interwoven
and have extremely homogeneous structures, i.e., the degree
distributions are very narrow.

The network of coupled identical dynamical systems is an
ideal situation and in practical situations it is almost impossible
to have a network of coupled identical dynamical systems. So it
is important to study coupled nonidentical systems and see how
their behavior compares with that of coupled identical systems.
For the coupled nonidentical systems, one cannot get complete
synchronization. Instead in this case the synchronization
is of a generalized type where the state variables of the
coupled dynamical systems are related with some functional
relationship [22,23]. The nonidentical nature of the coupled
systems can lead to desynchronization bursts which is known
as the bubbling transition [38,39]. After the desynchronization
burst the system returns to the synchronized state. Sun et al.
[40] have extended the master stability approach for nearly
identical systems to calculate the deviation from the average
trajectory and the deviation is shown to be bounded.

In this paper, we extend the MSF formalism to a system of
nearly identical systems. By coupled nearly identical systems
we mean systems which have a node-dependent parameter
(NDP). Preliminary results of this study were earlier reported
in Ref. [41]. We then extend the MSF formalism to coupled
nearly identical systems with degenerate eigenvalues of the
coupling matrix. We also obtain MSF for systems with
more than one NDP. We find that, in general, the stability

1539-3755/2015/92(5)/052902(10) 052902-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.052902


SUMAN ACHARYYA AND R. E. AMRITKAR PHYSICAL REVIEW E 92, 052902 (2015)

of synchronization can be improved when we introduce a
nonidentical nature into the coupled systems.

Next we use MSF to study size instability of synchroniza-
tion in well-structured networks. By a well-structured network
we refer to a network in which the number of nodes can be
changed without changing the basic structure and symmetry
of the network, e.g., star network, ring network, etc. The
size instability is the phenomenon whereby there is a critical
number of oscillators that can be coupled in a well-structured
network to obtain synchronization and beyond this critical
number no stable synchronization can be seen. The phenomena
of size instability in identical oscillators is well known and has
been studied widely [19,39,42–44]. Zamora-Munt et al. [45]
have studied synchronization of delay-coupled lasers for a
star network. For the star network of coupled nearly identical
systems, we find that it is possible to increase the critical
number of nodes beyond which synchronization is unstable by
a judicious choice of NDP. In particular, for coupled Rössler
systems the critical number can be increased by having a larger
frequency for the central node. On the other hand, we find
that for a ring network, the critical number of nodes is not
significantly affected by an NDP. These results are verified by
explicit numerical calculations.

II. STABILITY OF SYNCHRONIZATION OF COUPLED
NEARLY IDENTICAL SYSTEMS

For networks of coupled identical systems the stability of
complete synchronization has been well analyzed. As dis-
cussed in the Introduction, Pecora and Carroll (1998) [29] in-
troduced a MSF which can be calculated from master stability
equations. Using the master stability function one can calculate
the largest transverse Lyapunov exponent for a network and
study and compare the stability properties of synchronization
of different networks. For coupled nearly identical systems,
the synchronization is of a generalized type. We now extend
the MSF approach to coupled nearly identical systems.

A. Master stability function for nearly identical systems

In Ref. [41], we have extended the formalism of MSF
to coupled nearly identical systems and, in this subsection,
we briefly review the same. This is done for the sake of
completeness and also to establish the notation. We start by
considering a network of N -coupled dynamical systems as

ẋi = f (xi,ri) + ε

N∑
j=1

gijh(xj ); i = 1, . . . ,N, (1)

where xi(∈ Rm) is the m-dimensional state vector of system
i; ri is the node-dependent parameter (NDP) which makes
the systems nonidentical; f : Rm → Rm and h : Rm → Rm

give, respectively, the dynamical evolution of a single system
and the coupling function; G = [gij ] is the coupling matrix;
and ε is the coupling constant. The diagonal elements of
the coupling matrix are gii = −∑

j �=i gij . Thus, the coupling
matrix satisfies the condition

∑
j gij = 0, which fulfills the

condition for invariance of the synchronization manifold [29].
Let the parameter ri = r̃ + δri , where r̃ is some typical value
of the parameter and δri is a small mismatch.

When the coupled systems are identical, i.e., ri = r; ∀i,
then they can exhibit complete synchronization for a suitable
coupling constant ε [18]. For complete synchronization all
the state variables of the coupled systems become equal, i.e.,
xi = x; ∀i and the motion of the coupled systems are confined
to the subspace defined by xi = x and this subspace is the
synchronization manifold. The complementary space defines
the transverse manifold. The synchronized state is stable
when all the transverse Lyapunov exponents are negative. The
Lyapunov exponents are calculated by expanding around the
synchronous solution xi = x.

For coupled nonidentical systems, the synchronization is of
the generalized type, where the state variables of the coupled
systems are related by a functional relationship [22]. Here we
expand Eq. (1) around the solution x̃ of a system with some
typical parameter r̃ [46]. In the expansion, we retain terms up
to second order and we get [41]

żi = Dxf (x̃,r̃)zi + Drf (x̃,r̃)δri + 1

2
D2

r f (x̃,r̃)(δri)2

+DrDxf (x̃,r̃)ziδri + ε

N∑
j=1

gijDxh(x̃)zj , (2)

where zi = xi − x̃. In Eq. (2) we have dropped the term
containing (zi)2 as we are interested in the solution zi → 0.
Equation (2) contains both inhomogeneous and homogeneous
terms. In Ref. [41], we had argued that the exponents in the
expanding and contracting solutions are determined by the
homogeneous terms and the inhomogeneous term does not
contribute to these exponents. A similar observation was made
in Ref. [47]. So to calculate Lyapunov exponents from Eq. (2)
we drop the inhomogeneous terms to obtain

żi = Dxf (x̃,r̃)zi + DrDxf (x̃,r̃)ziδri + ε

N∑
j=1

gijDxh(x̃)zj .

(3)
Equation (3) can be put in the matrix form as

Ż = Dxf (x̃,r̃) Z + DrDxf (x̃,r̃) Z R + Dxh(x̃) Z GT , (4)

where GT is the transpose of the coupling matrix G and Z =
(z1, . . . ,zN ) and R = diag(δr1, . . . ,δrN ).

Let γj , j = 1, . . . ,N be the eigenvalues of the coupling
matrix GT and the corresponding left and right eigenvectors
be eL

j and eR
j , respectively. We multiply Eq. (4) by eR

j from the
right-hand side and use the m-dimensional vector φj = ZeR

j .
Thus,

φ̇j = [Dxf + εγjDxh]φj + DrDxf Z ReR
j . (5)

Equation (5) is not in the diagonal form since, in general, eR
j are

not eigenvalues of R. To circumvent this problem, we use first-
order perturbation theory and obtain the first-order correction
due to the NDP as νj = eL

j ReR
j . Thus, we can approximate

Eq. (5) as

φ̇j = [Dxf + εγjDxh]φj + νjDrDxφj . (6)

The above equation can be cast in the form of the master
stability equation by introducing two complex parameters,
namely the effective coupling parameter α = εγj and the
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mismatch parameter νr = νj [48] as

φ̇ = [Dxf + αDxh + νrDrDxf ]φ. (7)

This equation reduces to the master stability equation of Pecora
and Carroll [29] for identical systems when νr = 0.

The MSF is defined as the largest Lyapunov exponent,
λmax, of the above master stability equation, as a function
of the parameters α and νr . The MSF for coupled nearly
identical systems obtained using the above formalism is an
approximation to the actual values. The accuracy of MSF and
the Lyapunov exponents obtained using this formalism are
discussed in Ref. [41] with numerical examples. It is found
that the errors are small when the systems are synchronized.

B. Condition for stable synchronization

The MSF can be used to study the stability of synchroniza-
tion of any network of N -coupled nearly identical systems.
For a given network, one can determine the eigenvalues
γi,i = 1, . . . ,N of G and the corresponding νi values. The
eigenvalue γ1 = 0 and it corresponds to the synchronization
manifold. The remaining eigenvalues correspond to the trans-
verse manifold. If the MSF for α = γiε and νr = νi is negative
for all the transverse eigenvalues (i = 2, . . . ,N), then the
synchronization is stable.

As an example consider a network of coupled Rössler
oscillators with the frequency ω as NDP and diffusive coupling
in x variables. The dynamics of the network is

ẋi = −ωiyi − zi + ε
∑

j

Gij xj ,

ẏi = ωixi + ayi, (8)

żi = b + zi(xi − c),

The master stability equations for the above system of coupled
Rössler oscillators are

φ̇x = −ωφy − φz + αφx − νωφy,

φ̇y = ωφx + aφy + νωφx, (9)

φ̇z = zφx + (x − c)φz,

where ω is a typical parameter. In Fig. 1 we plot the zero
contours of MSF in the parameter plane α−νω [49]. The region
bounded by the zero contour curves corresponds to the region
of negative values of MSF. If all the transverse Lyapunov
exponents fall in this region, then the synchronization is stable.

Now let us consider a class of systems for which the master
stability function is negative in a finite range of α values, say,
(α0

l ,α
0
h) for identical systems and (αl,αh) for nearly identical

systems. Rössler system considered above belongs to this class
of systems (see Fig. 1). For these systems the condition for
stable synchronization can be written as

αl < εγ2 � · · · � εγN < αh. (10)

The above condition can be also be expressed as

γN

γ2
<

αh

αl

. (11)

For small variations of NDP, we can treat the master stability
function as linear near α0

l and α0
h and let 1/bl and 1/bh be the
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FIG. 1. The zero contour curves of the master stability function
of Rössler oscillators with the frequency ω as NDP are plotted in the
parameter plane α−νω. In the region bounded by the zero contour
curves the MSF is negative, i.e., the region of stable synchronization.
The range (αl,αh) for νω = 0 corresponds to the range of stable
synchronization for identical systems. The Rössler parameters are
a = b = 0.2, c = 7.0, and αl ∼ −0.14 and αh ∼ −4.48. For nearly
identical systems, a mismatch parameter νh corresponds to a change
δαh in the stability range as shown schematically in the figure.

corresponding slopes. Thus,

αl = α0
l + δαl ≈ α0

l + blνl
(12)

αh = α0
h + δαh ≈ α0

h + bhνh.

Thus the condition for stable synchronization for nearly
identical systems can be written as

γN

γ2
<

α0
h + bhνh

α0
l + blνl

. (13)

We can also use the above analysis to determine the ε

range of synchronization, denoted by lε, by setting νl =
ν2 = eL

2 ReR
2 and νh = νN = eL

NReR
N , the mismatch parameters

corresponding to the two extreme transverse eigenvalues γ2

and γN . Thus, lε is given by

lε =
∣∣∣∣ αh

γN

− αl

γ2

∣∣∣∣ = l0
ε + δαh

γN

− δαl

γ2
≈ l0

ε + bhνN

γN

− blν2

γ2
,

(14)

where l0
ε = | α0

h

γN
− α0

l

γ2
| is the ε range of synchronization for

coupled identical systems.
When one studies synchronization of coupled nonidentical

systems, in addition to the linear stability of synchronization,
i.e., stability against small deviations, another important issue
is the robustness of synchronization, i.e., how robust the
synchronization is against the parameter mismatch. It is known
that the parameter mismatch of the coupled dynamical systems
can lead to bursting of the unstable periodic orbits, which is
known as bubbling [39]. The bubbling is important when there
are large deviations from the attractor. In this connection, Sun
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et al. [40] have derived a condition for the synchronization
error (deviation) to be bounded and shown that for nearly
identical systems, the error remains bounded to first order in
parameter mismatch if the condition is satisfied. In Appendix A
we derive similar conditions for nearly identical systems and
show that the synchronization error remains bounded to second
order in parameter mismatch if our conditions are satisfied.

C. Degenerate eigenvalues of coupling matrix G

In this section we will consider the case where the coupling
matrix G has degenerate eigenvalues. Degenerate eigenvalues
of the coupling matrix are observed in many networks with
some symmetry property, such as a star network.

When the eigenvalues are degenerate, the first-order correc-
tion alone is not sufficient since the second-order correction
diverges. In this case one needs to use the degenerate
perturbation theory. Let the j th eigenvalue γj of GT have
p degeneracy and the left and right eigenvectors of GT

corresponding to eigenvalue γj be denoted by eL
j1,e

L
j2, . . . ,e

L
jp

and eR
j1,e

R
j2, . . . ,e

R
jp, respectively. For these p degenerate

eigenvalues, we introduce the p × p matrix Aj as

Aj =

⎛
⎜⎜⎝

μ11 μ12 . . . μ1p

μ21 μ22 . . . μ2p

...
...

. . .
...

μp1 μp2 . . . μpp

⎞
⎟⎟⎠,

where μkl = eL
jkReR

jl . Now we diagonalize matrix Aj to get
the diagonal matrix Bj = diag[νj1, . . . ,νjp]. Thus the linear
stability equation (6) can be written as

φ̇jk = [Dxf + εγjDxh]φjk + νjkDrDxφjk; k = 1, . . . ,p.

(15)
We note the above linear stability equation (15) has the same
form as Eq. (6). Hence, the master stability equation for
the degenerate case is the same as Eq. (7) and the master
stability function for the degenerate case is the same as for the
nondegenerate case.

As an example of the degenerate case we consider the star
network of N nodes (see Fig. 2) [29]. The coupling matrix G

is given by

G11 = −(N − 1)

G1i = Gi1 = 1 (16)

Gij = −δij ,

where i,j = 2, . . . ,N . The eigenvalues of G are γ1 = 0, γ2 =
· · · = γN−1 = −1 and γN = −N . The eigenvalue −1 has N −

FIG. 2. (Color online) A simple star network with 20 nodes.

-0.2

-0.1

0

0.1

0.2

0.1 0.15 0.2 0.25 0.3

λ
i,

λ
M

S
i

ε

(a)

-0.2

-0.1

0

0.1

0.2

0.1 0.15 0.2 0.25 0.3

λ
i,

λ
M

S
i

ε

(b)

FIG. 3. (Color online) The five largest Lyapunov exponents
(points with plus, cross, star, empty square, and filled square) and their
estimated value (lines in red, green, blue, cyan, and magenta) using the
master stability equation (7) are plotted as a function of the coupling
constant ε for a 20-node star network of coupled Rössler systems
with (a) 1% and (b) 10% mismatch in NDP ω. The epsilon range of
synchronization is shown in both the figures by a horizontal line with
vertical bars at the end. We note that the master stability function
can be used to obtain five Lyapunov exponents which correspond to
the largest Lyapunov exponents of the master stability equation. The
other Lyapunov exponents are estimated using the other Lyapunov
exponents of the master stability equation.

2 degeneracy. The corresponding eigenvectors are given in Eq.
(B3) from which the νjk can be obtained. Thus, we can evaluate
Lyapunov exponents using Eq. (15).

In Figs. 3(a) and 3(b), six Lyapunov exponents (points)
and their estimated values (lines) using the master stability
equation (7) are plotted as a function of the coupling parameter
ε for a star network of 20 coupled Rössler systems with 1%
and 10% variation in NDP ω, respectively. We see a good
agreement between the numerical and theoretical values of
Lyapunov exponents in the synchronization region.

Figures 3 also show the stable range of synchronization
lε. For the star network we can estimate lε using Eq. (14) as
follows. The eigenvector eN corresponding to the eigenvalue
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FIG. 4. (Color online) The interval of the stable synchronization
lε is plotted as a function of δω1 for the star network of 20 nodes
of coupled nearly identical Rössler systems. The straight line is the
theoretical result of Eq. (18).

γN = −N is eN =
√

1
N(N−1) (N − 1, − 1, . . . , − 1)T . Thus,

νN = eT
NRωeN = N − 2

N − 1
δω1, (17)

where δω1 is the frequency mismatch of the central node. From
Fig. 1, we can see that the location of αh changes as a function
of the mismatch parameter ν, while the location of αl remains
almost the same, i.e., bl � 0. Hence, using Eq. (14) we get

lε = l0
ε + bh(N − 2)

N (N − 1)
δω1. (18)

Figure 4 shows lε as a function of δω1 for the star network of 20
nodes of coupled nearly identical Rössler systems. We see that
the stability range of synchronization increases almost linearly
with δω1 for fixed N . The origin of the linear dependence is in
the linear dependence of νN on δω1 [Eq. (17)] and the linear
dependence of δαh on νN (see Fig. 1). The linear dependence
of δαh on νN is specific to the x-coupled Rossler systems with
frequency as NDP and may not be true for other systems.
The dependence of lε on N is more complicated since l0

ε =
| α0

h

γN
− α0

l

γ2
| = α0

h

N
− α0

l . This is further discussed in Sec. III A.

D. MSF for coupled nearly identical oscillators with more than
one NDP

In Sec. II A, we have derived the master stability equation
for coupled nearly identical dynamical systems with one NDP.
In this section we consider coupled nearly identical dynamical
systems with more than one NDPs and derive the master
stability equation for the same.

The dynamics of ith oscillator can be written as

ẋi = f (xi,ri1, . . . ,riq) + ε

N∑
j=1

gijh(xj ); i = 1, . . . ,N,

(19)
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FIG. 5. (Color online) The zero contour surfaces [red (left) and
green (right)] of the MSF are shown in the phase space (α,νω,νa) for
Rössler system. The MSF is negative in the region covered by these
surfaces and thus it gives the stable region.

where ri1, . . . ,riq are the q independent NDPs of the ith node.
Let the typical values of these NDP’s be r̃ = (r̃1, . . . ,r̃q).
The linearized equation is obtained following the procedure
of Sec. II A and we get [see Eq. (3)]

żi = Dxf zi + ε

N∑
j=1

gijDxhzj +
q∑

k=1

Drk
Dxf ziδrik, (20)

where zi = xi − x̃ and δrik = rik − r̃k .
Consider the j th eigenvalue, γj , of the coupling matrix

G. For γj , the mismatch parameter for the NDP rk using the
first-order perturbation correction is νjk = eL

j Rke
R
j and hence

Eq. (6) can be written as

φ̇j = [Dxf + εγjDxh]φj +
q∑

k=1

νjkDrk
Dxφj . (21)

We can write the master stability equation as before by
introducing the effective coupling parameter α = εγj and the
mismatch parameters νk = νjk, k = 0, . . . ,q,

φ̇ =
[
Dxf + αDxh +

q∑
k=1

νkDrk
Dxf

]
φ. (22)

As an example we consider coupled nearly identical Rössler
oscillators with ω and a as NDPs. In Fig. 5 the zero contour
surfaces of the MSF are plotted in the three-dimensional
parameter space (α,νω,νa), where νω and νa are the mismatch
parameters corresponding to the NDPs ω and a, respectively.
The MSF is negative in the region covered by these surfaces
and thus it gives the stable region. From the figure we can
see that the stable region for synchronization increases with
mismatch parameter νω while at the same time it decreases
with mismatch parameter νa .

III. SIZE INSTABILITY

In this section we discuss the effect of NDP on the size
instability of a network. As discussed in the Introduction, by
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size instability one refers to a critical number of oscillators
that can be coupled in a well-structured network to obtain
synchronization and beyond this critical number no stable
synchronization can be seen.

A simple explanation of size instability can be obtained
from Eq. (14) which says that for a given network we can find
the stable interval of coupling parameter as lε(N ) = |αh/γN −
αl/γ2|. The synchronization is stable when the eigenvalues
satisfies the condition, αh/αl > γN/γ2, i.e., lε(N ) > 0. For
some networks, the stable interval decreases as we keep on
adding nodes and it becomes zero when the network reaches
the critical size Nc. Thus, the critical number of oscillators up
to which synchronization is possible is given by

lε(Nc) = 0. (23)

Hence, the critical size Nc can be determined by solving the
equation

γNc

γ2
= αh

αl

. (24)

From the plot of MSF in Fig. 1, we see that the NDP can
play a crucial role in the size instability since the stability
range lε(N ) changes with the mismatch parameter ν. We
have obtained the mismatch parameter using the first-order
perturbation correction which requires the eigenvectors of G.
Thus, the nature of the eigenvectors of G plays a crucial role in
determining the effect of NDP on size instability. We will see
that this leads to different effects of NDP on size instability in
star and ring networks.

A. Star network

For a star network of N nodes where all the nodes on
the peripherals are only connected with a central nodes, the
coupling matrix G(0)

s is given by

G(0)
s =

⎛
⎜⎜⎜⎜⎝

1 − N 1 1 · · · 1
1 −1 0 · · · 0
1 0 −1 0
...

...
. . .

1 0 0 −1

⎞
⎟⎟⎟⎟⎠, (25)

and the eigenvalues of the coupling matrix are γ1 = 0,γ2 =
· · · = γN−1 = −1,γN = −N . Thus, the critical number of
identical oscillators that can be coupled in a star network to
achieve synchronization is [Eq. (24)]

N0
c = α0

h

α0
l

. (26)

From Fig. 1, we get N0
c ∼ 32 for coupled identical Rössler

systems [50].
Now we consider the coupled Rössler oscillators with NDP

ω. Using Eqs. (26), (13), and (17), and noting that bl � 0 from
Fig. 1, we obtain the maximum number of oscillators that can
be coupled in a star network for stable synchronization for
nearly identical systems as

Nc = αh

αl

= α0
h + bhνN

α0
l

= N0
c

[
1 + bh(Nc − 2)

α0
h(Nc − 1)

δω1

]
. (27)
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FIG. 6. (Color online) (a) Three largest Lyapunov exponents (red
square, black circle, and blue triangle) are shown as a function of ε

for 32 coupled identical Rössler oscillators on a star network. The
frequency ω = 1.0 for all the oscillators. There are some windows of
periodic motion between ε = 0.075 to 0.1. No range of ε showing
stable synchronization could be detected. (b) Three largest Lyapunov
exponents are shown as a function of ε for 32 coupled nearly identical
Rössler oscillators on a star network. The central node has the largest
frequency ω = 1.05, and the other nodes have smaller frequencies
such that the average frequency of the network is ω̄ = 1.0. A definite
range of stable synchronization ε ∈ (0.139,0.169) where the third-
largest Lyapunov exponent becomes negative can be seen.

Approximating Nc as N0
c in the right-hand side, and using

δω1 = 0.05, we get Nc ∼ 35.4. Thus, the maximum number
of oscillators that can synchronize for coupled nearly identical
Rössler systems with δω1 = 0.05 is 35.

We have verified the above result by explicit numerical
calculations. Figures 6(a) and 6(b) show the three largest
Lyapunnov exponents as a function of ε for 32 coupled
identical Rössler oscillators and 32 coupled nearly identical
Rössler oscillators, respectively, for a star network. For
identical systems we do not see any finite range of coupling
constant ε showing stable synchronization while for nearly
identical systems there is a finite range of ε showing stable
synchronization where the third largest Lyapunov exponent
becomes negative. This stable range of ε decreases as we
increase N . Figures 7(a), 7(b), 7(c), and 7(d) show the three
largest Lyapunov exponents of coupled nearly identical Rs̈sler
oscillators for N = 33, 34, 35, and 36, respectively. Thus, we
see that synchronization is possible up to N = 35 oscillators
and N = 36 does not show any stable synchronization.

From Eq. (27) we see that if we choose the frequency of the
central node smaller than the average, i.e., δω1 < 0, then the
critical number of oscillators for stable synchronization will
decrease. For example, if δω1 = −0.05, we get Nc = 28.6. We
have verified this result numerically.
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FIG. 7. (Color online) (a) The three largest Lyapunov exponents
(red line, green dashed line, and blue dotted line) are shown as a
function of ε for 33 coupled nearly identical Rössler oscillators on
a star network. A finite range of ε of stable synchronization is seen
where the third largest Lyapunov exponent becomes negative. Panels
(b), (c), and (d) are similar figures for N = 34, 35, and 36. We can
see a finite range of ε of stable synchronization for N = 34 and 35
but not for N = 36. In all the figures the central node has ω = 1.05
and the other frequencies are chosen such that the average ω̄ = 1.0.

Zamora-Munt et al. [45] have reported a similar observation
for a system of delay-coupled lasers on a star network where
they find that the critical size Nc increases with the width of
the frequency distribution.

B. Ring network

For a ring network, with nearest-neighbor coupling, the
coupling matrix is

G(1)
r =

⎛
⎜⎜⎜⎜⎝

−2 1 0 · · · 1
1 −2 1 · · · 0
0 1 −2 0
...

...
. . .

1 0 0 −2

⎞
⎟⎟⎟⎟⎠. (28)

The eigenvalues of G(1)
r are γk = −4 sin2 θk, θk = πk/N, k =

1, . . . ,N . The corresponding eigenvectors are ek =√
1
N

{1, exp(i2θk), . . . , exp[i2θk(N − 1)]}T .
For an eigenvalue γk , the mismatch term due to NDP is νk =

e
†
kRek = ∑

j δrj = 0, where we choose the average parameter
as the typical value. Thus, the mismatch term is zero for all
the eigenvalues γk . Hence, for the ring network, the NDP does
not have any significant effect on the size instability. We have
verified this result numerically.

As noted earlier, the different effect of NDP on the star and
ring networks is because of the nature of eigenvectors of G.
In the star network this can lead to either increase or decrease

FIG. 8. (Color online) (a) The figure shows a star network with
the nodes on the periphery connected to four (k = 2) of its nearest
neighbors. (b) The figure shows a ring network with the nodes
connected to four (k = 2) of its nearest neighbors.

of the critical number of nodes for synchronization; while in
the ring network it annuls the effect of NDP at least to first
order and hence does not have significant effect on the critical
number of nodes.

C. Star and ring networks with additional links

We now consider star and ring networks with additional
links to 2k nearest neighbors. For the star network, the
additional links are for the peripheral nodes (see Fig. 8). We
find that the critical number of nodes increases considerably
with k. The analytical results for the critical number for both
identical and nearly identical systems are given in Appendix
B. Here we give the numerical results for coupled Rössler
oscillators.

We have already seen that in a simple star network of
identical chaotic Rössler oscillators, a maximum of N0

c = 32
oscillators can be coupled to obtain synchronization. Beyond
this number the star network loses its synchronizability. This
critical number increases with k. In Fig. 9, we show the critical
size N0

c of the star network (solid red line) for identical chaotic
Rössler oscillators as a function of k. We see an almost linear
increase with k [see Eq. (B5)].

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

N
0 c

k

Star Ring Network
Ring Network

FIG. 9. (Color online) The critical size N0
c of the star network

(red line) and ring network (green dashed line) with peripheral nodes
which are connected to their 2k nearest neighbors are shown as a
function of k for identical Rössler oscillators.
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FIG. 10. (Color online) The critical size Nc for star network with
peripheral nodes connected to their 2k nearest neighbors are shown as
a function of k. The solid red line is for identical Rössler oscillators,
and the dashed blue, dotted magenta, and dashed-dotted cyan lines
are for Rössler oscillators with, respectively, 5%, 10%, and 15%
mismatch in frequency parameter.

For nearly identical systems, Eq. (27) for Nc is valid for all
k (see Appendix B). In Fig. 10, we show the critical size Nc

as a function of k for the star network with peripheral nodes
connected to 2k nearest neighbors for different ω1 values for
the central node. The solid, dashed, dotted, and dashed dotted
lines are for, respectively, δω1 = 0%, 5%, 10%, and 15%.
From the figure we can observe that the critical size of the
star network increases with increasing δω1 for fixed k and is
consistent with Eq. (27).

In a simple ring network with nearest-neighbor couplings of
identical chaotic Rössler oscillators, a maximum of N0

c = 17
oscillators can be coupled to obtain synchronization. Beyond
this number the ring network loses its synchronizability. As in
the star network the critical number increases with k. Figure
9 plots N0

c as a function of k for a ring network of identical
oscillators (dashed green line). Linear dependence of N0

c for
large k can be seen as given by Eq. (B10).

For the ring network with links to 2k nearest neighbors
of nearly identical oscillators, the NDP does not have any
significant effect on the critical size Nc and this result is
independent of 2k, the number of nearest neighbors (see
Appendix B). The result is verified numerically.

IV. CONCLUSION

In this paper we have studied the stability of synchro-
nization of coupled nearly identical systems on a network
using MSF. We extend the study to the case of degenerate
eigenvalues of the coupling matrix G and to more than one
NDP. The main result of the paper is about the effect of NDP
on size instability. The nature of the eigenfunctions of the
coupling matrix G play a crucial role in deciding the effect of
NDP on size instability. For coupled nearly identical Rössler
systems on a star network, we show that the critical number
of nodes beyond which synchronization is not possible can be

increased by having a larger frequency for the central node.
This result can be of importance for any real system which
has a leader-follower structure. For a ring network, the NDP
does not have any significant effect on the critical number of
nodes.
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APPENDIX A: ROBUSTNESS OF SYNCHRONIZATION

Here we derive the conditions for the synchronization error
to remain bounded to second order in parameter mismatch. We
follow a procedure similar to that of Sun et al. [40] who derive
a condition for the synchronization error to remain bounded to
first order in parameter mismatch.

In matrix form, Eq. (2) can be written as

Ż = Dxf Z + 1
2ZT D2

xf Z + Drf R + 1
2D2

r f R2

+DxDrf ZR + εDxhZGT + εZT D2
xhZGT , (A1)

where the matrices Z, G, and R are defined in Sec. II A and ZT

is the transpose of Z. Following the method of Sec. II A, we
can define the dynamics of an m-dimensional vector φj = ZeR

j

which are transverse to the synchronization manifold as

φ̇j = [Dxf + εγjDxh]φj + 1
2

[
ZT D2

xf + εγjZ
T Dxh

]
φj

+Drf ReR
j + 1

2D2
r R

2eR
j + DxDrf ZReR

j , (A2)

where j = 2, . . . ,N .
Let us introduce three parameters as ζj = ReR

j , 2ηj =
R2eR

j , and θj = ZReR
j . Equation (A2) can be written in the

generic form

φ̇ = [Dxf + αDxh]φ + 1
2

[
ZT D2

xf + αZT Dxh
]
φ

+Drf ζ + D2
r f η + DxDrf θ. (A3)

We note that the inhomogeneity in Eq. (A3) is due the
parameter mismatch of the coupled systems. Let us consider
that without any parameter mismatch the coupled systems
undergo stable synchronization as a function of coupling
parameter ε, i.e., in this case the solution of the homogeneous
part of Eq. (A3) can be written as

φh∗(t) = M(t,0)φh∗(0); j = 2, . . . ,N, (A4)

where M(t,τ ) is the transition matrix [51] and

‖M(t,τ )‖ � ce−κ(t−τ ), (A5)

where c and κ are finite positive constants and t � τ .
The full solution of Eq. (A3) can then be written as [52]

φf ∗(t) = φh∗(t) +
∫ t

0
M(t,τ )b1(τ )dτ +

∫ t

0
M(t,τ )b2(τ )dτ

+
∫ t

0
M(t,τ )b3(τ )dτ, (A6)

where b1(τ ) = Drf [x̃(τ ),r̃]ζ , b2(τ ) = D2
r f [x̃(τ ),r̃]η, and

b3(τ ) = DxDrf [x̃(τ ),r̃]θ .
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Under the condition of Eq. (A5), we can show that the
solution φf ∗(t) of Eq. (A6) is bounded by the following
inequality:

‖φf ∗(t)‖ � ‖φh∗(t)‖ +
∫ t

0
‖M(t,τ )‖dτ. sup

t

|b1(t)|

+
∫ t

0
‖M(t,τ )‖dτ sup

t

|b2(t)|

+
∫ t

0
‖M(t,τ )‖dτ sup

t

|b3(t)|, (A7)

� ce−κt‖φh∗(0)‖ + c

κ
(1 − e−κt ) sup

t

‖b1(t)‖

+ c

κ
(1 − e−κt ) sup

t

‖b2(t)‖

+ c

κ
(1 − e−κt ) sup

t

‖b3(t)‖, (A8)

t→∞−−−→ c

κ
sup

t

‖b1(t)‖ + c

κ
sup

t

‖b2(t)‖

+ c

κ
sup

t

‖b3(t)‖. (A9)

Thus, the full solution of the Eq. (A3) is bounded if (i) the
homogeneous part is exponentially stable and (ii) the inhomo-
geneous parts b1(τ ) = Drf [x̃(τ ),r̃]ζ , b2(τ ) = D2

r f [x̃(τ ),r̃]η,
and b3(τ ) = DxDrf [x̃(τ ),r̃]θ are bounded.

APPENDIX B: SYNCHRONIZATION OF LARGE NUMBER
OF OSCILLATORS IN STAR AND RING NETWORKS

In this Appendix, we consider star and ring networks with
additional links to 2k nearest neighbors and obtain analytical
results for the critical size of the network.

1. Star network

For the star network with links to 2k nearest neighbors of
the peripheral nodes, the coupling matrix G(k)

s has the form[
G(k)

s

]
11 = −(N − 1)

[
G(k)

s

]
1i

= (
G(k)

s

)
i1 = 1[

G(k)
s

]
ii

= −2k − 1
(B1)[

G(k)
s

]
ij

= 1, j = i ± 1, . . . ,i ± k[
G(k)

s

]
ij

= 0, otherwise,

where i = 2, . . . ,N and j is periodic with 2 � j � N .
The eigenvalues of the coupling matrix of Eq. (B1) are

γ1 = 0 γN = −N

γj = −2k − 1 + 2
k∑

l=1

cos

[
2π (j − 1)l

N − 1

]
; j = 2, . . . ,N − 1

(B2)

and the corresponding eigenvectors are

e1 = (1, . . . ,1)T

eN =
√

1

N (N − 1)
(N − 1, − 1, . . . , − 1)T (B3)

ej = [
0,1,ωj ,ω

2
j , . . . ,ω

(N−2)
j

]T
,

where j = 2, . . . ,N − 1 and ωj = exp(i 2πj

N−1 ) are the N −
1th roots of unity. For large k,N and k/N � 1, by series
expansion, we can get

γ2 ≈ −1 − 2π2k(k + 1)(2k + 1)

3(N − 1)2
. (B4)

From Eqs. (26), (B4), and (B2), the critical size of the
star network with its peripheral nodes connected to 2k nearest
neighbors, for large k, N , and k/N � 1, can be written as

N0
c ≈ k

3

√
4π2

3

α0
h

α0
l

. (B5)

Let us now consider nearly identical systems on a star
network with peripheral nodes connected to 2k nearest
neighbors. As argued in Sec. III A, the eigenvalue γ2 does
not lead to any change in Nc since bl = 0. The eigenvector
corresponding to γN [Eq. (B3)] is the same as in Sec. III A.
Hence, Eq. (27) for Nc is also valid for nearly identical systems.

2. Ring network

For the ring network with links to 2k nearest neighbors, the
coupling matrix G(k)

r has the form[
G(k)

r

]
ii

= −2k[
G(k)

r

]
ij

= 1, j = i ± 1, . . . ,i ± k, mod(N ) (B6)[
G(k)

r

]
ij

= 0, otherwise,

where i = 1, . . . ,N and j is periodic in N . The eigenvalues
of this coupling matrix G(k)

s are given by

γj = −2k + 2
k∑

l=1

cos

[
2π (j − 1)l

N

]
, (B7)

where j = 1, . . . ,N . The corresponding eigenvectors are

ej = [
1,ωj ,ω

2
j , . . . ,ω

(N−1)
j

]T
(B8)

where ωj = exp(i 2πj

N
) is the N th root of unity.

For large k, N , and k/N � 1, by series expansion, we get

γ2 ≈ −2π2k(k + 1)(2k + 1)

3N2
(B9)

γN ≈ −(2k + 1)(1 + 2/3π ).

From Eqs. (26) and (B9), the critical size of the ring network
with 2k nearest neighbors and identical oscillators for large
k, N , and k/N � 1 is given by

N0
c ≈ k

√
2π2

3(1 + 2/3π )

α0
h

α0
l

. (B10)

We now consider the ring network with links to 2k nearest
neighbors of nearly identical oscillators. We note that the
eigenvectors (B8) are the same as for k = 1 considered in
Sec. III B. Hence, νj = e

†
jRej = ∑

l δrl = 0. Hence, for the
ring network, the NDP does not have any significant effect on
the critical size Nc and this result is independent of 2k, the
number of nearest neighbors.
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