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Kinetic models of opinion formation in the presence of personal conviction
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We consider a nonlinear kinetic equation of Boltzmann type, which takes into account the influence of
conviction during the formation of opinion in a system of agents, which interact through the binary exchanges,
introduced by Toscani [G. Toscani, Commun. Math. Sci. 4, 481 (2006)]. The original exchange mechanism,
which is based on the human tendency to compromise and change of opinion through self-thinking, is here
modified in the parameters of the compromise and diffusion terms, which now are assumed to depend on the
personal degree of conviction. The numerical simulations show that the presence of conviction has the potential
to break symmetry, and to produce clusters of opinions. The model is partially inspired by the recent work
[L. Pareschi and G. Toscani, Phil. Trans. R. Soc. A 372, 20130396 (2014)], in which the role of knowledge in
the formation of wealth distribution has been investigated.
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I. INTRODUCTION

In recent years, the dynamics of opinion formation in a
multiagent society has received growing attention [1–10]. Be-
cause of its cooperative nature, it appeared natural to resort to
tools and methods typical of statistical mechanics to study such
systems [11,12]. The approaches considered so far range from
cellular automata, especially used for numerical simulation, to
models of mean-field type, which lead to systems of (ordinary
or partial) differential equations, to kinetic models of opinion
formation [13–20]. In kinetic models, the variation of opinion
is obtained through binary interactions between agents. In
view of the relation between parameters in the microscopic
binary rules, the society develops a certain steady macroscopic
opinion distribution [21,22], which characterizes the formation
of a relative consensus around certain opinions.

The relevant aspects to be taken into account when
modeling binary interactions in opinion formation have been
identified in the compromise process [6,23], in which individu-
als tend to reach a compromise after exchange of opinions, and
the self-thinking [14], where individuals change their opinion
in a diffusive fashion.

Following this line of thought, a wide class of kinetic
models of opinion formation, based on two-body interactions
involving both compromise and diffusion properties in ex-
changes between individuals, has been introduced in Ref. [14].
These models are sufficiently general to take into account
a large variety of human behaviors, and to reproduce in
many cases explicit steady profiles from which one can easily
elaborate information on the macroscopic opinion distribution.
This type of modeling has subsequently been applied to various
situations in Refs. [17,18,20,24].

More recently, a further relevant parameter, strongly related
to the problem of opinion formation, has been taken into
account in Ref. [25]. Resembling the model for wealth
exchange in a multiagent society introduced in Ref. [26], this
model has an additional parameter to quantify the personal
conviction, representing a measure of the influencing ability
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of individuals. Individuals with high conviction are resistant to
change opinion, and have a prominent role in attracting other
individuals towards their opinions. In this sense, individuals
with high conviction play the role of leaders [24].

The role of conviction has been subsequently considered
by other authors. It was shown in Ref. [25] that beyond a
certain value of this conviction parameter, the society reaches a
consensus, where one of the two choices (positive or negative)
provided to the individuals prevails, thereby spontaneously
breaking a discrete symmetry. A further model in which
this parameter has been taken into account was proposed
in Ref. [27]. There, the self-conviction and the ability to
influence others were taken as independent variables. Also,
exact solutions of a discrete opinion formation model with
conviction were found by Biswas in Ref. [28]. In Refs. [29,30],
conviction has been introduced as relevant parameter in a
class of discrete opinion models. Within this class, each agent
opinion takes only discrete values, and its time evolution
is ruled by two terms, one representing binary interactions
between individuals, and the other the degree of conviction or
persuasion (a self-interaction).

In all the aforementioned models, conviction is realized by
a fixed-in-time parameter (or a random variable), eventually
different for different individuals. Consequently, while it is
clear that a certain distribution of this parameter among agents
leads to a steady distribution of opinions with properties which
are related to it, it is not completely clarified why conviction
has to be assumed with a certain distribution.

Similar additional parameters have been considered by
Martins and Galam [10] in order to built a more realistic
model of opinion formation. The conviction parameter is here
substituted by the concept of inflexibility. This concept was
originally introduced to distinguish between rational individ-
uals and individuals who were sure that their opinion would
not change, regardless of social influence [13,15]. In Ref. [10]
two models of opinion dynamics have been entangled to build
a more realistic model of inflexibility: the Galam unifying
frame, which incorporates rational and inflexible agents, and
another one, which considers the combination of continuous
opinions and discrete actions. As a consequence, in Ref. [10]
inflexibility is no more a fixed feature of an agent, but the
result of an accumulation for a given agent who makes the same
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choice through repeated updates, that can range between a min-
imum and a maximum. Indeed, under time and social pressure,
an inflexible could, in principle, become a floater, as well as
individuals who are not so convinced initially could strengthen
their opinion and move to inflexibles. It is interesting to remark
that this more realistic consideration of inflexibility preserves
the major results obtained from the original discrete Galam
unifying frame model, at least qualitatively.

All these studies, however, indicate that, among the various
behavioral aspects that determine a certain opinion formation,
conviction represents an important variable to be taken into
account. This problem has deep analogies with a recent study
of one of the present authors with Pareschi [31], where
the role of knowledge in wealth distribution forming has
been studied by allowing agents to depend on two variables,
denoting knowledge and wealth respectively. There, a kinetic
equation for the evolution of knowledge has been coupled
with a kinetic model for wealth distribution, by allowing
binary trades to be dependent of the personal degree of
knowledge. Mutatis mutandis, we will assume in this paper that
individuals are characterized by two variables, representing
conviction and, respectively, opinion. Following the line of
thought in Ref. [31], we will introduce here a kinetic model
for conviction formation, by assuming that the way in which
conviction is formed is independent of the personal opinion.
Then, the (personal) conviction parameter will enter into
the microscopic binary interactions for opinion formation
considered in Ref. [14], to modify them in the compromise and
self-thinking terms. Within this picture, both the conviction
and the opinion are modified in time in terms of microscopic
interactions. As we shall see by numerical investigation,
the role of the additional conviction variable is to bring
the system towards a steady distribution in which there is
formation of clusters even in absence of bounded confidence
hypotheses [7–9,32].

In our kinetic model for conviction formation, we will
assume that the relevant terms responsible of the modification
of the conviction are from one side the acquisition of
information and the social pressure [10], and from the other
side the possibility of afterthought and to think back, which
appear to be natural and universal features. In reason of
this, the positive parameter that quantifies conviction can
either increase (through information and social pressure) or
decrease (through afterthought). The relevant aspect is that
information and social pressure will be achieved though the
surrounding, thus producing a linear kinetic model. Note that it
is assumed here that the individual conviction is not correlated
to personal opinion, thus allowing formation of conviction
without resorting to the distribution of opinions. Then, the
linear conviction interaction will be coupled with the binary
exchange of opinion introduced in Ref. [14], which includes
both the compromise propensity and the the change of the
personal opinion due to self-thinking. In the new interaction
rule both the compromise and the self-thinking part of the
opinion exchange depend on the personal conviction. A typical
and natural assumption is that high conviction could act on the
interaction process both to reduce the personal propensity to
compromise, and to reduce the self-thinking in the interaction.
These rules will subsequently be merged, within the principles
of classical kinetic theory, to derive a nonlinear Boltzmann-like

kinetic equation for the joint evolution of conviction and
opinion variables.

The kinetic approach revealed to be a powerful tool [22,33],
complementary to the numerous theoretical and numerical
studies that can be found in the recent physical and economic
literature on these subjects. On the other hand, as many other
approaches, the study of the socioeconomic behavior of a (real)
population of agents by means of kinetic models with very
few (essential) parameters is able to capture only partially
the extremely complex behavior of such systems. The idea
to introduce as an additional parameter the conviction in
the study of opinion formation goes exactly in the direction
to give a more accurate description of the human behavior.
Not surprisingly, the description of the evolution of pair
conviction-opinion in terms of a kinetic equation gives rise
to a variety of challenging mathematical problems, both from
the theoretical and numerical point of view. In particular,
concerning the distribution of conviction, it is remarkable that
this class of simple models is able to reproduce various features
always present in the reality, like the presence of a considerable
number of undecided in the population, as well as the formation
of clusters of opinions in the steady distribution.

To end this introduction, we outline that the problem of
clustering is of paramount importance in this context. Indeed,
models for opinion formation belong to the variety of models
for self-organized dynamics in social, biological, and physical
sciences [33], which assume that the intensity of alignment
increases as agents get closer, reflecting a common tendency
to align with those who think or act alike. As noticed by
Motsch and Tadmor [21] similarity breeds connection reflects
our intuition that increasing the intensity of alignment as the
difference of positions decreases is more likely to lead to a
consensus. However, it is argued in Ref. [21] that the converse
is true: when the dynamics is driven by local interactions, it
is more likely to approach a consensus when the interactions
among agents increase as a function of their difference in
position. In absence of further parameters, heterophily, the
tendency to bond more with those who are different rather than
with those who are similar, plays a decisive role in the process
of clustering. This motivates further our choice to resort to the
additional role of conviction.

The paper is organized as follows. In Sec. II we introduce
and discuss the linear kinetic model for the formation of
conviction in a multiagent society. This linear model is based
on microscopic interactions with a fixed background, and is
such that the density of the population conviction converges
towards a steady distribution, which is heavily dependent on
the microscopic parameters of the microscopic interactions.
Then, the conviction rule is merged with the binary interaction
for opinion to obtain a nonlinear kinetic model of Boltzmann-
type for the joint density of conviction and opinion. This part
is presented in Sec. III. Finally, Sec. IV is devoted to various
numerical experiments, which allow us to recover the steady
joint distribution of conviction and opinion in the population
for various choices of the relevant parameters.

II. FORMATION OF CONVICTION

To give a precise and well-established definition of con-
viction is beyond our purposes. Instead of resorting to a
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definition, it seems natural to agree on certain universal aspects
about it. Conviction can be described as a certain resistance
to modify a personal behavior. How the personal amount
of conviction is formed is a very difficult question. We can
reasonably argue that, among other reasons, those responsible
for conviction forming include familiar environment, personal
contacts, readings, or skills acquired through experience or
education. It is natural to assume that conviction (at least
concerning some aspects of life, such as religious or political
beliefs) is in part inherited in the interior of the family from
the parents, but it is also evident that the the main factor
that can influence it is the social background in which the
individual grows and lives [10,34]. Indeed, the experiences
that lead to being convinced about something can not be
fully inherited from the parents, like eye color, but rather are
acquired by several elements of the environment. This process
is manifold and produces different results for each individual
in a population. Like in knowledge formation, although all
individuals are given the same opportunities, at the end of the
process every individual appears to have a different level of
conviction about something. Also, it is almost evident that the
personal conviction is heavily dependent on the individual’s
nature. A consistent part of us is accustomed to rethink, and
to have continuous afterthoughts on many aspects of our daily
decisions. This is particularly true nowadays, where the global
access to information via web gives to each individual the
possibility to have a reservoir of infinite capacity from which
to extract any type of (useful or not) information, very often
producing insecurity.

The previous remarks are at the basis of a suitable
description of the evolution of the distribution of conviction in
a population of agents by means of microscopic interactions
with a fixed background. Note that this description is close to
the process describing the changing of status between floaters
and inflexible agents introduced in Ref. [10]. We will proceed
as in Ref. [31]. Each variation of conviction is interpreted as an
interaction where a fraction of the conviction of the individual
could be lost by virtue of afterthoughts and insecurities, while
at the same time the individual can absorb a certain amount
of conviction through the information and social pressure
achieved from the external background (the surrounding
environment). The individual conviction will be quantified in
terms of a scalar continuous parameter x, ranging from zero
to infinity. Small values of this parameter will characterize
floating agents, while high values will characterize inflexible
agents.

Owing to the previous considerations, the variation of
individual conviction in a single (microscopic) interaction is
the result of three different contributions

x∗ = [1 − λ(x)]x + λB(x)z + κH (x). (1)

In (1) the first term on the right-hand side represents the loss
of individual conviction due to the action of afterthoughts
and insecurities. The second one represents the amount of
conviction absorbed from the social environment. Here z � 0
indicates the amount of conviction offered by the social
background. In both terms, it is assumed that the functions
λ = λ(x) and λB = λB(x) quantify, respectively, the personal
amounts of insecurity and willingness to be convinced by
others. The last term on the right-hand side of (1) quantifies the

possible unpredictable modifications of the conviction process.
The randomness present in the interaction is quantified by
the random parameter κ , which in general is fixed to have
the mean value equal to zero. Last, H (·) will denote an
increasing function of conviction. This choice is driven by
the assumption that random modifications of conviction are
directly proportional to the conviction itself. The typical
choice is to take H (x) = xν , with 0 < ν � 1. Since some
insecurity is always present, and at the same time it can not
exceed a certain amount of the total conviction, it is assumed
that λ− � λ(x) � λ+, where λ− > 0, and λ+ < 1. Likewise,
we will assume an upper bound for the willingness to be
convinced by the environment. Then, 0 � λB(x) � λ̄, where
λ̄ < 1. Lastly, the random part is chosen to satisfy the lower
bound κ � −(1 − λ+). By these assumptions, it is assured that
the postinteraction value x∗ of the conviction is non-negative.

To complete our description, we need to specify the way in
which the social environment acts on the individual to modify
its conviction. Let E(z), z � 0 denote a probability distribution
with a bounded mean, so that∫

R+
E(z) dz = 1;

∫
R+

z E(z) dz = M. (2)

Then, the value of the parameter z in (1) will be randomly
chosen according to the law induced by E(z). It is immediate
to observe that the probability distribution of the background
will induce a certain policy of acquisition of conviction. This
aspect has been discussed in Ref. [31], from which we extract
the example that follows. Let us assume that the background
is a random variable uniformly distributed on the interval
(0,a), where a > 0 is a fixed constant. If we choose for
simplicity λ(x) = λB(x) = λ̄, and the individual has a degree
of conviction x > a, in absence of randomness the interaction
will always produce a value x∗ � x, namely a partial decrease
of conviction. In this case, in fact, the process of insecurity
in an individual with high conviction can not be restored by
interaction with the environment.

The study of the time evolution of the distribution of
conviction produced by binary interactions of type (1) can
be obtained by resorting to kinetic collisionlike models [22].
Let F = F (x,t) be the density of agents, which at time t > 0
are represented by their conviction x ∈ R+. Then, the time
evolution of F (x,t) obeys to a Boltzmann-like equation. This
equation is usually written in weak form. It corresponds to say
that the solution F (x,t) satisfies, for all smooth functions ϕ(x)
(the observable quantities)

d

dt

∫
R+

F (x,t)ϕ(x) dx

=
〈∫

R2+
[ϕ(x∗) − ϕ(x)]F (x,t)E(z) dx dz

〉
. (3)

In (3) the postinteraction conviction x∗ is given by (1).
As usual, 〈·〉 represents mathematical expectation. Here the
expectation takes into account the presence of the random
parameter κ in (1).

The meaning of the kinetic equation (3) is the following.
At any positive time t > 0, the variation in time of the
distribution of conviction (the left-hand side) results from
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a balance equation in which, through interaction with the
background, we gain agents with conviction x∗ losing agents
with conviction x. This change is measured by the interaction
operator at the right-hand side.

The structure of the kinetic equation (3) is identical to the
kinetic equation for the evolution of knowledge studied in
Ref. [31]. From this paper, we quote the following results.
Equation (3) preserves the total mass, so that F (x,t), t > 0,
remains a probability density if it is so initially. By choosing
ϕ(x) = x one recovers the evolution of the mean conviction
MC(t) of the agents system, which gives a first measure of the
conviction rate. By assuming λ(x) � λ−, while λB(x) � λ̄, the
mean conviction of the system will never exceed the (finite)
value Mmax given by

Mmax = λ̄

λ−
M.

If λ(x) = λ and λB(x) = λB are constant, the mean value can
be explicitly computed to give

MC(t) = MC(0)e−λt + λBM

λ
(1 − e−λt ). (4)

Formula (4) shows that the mean conviction converges expo-
nentially to its limit value λBM/λ. Note that by increasing
the parameter λ, which measures the personal amount of
insecurity, we decrease the final mean conviction.

A further insight into the linear kinetic equation (3) can be
obtained by resorting to particular asymptotics, which lead
to Fokker-Planck equations [35]. In order to describe the
asymptotic process, let us discuss in some detail the evolution
equation for the mean conviction. For simplicity, and without
loss of generality, let us assume λ and λB constant. Given a
small parameter ε, the scaling

λ → ελ, λB → ελB, κ → √
εκ (5)

is such that the mean value MC(t) satisfies

dMC(t)

dt
= −ε[λMC(t) − λBM].

If we set τ = εt , Fε(x,τ ) = F (x,t), then

MC(τ ) =
∫
R+

xFε(x,τ ) dx =
∫
R+

xF (x,τ ) dx = MC(t),

and the mean value of the density Fε(x,τ ) solves

dMC(τ )

dτ
= −λMC(τ ) + λBM. (6)

Note that Eq. (6) does not depend explicitly on the scaling
parameter ε. In other words, we can reduce in each interaction
the variation of conviction, waiting enough time to get the
same law for the mean value of the conviction density.

We can consequently investigate the situation in which most
of the interactions produce a very small variation of conviction
(ε → 0), while at the same time the evolution of the conviction
density is such that (6) remains unchanged. We will call this
limit the quasi-invariant conviction limit.

Let us now assume that the centered random variable κ

has bounded moments at least of order n = 3, with 〈κ2〉 = μ.
Then, proceeding as in Ref. [35] (cf. also Chap. 1 in Ref. [22]),

we obtain that the density Fε(x,τ ) solves the equation

d

dt

∫
R+

Fε(x,t)ϕ(x) dx

= −
∫
R+

[λ(x)x − λB(x)M]Fε(x,t)ϕ′(x) dx

+ μ

2

∫
R+

H 2(x)Fε(x,t)ϕ′′(x) dx + Rε(x,τ ), (7)

where the remainder Rε is vanishing as ε → 0. Consequently,
it is shown that, as ε → 0, the density Fε(x,τ ) converges
towards the density G(x,τ ) solution of the Fokker-Planck
equation

∂G(x,τ )

∂τ
= μ

2

∂2

∂x
[H (x)2G(x,τ )]

+ ∂

∂x
{[λ(x)x − λB(x)M]G(x,τ )}. (8)

The case in which λ(x) = λ and λB(x) = λB allows to get
the explicit form of the steady distribution of conviction [22].
We will present two realizations of the asymptotic profile,
that enlighten the consequences of the choice of a particular
function H (·). First, let us consider the case in which H (x) =
x. In this case, the Fokker-Planck equation (8) coincides with
the one obtained in Ref. [35], related to the steady distribution
of wealth in a multiagent market economy. One obtains

G∞(x) = G0

x2+2λ/μ
exp

{
−2λBM

μx

}
. (9)

In (9) the constant G0 is chosen to fix the total mass of G∞(x)
equal to one. Note that the steady profile is heavy tailed, and
the size of the polynomial tails is related to both λ and σ .
Hence, the percentage of individuals with high conviction
is decreasing as soon as the parameter λ of insecurity is
increasing, and/or the parameter of self-thinking is decreasing.
It is moreover interesting to note that the size of the parameter
λB is important only in the first part of the x axis, and
contributes to determine the size of the number of undecided.
Like in the case of wealth distribution, this solution has a large
middle class, namely a large part of the population with a
certain degree of conviction, and a small poor class, namely a
small part of undecided people.

The second case refers to the choice H (x) = √
x. Now,

people with high conviction is more resistant to change
(randomly) with respect to the previous case. On the other
hand, if the conviction is small, x < 1, the individual is less
resistant to change. Direct computations now show that the
steady profile is given by

H∞(x) = H0 x−1+(2λBM)/μ exp

{
−2λ

μ
x

}
, (10)

where the constant H0 is chosen to fix the total mass of
H∞(x) equal to one. At difference with the previous case, the
distribution decays exponentially to infinity, thus describing
a population in which there are very few agents with a large
conviction. Moreover, this distribution describes a population
with a huge number of undecided agents. Note that, since the
exponent of x in H∞(·) is strictly bigger than −1, H∞(·) is
integrable for any choice of the relevant parameters.
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Other choices of the exponent ν in the range 0 < ν � 1 do
not lead to essential differences. The previous examples show
that, despite the simplicity of the kinetic interaction (1), by
acting on the coefficient of the random part κ one can obtain
very different types of steady conviction distributions.

Also, the steady conviction distributions describe a variety
of situations we can easily observe in reality. This makes
evident the interest in applications of the Fokker-Planck
equation (8), first introduced in Ref. [31] in connection with
knowledge formation.

III. BOLTZMANN EQUATION FOR OPINION
AND CONVICTION

In this section, we will join the kinetic model for conviction
with the kinetic model for opinion formation introduced in
Ref. [14]. This model belongs to a class of models in which
agents are indistinguishable. In most of these models [22]
an agent’s state at any instant of time t � 0 is completely
characterized by his opinion v. In agreement with the usual
assumptions of the pertinent literature, the variable v varies
continuously from −1 to 1, where −1 and 1 denote two
(extreme) opposite opinions. A remarkable consequence of
introducing a continuous distribution of opinions in the interval
[−1,1] is that the extremal opinions do not play any particular
rule.

The unknown in this model is the density (or distribution
function) f = f (v,t), where v ∈ I = [−1,1] and the time
t � 0, whose time evolution is described, as shown later, by a
kinetic equation of Boltzmann type.

The precise meaning of the density f is the following.
Given the population to study, if the opinions are defined on a
subdomain D ⊂ I, the integral∫

D

f (v,t) dv

represents the number of individuals with opinion included
in D at time t > 0. It is assumed that the density function is
normalized to 1, that is∫

I

f (v,t) dv = 1.

As always happens when dealing with a kinetic problem in
which the variable belongs to a bounded domain, this choice
introduces supplementary mathematical difficulties in the
correct definition of binary interactions. In fact, it is essential
to consider only interactions that do not produce opinions
outside the allowed interval, which corresponds to imposing
that the extreme opinions cannot be crossed. This crucial
limitation emphasizes the difference between the present social
interactions, where not all outcomes are permitted, and the
classical interactions between molecules, or, more generally,
the wealth trades (cf. [22], Chap. 5), where the only limitation
for trades was to ensure that the postcollision wealths had to
be non-negative.

In order to build a possibly realistic model, this severe
limitation has to be coupled with a reasonable physical
interpretation of the process of opinion forming. In other
words, the impossibility of crossing the boundaries has to be
a byproduct of good modeling of binary interactions.

From a microscopic viewpoint, the binary interaction in
Ref. [14] are described by the rules

v∗ = v − γP (|v|)(v − w) + �D(|v|),
w∗ = w − γP (|w|)(w − v) + �̃D(|w|). (11)

In (11), the pair (v,w), with v,w ∈ I, denotes the opinions
of two arbitrary individuals before the interaction, and (v∗,w∗)
their opinions after exchanging information between each
other and with the exterior. The coefficient γ ∈ (0,1/2) is
a given constant, while � and �̃ are random variables
with the same distribution, with zero mean and variance
σ 2, taking values on a set B ⊆ R. The constant γ and the
variance σ 2 measure respectively the compromise propensity
and the degree of spreading of opinion due to diffusion, which
describes possible changes of opinion due to personal access
to information (self-thinking). Finally, the functions P (·) and
D(·) take into account the local relevance of compromise and
diffusion for a given opinion.

Let us describe in detail the interaction on the right-hand
side of (11). The first part is related to the compromise
propensity of the agents, and the last contains the diffusion
effects due to individual deviations from the average behavior.
The presence of both the functions P (·) and D(·) is linked to
the hypothesis that openness to change of opinion is linked to
the opinion itself, and decreases as one gets closer to extremal
opinions. This corresponds to the natural idea that extreme
opinions are more difficult to change. Various realizations of
these functions can be found in Ref. [14]. In all cases, however,
we assume that both P (|v|) and D(|v|) are nonincreasing with
respect to |v|, and in addition 0 � P (|v|) � 1, 0 � D(|v|) � 1.
Typical examples are given by P (|v|) = 1 − |v| and D(|v|) =√

1 − v2.
In the absence of the diffusion contribution (�,�̃ ≡ 0), (11)

implies

v∗ + w∗ = v + w + γ (v − w)[P (|v|) − P (|w|)],
v∗ − w∗ = {1 − γ [P (|v|) + P (|w|)]}(v − w). (12)

Thus, unless the function P (·) is assumed constant, P = 1,
the total momentum is not conserved and it can increase or
decrease depending on the opinions before the interaction. If
P (·) is assumed constant, the conservation law is reminiscent
of analogous conservations, which take place in kinetic theory.
In such a situation, thanks to the upper bound on the coefficient
γ , Eqs. (11) correspond to a granular-gas-like interaction [22]
where the stationary state is a Dirac δ centered on the average
opinion. This behavior is a consequence of the fact that, in
a single interaction, the compromise propensity implies that
the difference of opinion is diminishing, with |v∗ − w∗| =
(1 − 2γ )|v − w|. Thus, all agents in the society will end up
with exactly the same opinion. Note that in this elementary
case a constant part of the relative opinion is restituted after
the interaction. In all cases, however, the second inequality
in (12) implies that the difference of opinion is diminishing
after the interaction.

We remark, moreover, that, in the absence of diffusion, the
lateral bounds are not violated, since

v∗ = [1 − γP (|v|)]v + γP (|v|)w,

w∗ = [1 − γP (|w|)]w + γP (|w|)v, (13)
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imply

max{|v∗|,|w∗|} � max{|v|,|w|}.
Let f (v,t) denote the distribution of opinion v ∈ I at time

t � 0. The time evolution of f is recovered as a balance
between bilinear gain and loss of opinion terms, described
in weak form by the integrodifferential equation of Boltzmann
type

d

dt

∫
I

ϕ(v)f (v,t) dv = (Q(f,f ),ϕ)

=
〈∫

I2
f (v)f (w)(ϕ(v∗) + ϕ(w∗)

− ϕ(v) − ϕ(w))dvdw

〉
, (14)

where (v∗,w∗) are the postinteraction opinions generated by
the pair (v,w) in (11).

We remark that Eq. (14) is consistent with the fact that
a suitable choice of the function D(·) in (11) coupled with
a small support B of the random variables implies that both
|v∗| � 1 and |w∗| � 1.

The analysis in Ref. [14] essentially shows that the
microscopic interaction (11) is so general that the kinetic
equation (14) can describe a variety of different behaviors
of opinion. In its original formulation, both the compromise
and the self-thinking intensities were assigned in terms of the
universal constant γ and of the universal random parameters
�,�̃. Suppose now that these quantities in (11) could depend
of the personal conviction of the agent. For example, one
reasonable assumption would be that an individual with high
personal conviction is more resistant to move towards opinion
of any other agent by compromise. Also, a high conviction
could imply a reduction of the personal self-thinking. If one
agrees with these assumptions, the binary trade (11) has to be
modified to include the effect of conviction. Given two agents
A and B characterized by the pair (x,v) [respectively (y,w)]
of conviction and opinion, the new binary trade between A and
B now reads

v∗ = v − γ (x)P (|v|)(v − w) + �(x)�D(|v|),
w∗ = w − γ (y)P (|w|)(w − v) + �(y)�̃D(|w|). (15)

In (15) the personal compromise propensity and self-thinking
of the agents are modified by means of the functions  = (x)
and � = �(x), which depend on the convictions parameters.
In this way, the outcome of the interaction results from a com-
bined effect of (personal) compromise propensity, conviction,
and opinion. Among other possibilities, one reasonable choice
is to fix the functions (·) and �(·) as nonincreasing functions.
This reflects the idea that the conviction acts to increase the
tendency to remain of the same opinion. Among others, a
possible choice is

(x) = [1 + (x − A)+]−α, �(x) = [1 + (x − B)+]−β.

(16)
Here A,B,α,β are non-negative constants, and h(x)+ denotes
the positive part of h(x). By choosing A > 0 (B > 0),
conviction will start to influence the change of opinion only
when x > A (x > B). It is interesting to remark that the

presence of the conviction parameter (through the functions 

and �), is such that the postinteraction opinion of an agent with
high conviction remains close to the preinteraction opinion.
This induces a mechanism in which the opinions of agents
with low conviction are attracted towards opinions of agents
with high conviction.

Numerical experiments will lead to the conclusion that, at
difference with the situation studied in Ref. [31], the choice
of the exponents α and β in (16) is of paramount importance
in order to enhance the role of the personal conviction on the
agent system. Indeed, choosing the parameters α,β > 1 leads
to the radical situation in which most agents in the system
possess an high degree of inflexibility, leading the system
towards a picked steady state. For this reason, we will refer
to numerical experiments in which most of the interactions
are softly modified by the conviction. In this way we can
concentrate on the role of the inflexible part of the population
to achieve the final distribution of opinions.

Assuming the binary trade (15) as the microscopic binary
exchange of conviction and opinion in the system of agents,
the joint evolution of these quantities is described in terms of
the density f = f (x,v,t) of agents which at time t > 0 are
represented by their conviction x ∈ R+ and wealth v ∈ I. The
evolution in time of the density f is described by the following
kinetic equation (in weak form) [22]

d

dt

∫
R+×I

ϕ(x,v)f (x,v,t) dx dv

= 1

2

〈∫
R2+×I

2
[ϕ(x∗,v∗) + ϕ(y∗,w∗) − ϕ(x,v) − ϕ(y,w)]

×f (x,v,t)f (y,w,t)C(z) dx dy dz dv dw

〉
. (17)

In (17) the pairs (x∗,v∗) and (y∗,w∗) are obtained from the
pairs (x,v) and (y,w) by (1) and (15). Note that, by choosing
ϕ independent of v, that is ϕ = ϕ(x), Eq. (17) reduces to the
Eq. (3) for the marginal density of conviction F (x,t).

To obtain analytic solutions to the Boltzmann-like Eq. (17)
is prohibitive. The main reason is that the unknown density in
the kinetic equation depends on two variables with different
laws of interaction. In addition, while the interaction for
conviction does not depend on the opinion variable, the law
of interaction for the opinion does depend on the conviction.
Also, at difference with the one-dimensional models, passage
to Fokker-Planck equations (cf. [31] and the references therein)
does not help in a substantial way. For this reason, we will
resort to numerical investigation of (17), to understand the
effects of the introduction of the conviction variable in the
distribution of opinions.

IV. NUMERICAL EXPERIMENTS

This section contains a numerical description of the solu-
tions to the Boltzmann-type equation (17). For the numerical
approximation of the Boltzmann equation we apply a Monte
Carlo method, as described in Chap. 4 of Ref. [22]. If not
otherwise stated the kinetic simulation has been performed
with N = 104 particles.
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The numerical experiments will help to clarify the role
of conviction in the final distribution of the opinion density
among the agents. The numerical simulations enhance the
fact that the density f (x,v,t) will rapidly converge towards
a stationary distribution [22]. As usual in kinetic theory, this
stationary solution will be reached in an exponentially fast
time.

The numerical experiments will report the joint density
of conviction and opinion in the agent system. The opinion
variable will be reported on the horizontal axis, while the
conviction variable will be reported on the vertical one. The
color intensity will refer to the concentration of opinions.
The following numerical tests have been considered.

Test 1

In the first test we consider the case of a conviction
interaction where the diffusion coefficient in (1) is linear,
H (x) = x. As described in Sec. II the distribution of conviction
in this case is heavy tailed, with an important presence of agents
with high conviction, and a large part of the population with a
mean degree of conviction. In (15) we shall consider

�(x) = (x) = 1

1 + x
.
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FIG. 1. (Color online) Test 1: The particles solution with N =
10000 particles and linear H . (a) High diffusion in conviction and
reduced self-thinking compared to (b) low diffusion in conviction and
high self-thinking.
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FIG. 2. (Color online) Test 2: The particles solution with N =
10000 particles and H (x) = √

x. (a) High diffusion in conviction and
reduced self-thinking compared to (b) low diffusion in conviction and
high self-thinking.

We further take λ = λB = 0.5 in (1), and P (|v|) = 1, D(|v|) =√
1 − v2 in (15). We consider a population of agents with

an initially uniformly distributed opinion and a conviction
uniformly distributed on the interval [0,5]. We choose a time
step of �t = 1 and a final computation time of t = 50, where
the steady state is practically reached.

Since the evolution of the conviction in the model is
independent from the opinion, the latter is scaled in order
to fix the mean equal to 0. We report the results for the
particle density corresponding to different values of μ, γ and
the variance σ 2 of the random variables � and �̃ in Fig. 1.

Test 2

In this new test, we maintain the same values for the
parameters, and we modify the diffusion coefficient in (1),
which is now assumed as H (x) = √

x. Within this choice,
with respect to the previous test we expect the formation of
a larger class on undecided agents. The results are reported
in Fig. 2 for the full density. At difference with the results of
Test 1, opinion is spread out almost uniformly among people
with low conviction. It is remarkable that in this second test,
as expected, conviction is essentially distributed in the interval
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FIG. 3. (Color online) Initial asymmetry in opinion leads to
different opinion-conviction distributions. (a) H (x) = x and (b)
H (x) = √

x.

[0,5], at difference with Test 1, where agents reach a conviction
parameter of 20.

The same effect is evident in Fig. 3, which refers to both
Tests 1 and 2 in which, to understand the evolution in case
of asymmetry, the initial distribution of opinions was chosen
uniformly distributed on the positive part of the interval.

V. CONCLUSIONS

Opinion formation in a society of agents depends on
many aspects, even if it appears to have very stable features,
like formation of clusters. In this note, we introduced and
discussed a kinetic model for the joint evolution of opinion
in presence of conviction, based on the assumption that
conviction is a relevant parameter that can influence the
distribution of opinion by acting on the personal attitude to
compromise, as well as in limiting the self-thinking. Numerical
experiments put in evidence that the role of conviction relies
in concentrating the final distribution of opinions towards a
well-defined one.
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