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Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations
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The detrended cross-correlation coefficient ρDCCA has recently been proposed to quantify the strength of
cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended
cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an
analog of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρDCCA works well in
many practical situations but by construction its applicability is limited to detection of whether two signals are
generally cross-correlated, without the possibility to obtain information on the amplitude of fluctuations that
are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an
extension of ρDCCA that exploits the multifractal versions of DFA and DCCA: multifractal detrended fluctuation
analysis and multifractal detrended cross-correlation analysis, respectively. The resulting new coefficient ρq not
only is able to quantify the strength of correlations but also allows one to identify the range of detrended fluctuation
amplitudes that are correlated in two signals under study. We show how the coefficient ρq works in practical
situations by applying it to stochastic time series representing processes with long memory: autoregressive and
multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex
physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in
time-series analysis. In particular, we present an example of such application to highly complex empirical data
from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms
of the q-dependent counterpart of the correlation matrices and then to the network representation.
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I. INTRODUCTION

Standard correlation measures like the Pearson correlation
coefficient and the cross-correlation function require stationary
data in order to provide reliable results, which is a requirement
that is hard to fulfill in many real-world situations (e.g.,
financial and physiological data [1–10]). (By stationarity we
mean stability of the probability distribution functions of the
data over time; from this perspective nonstationarity can be
produced both by the long-range autocorrelations and by
the PDFs heavy tails that make any signal length effectively
insufficient.) This problem can to some degree be resolved by
replacing original signals with the corresponding detrended
fluctuations, i.e., by considering the power-law correlations
between the polynomially detrended walks, which are much
more stationary than the orginal data. This approach was
introduced in a context of autocorrelations in Ref. [11] as
detrended fluctuation analysis (DFA) and immediately gained
popularity among the researchers working with empirical data
across many disciplines. The modification of DFA oriented
towards detection of the power-law cross-correlations is known
as detrended cross-correlation analysis (DCCA) [12] and it can
be used in the analysis of bivariate and multivariate empirical
data [13–16].

Among the reasons behind the popularity of DFA was
its ability to detect fractal character of signals, which was
subsequently extended to the multifractal case (the multifractal
detrended fluctuation analysis (MFDFA) method [17]), which
also proved very useful if applied to empirical data [18–36],
especially due to its superior reliability if compared to other
methods [37]. DCCA was also generalized in order to be
applicable to signals with multifractal cross-correlations and
the resulting multifractal detrended cross-correlation analysis

(MFDCCA or MFDXA) algorithm [38] also have attracted
some attention [39–42]. However, this generalization raises
controversy as at some stage it requires neglecting the
detrended covariance sign to avoid obtaining complex values,
which leads to inevitable loss of information about analyzed
signals and, consequently, to incorrect results [43]. This
drawback has recently been removed with a new sign-sensitive
method of the multifractal detrended cross-correlation analysis
with an acronym MFCCA [43,44] that is more consistent than
MFDCCA as a multifractal generalization of DCCA (for more
details see Sec. II).

Although the DFA and DCCA methods were designed to
deal with nonstationary signals, they are related to each other
exactly in the same way as the variance and the covariance
analyses are related to each other in the case of stationary
data. Therefore, by exploiting both these methods, an analog
of the Pearson coefficient was introduced. It is known as
the detrended cross-correlation coefficient ρDCCA [45] and
serves as a tool for quantifying strength of correlations in the
fluctuations of detrended signals at a given time scale [45–48].
The main advantage of ρDCCA over the Pearson coefficient is its
ability to quantify correlations in nonstationary signals [49].
What is important is that the signals under study may either
be fractal or nonfractal since ρDCCA is defined for a single
scale. It is also worth mentioning that there is a counterpart
of ρDCCA constructed for the detrended moving average
cross-correlation analysis (DMCA) [50] but considering it here
exceeds the objectives of this work.

By definition, the detrended cross-correlation coefficient
is insensitive to higher-order statistics of fluctuations, i.e.,
other than the simple covariance. This means that values of
ρDCCA cannot indicate whether the detected cross-correlations
between two signals originate from the fluctuations of all
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amplitudes equally likely or rather some specific range of
amplitudes gives a dominant contribution, while the remaining
fluctuations can be much less correlated or even completely
uncorrelated. One might easily imagine situations, in which
such insensitivity can be considered a serious disadvantage of
the method. For instance, let each nonstationary signal in a
pair be a mixture of two processes, one of which is correlated
in both signals and has a relatively small amplitude, while
the other is unique to each signal and has a relatively high
amplitude. The coefficient ρDCCA would probably indicate that
the signals are somehow cross-correlated but it would not bring
any information allowing one to identify the amplitude of the
cross-correlated components.

In order to avoid such insensitivity, here we propose a
generalization of the detrended cross-correlation coefficient
in such a way that it becomes sensitive to correlations in
the fluctuations of a selected amplitude range. The easiest
way to do this is by introducing a q-dependent detrended
cross-correlation coefficient ρq (q ∈ R) based on the so-
called q-dependent fluctuation functions Fq from MFDFA
and MFCCA [17,43]. The idea is based on the fact that from
a number of different values contibuting to a sum, one can
select specific values (e.g., the large, medium, or small ones)
by rising all the values in the sum to some power (high positive,
small positive, or negative, respectively). Like ρDCCA, the
coefficient ρq is not related to fractal properties of signals
so it can be used to quantify cross-correlations between any
signals.

As by its definition ρq is intended to be a tool for
analyzing nonstationary signals, we expect that it can find
broad applications in the studies of empirical data from natural
complex systems: physical, biological, social, financial, etc. In
the remaining part of the paper, we present the formal definition
of ρq (Sec. II), show examples of how it works if applied to the
computer-generated signals representing different stochastic
processes (Sec. III) and to empirical data from the financial
markets (Sec. IV), and, finally, present the main conclusions
(Sec. V).

II. THE q-DEPENDENT DETRENDED
CROSS-CORRELATION COEFFICIENT

A fundamental quantity for the detrended fluctuation
analysis as well as for any type of its derivative methods is
the variance (covariance) f 2

ZZ (f 2
XY ) of the detrended signals

X,Y (Z stands for either X or Y ). Let us consider a pair
of time series x(i)i=1,...,T and y(i)i=1,...,T divided into 2Ms

separate boxes of length s (i.e., Ms boxes starting from the
opposite ends). A detrending procedure consists of calculating
in each box ν (ν = 0, . . . ,2Ms − 1) the residual signals X,Y

equal to the difference between the integrated signals and the
mth-order polynomials P (m) fitted to these signals:

Xν(s,i) =
i∑

j=1

x(νs + j ) − P
(m)
X,s,ν(j ), (1)

Yν(s,i) =
i∑

j=1

y(νs + j ) − P
(m)
Y,s,ν(j ). (2)

In the present work we use m = 2. The covariance and the
variances of X and Y in a box ν are defined as:

f 2
XY (s,ν) = 1

s

s∑
i=1

Xν(s,i)Yν(s,i), (3)

f 2
ZZ(s,ν) = 1

s

s∑
i=1

Z2
ν (s,i), (4)

where Z again means either X or Y . These quantities can be
used to define a family of the so-called fluctuation functions
of order q [17,43]:

F
q

XY (s) = 1

2Ms

2Ms−1∑
ν=0

sgn
[
f 2

XY (s,ν)
]∣∣f 2

XY (s,ν)
∣∣q/2

, (5)

F
q

ZZ(s) = 1

2Ms

2Ms−1∑
ν=0

[
f 2

ZZ(s,ν)
]q/2

. (6)

The above definition of F
q

XY (s) guarantees that (i) no imaginary
part occurs in F

q

XY (s) (only the absolute values are raised to a
real power q/2) and (ii) by preserving signs of the covariances
f 2

XY (s,ν), no information is lost while taking the absolute
values. For q = 2 the above definitions are reduced to a simpler
form:

F 2
XY (s) = 1

2Ms

2Ms−1∑
ν=0

f 2
XY (s,ν), (7)

F 2
ZZ(s) = 1

2Ms

2Ms−1∑
ν=0

f 2
ZZ(s,ν), (8)

that may be interpreted as an average covariance and average
variances for the boxes of size s. In the standard application
of the fluctuation functions in MFDFA and MFCCA, one
observes the dependence of F

q

XY and F
q

ZZ on the scale s and

looks for a convincing scaling behavior: [Fq

XY (s)]1/q ∼ sγ (q)

and/or [Fq

ZZ(s)]1/q ∼ sδ(q), which indicates a fractal structure
of the signals [monofractal for the constant functions: γ (q) =
c and δ(q) = c, multifractal otherwise].

The structure of Eqs. (3) and (4), which resembles the
ordinary covariance and variance, respectively, suggested one
to introduce the detrended cross-correlation coefficient [45]:

ρDCCA(s) = F 2
XY (s)√

F 2
XX(s)F 2

YY (s)
. (9)

Due to its normalized range of values [51]: −1 � ρDCCA � 1
with ρDCCA = 0 in the case of uncorrelated signals, ρDCCA = 1
in the case of a perfect cross-correlation, and ρDCCA = −1 in
the case of a perfect anticorrelation, the coefficient ρDCCA(s)
can be used to quantify the strength of cross-correlations
between the detrended signals X,Y on different scales s and
to compare this strength among different signal pairs [45].

The structure of Eqs. (7) and (8) indicates that all the
boxes contribute to the fluctuation functions and the correlation
coefficient with the same weight, irrespective of how large (or
how small) f 2

XY (s,ν) and f 2
ZZ(s,ν) are in a particular box ν.

This means that, by using solely the coefficient ρDCCA, it is
impossible to observe how the boxes that are characterized by
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the fluctuations of a specific amplitude range contribute to the
overall cross-correlations. The following definition of a new
q-dependent detrended cross-correlation (qDCCA) coefficient
ρq(s) allows one to overcome this constraint:

ρq(s) = F
q

XY (s)√
F

q

XX(s)Fq

YY (s)
, (10)

as the real exponent q plays the role of a respective filter here.
For q = 2 we restore the definition (9) of ρDCCA, for q > 2 the
boxes with high values of f 2

XY (s,ν) and f 2
ZZ(s,ν) contribute to

ρq(s) the most, while for q < 2 the boxes with relatively small
values do it the most significantly. The more deviated from the
value q = 2 the exponent q is, the more extreme fluctuations
in the corresponding boxes contribute to the coefficient ρq(s).
Note that no form of the s dependence in Eqs. (5) and (6) has
been assumed, so the signals under study do not need to be
fractal at all.

For q � 0, values of the ρq coefficient are bound within the
same range as ρDCCA, i.e.,

−1 � ρq � 1. (11)

In order to show this, we fix the scale s and prove the following
Cauchy-Schwarz-like inequality:[

F
q

XY (s)
]2 � F

q

XX(s)Fq

YY (s), q � 0. (12)

First, observe that from the relation: a2α + b2α � 2aαbα

(a,b � 0, α > 0) it follows for any two boxes ν,μ that:

2
[
f 2

XX(s,ν)f 2
YY (s,ν)f 2

XX(s,μ)f 2
YY (s,μ)

]α

�
[
f 2

XX(s,ν)f 2
YY (s,μ)

]2α + [
f 2

XX(s,μ)f 2
YY (s,ν)

]2α
, (13)

since f 2
ZZ(s,ν) � 0. Now, to simplify the notation, we tem-

porarily neglect the signum function in Eq. (5) and assume
that all the covariances f 2

XY (s,ν) are positive. We then start
from the left-hand side of Eq. (12):

[
F

q

XY (s)
]2 = 1

4M2
s

{
2Ms−1∑
ν=0

[
f 2

XY (s,ν)
]q/2

}2

= 1

4M2
s

2Ms−1∑
ν=0

[
f 2

XY (s,ν)
]q

+ 1

4M2
s

2Ms−1∑
ν=0

2Ms−1∑
μ=ν+1

2
[
f 2

XY (s,ν)f 2
XY (s,μ)

]q/2

� 1

4M2
s

2Ms−1∑
ν=0

[
f 2

XX(s,ν)f 2
YY (s,ν)

]q/2

+ 1

4M2
s

2Ms−1∑
ν=0

2Ms−1∑
μ=ν+1

{[
f 2

XX(s,ν)f 2
YY (s,μ)

]q/2

+ [
f 2

XX(s,μ)f 2
YY (s,ν)

]q/2}
= 1

4M2
s

2Ms−1∑
ν=0

2Ms−1∑
μ=0

[
f 2

XX(s,ν)f 2
YY (s,μ)

]q/2

= F
q

XX(s)Fq

YY (s),

where we exploited the Cauchy-Schwarz inequality:
[f 2

XY (s,ν)]
2 � f 2

XX(s,ν)f 2
YY (s,ν), the implication: |a| �

|b| ⇒ |a|q � |b|q for q � 0, and Eq. (13).
In general, the covariances f 2

XY (s,ν) can be negative and
we must take this fact into consideration. Fortunately, the
following relation always holds:

−
√

F
q

XX(s)Fq

YY (s) � − 1

2Ms

2Ms−1∑
ν=0

∣∣f 2
XY (s,ν)

∣∣q/2

� 1

2Ms

2Ms−1∑
ν=0

sgn
[
f 2

XY (s,ν)
]∣∣f 2

XY (s,ν)
∣∣q/2

� 1

2Ms

2Ms−1∑
ν=0

∣∣f 2
XY (s,ν)

∣∣q/2 �
√

F
q

XX(s)Fq

YY (s),

which ends the proof of the inequalities (12) and (11).
For q < 0 the situation looks different, because the impli-

cation |a| � |b| ⇒ |a|q � |b|q is false in this case. This means
that the denominator in Eq. (10) may be arbitrarily small as
compared to the numerator modulus and ρq (s) can then assume
either large positive or large negative values: |ρq(s)| � 1 for
some scales s. This can be evident for uncorrelated or partially
correlated signals, while it is unlike for perfectly correlated
ones. Therefore, the interpretation of the values of ρq(s) for
q < 0 is a delicate issue that will be discussed in more detail
in Sec. III.

III. COMPUTER-GENERATED SIGNALS

In this section we present examples of the application
of the new coefficient ρq to the computer-generated time
series representing different stochastic processes, in which the
cross-correlations can fully be controlled, and then we discuss
the performance of the coefficient in those cases. Since ρq

is oriented towards analysis of nonstationary data, we prefer
to employ stochastic models that produce signals with long
memory and/or heavy-tailed probability distribution functions.
Long memory, which produces trends, and heavy tails of the
fluctuations’ PDFs, which can produce apparent trends, are
the principal sources of nonstationarity in data from natural
complex systems, therefore their presence in the model signals
is highly desired.

We focus on two models: the autoregressive fractionally
integrated moving average (ARFIMA) and the Markov-
switching multifractal (MSM). The former produces fractal
signals with long memory and, despite its origin in financial
economics [52], it is broadly used to model anomalous diffu-
sion in various fields of science, like atmosphere physics and
geophysics [53,54], astrophysics [55], biology and physiology
[56,57], and many others. The latter can be viewed as a version
of a random walk in random time [58]. It is based on the
stochastic multiplicative cascades and creates signals with long
memory, heavy-tailed PDFs, and with arbitrary length (unlike
more typical cascading processes whose length is limited to
the consecutive powers of the number of branches) [59]. MSM
can be exploited to model various cascadelike phenomena, e.g.,
turbulence [60] and financial volatility [59,61], and to predict
future evolution of the corresponding observables.
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FIG. 1. [(a) and (b)] The q-dependent fluctuation functions
[F q

XX(s)]1/q and [F q

YY (s)]1/q for two ARFIMA time series sharing
the same Gaussian noise term. A family of the fluctuation functions
for different values of q, q ∈ 〈−4,4〉 are shown for each time
series (the topmost one represents q = 4). The linear dependence of
[F q

XX(s)]1/q and [F q

YY (s)]1/q on the double logarithmic plots indicates
a fractal character of the analyzed signals. (c) The q-dependent
cross-fluctuation function [F q

XY (s)]1/q for the same pair of the time
series indicating fractal cross-correlations between them. (d) The q-
dependent detrended cross-correlation coefficient ρq (s) for different
values of q. Note the almost perfect cross-correlation for any s

and q.

A. Perfectly cross-correlated signals

First, we study behavior of ρq(s) for a pair of maximally
correlated signals. In order to prepare such signals, we use the
ARFIMA process [52] defined by the following formulas:

x(i) =
∞∑

j=1

aj (dx)x(i − j ) + ε(i)

y(i) =
∞∑

j=1

aj (dy)y(i − j ) + ε(i), (14)

where the parameters dz (z ≡ x,y), fulfilling the condition
−1/2 < dz < 1/2, characterize the temporal range of the
linear autocorrelations in x(i),y(i) and are strictly related to
the Hurst exponents: H = 1/2 + dz. The quantity aj (dz) is
called weight and defined by:

aj (dz) = �(j − dz)

�(−dz)�(1 + j )
. (15)

The time series x(i) and y(i) are correlated due to a
common noise term ε(i) being an independent and identically
distributed Gaussian random variable. The ARFIMA signals
are (mono)fractal, so their fluctuation functions [Fq

ZZ(s)]1/q

form the families of power laws presented in the upper panels
of Fig. 1. The fractally cross-correlated nature of x(i) and y(i)
can be seen in Fig. 1(c) as a family of parallel power-law
functions [Fq

XY (s)]1/q . Careful inspection of the three panels
[Figures 1(a)–1(c)] suggests that the fluctuation amplitudes
of the signals under study are maximally cross-correlated, so
we may expect that a properly defined qDCCA coefficient
should reflect this fact with its value being close to unity.
Indeed, in Fig. 1(d), ρq(s) 
 1 irrespective of s and q. This
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FIG. 2. (Color online) The q-dependent detrended cross-
correlation coefficient ρq as a function of the temporal scale s for
sample values of q < 0: q = −4 (left) and q = −2 (right). (Top)
Scale dependence of the originally defined ρq (s) for which values
outside the standard interval 〈−1,1〉 are allowed {the modulus
|ρq (s)| is taken in order to show both the positive (black circles) and
the negative [red (gray) squares] values on the logarithmic axis}.
Dashed lines indicate the |ρq | = 1 level. (Bottom) The modified
coefficient ρ∗

q (s) defined by Eq. (16) with its values being in the
interval 〈−1,1〉. Those values of ρq (s) that were inverted to obtain
ρ∗

q (s) are denoted by circles.

invariance can also be a consequence of the stationarity of
the detrended ARFIMA processes. For signals with heavy
tails of the PDFs (which preserve their nonstationary character
after detrending), we would expect more sizable deviations of
ρq(s) from unity even if such signals were on average strongly
cross-correlated. This is because large fluctuations that may
occur in different signals at different moments can have strong
impact on covariance of the signals in the related boxes (up
to the considerably large widths s), which can suppress it in
these particular boxes and thus influence F

q

XY (s). The higher
|q| is, the stronger effect of this type may happen.

B. Uncorrelated signals

In order to test the qDCCA coefficient ρq(s) in the absence
of cross-correlations, we take the same signals as before:
x(i) and y(i) and destroy their temporal structure by random
shuffling. However, before we show the complete results,
we have to discuss the problem of |ρq(s)| > 1 for q < 0.
Figures 2(a) and 2(b) show |ρq(s)| for q = −4 and q = −2,
respectively. As one can see, its values can span a number of
orders of magnitude whereby the more negative q is, the larger
this range can be. The unbound character of ρq(s) makes any
inference on the strength of the cross-correlations virtually
impossible. As it has already been mentioned in Sec. II, the
high values of |ρq(s)| are produced if the denominator in
Eq. (10) is much smaller than the numerator. This situation
can predominantly happen if the signals under study are not
cross-correlated or are cross-correlated weakly. This suggests
that a value of |ρq (s)| that deviates much from 1 in any direction
may be viewed as an indicator of a lack of cross-correlations.
Taking this into consideration, one can redefine the qDCCA
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FIG. 3. (Color online) The coefficient ρq (s) calculated for a pair
of the randomized ARFIMA time series. In each panel, ρq (s) for
different q is displayed. Statistical significance of the results can be
assessed by comparing these results with Fig. 4. The inverted values
of ρq (s) for q < 0 are denoted by circles.

coefficient in the following way:

ρ∗
q (s) =

{
ρq(s) if |ρq(s)| � 1
[ρq(s)]−1 if |ρq(s)| > 1.

(16)

Now the ρ∗
q (s) coefficient remains always within the interval

〈−1,1〉 even if q < 0. Two typical cases can be distinguished
in this situation: (i) Figure 2(c) exhibits that for q = −4 the
coefficient ρ∗

q (s) indicates the expected almost-zero level of
cross-correlations; (ii) for q = −2 [Fig. 2(d)] ρ∗

q (s) is clearly
nonzero, but it is highly unstable with respect to s, bouncing
between positive and negative values. Both of these cases, if
found in an analysis, may thus be considered the indicators of
uncorrelated signals. For simplicity, from now on we will omit
the star in the notation of the qDCCA coefficient:

ρq(s) ≡ ρ∗
q (s). (17)

Complete results of ρq(s) for the randomized ARFIMA
signals are presented in Fig. 3. In the light of the above
discussion, we are justified to conclude that the analyzed
signals are not cross-correlated at any scale s and at any q < 0.
Since for q > 0 and s > 104 we observe some deflections of
ρq(s) from zero, we have to perform a test that can resolve
whether these deflections are statistically significant. In order
to do this, we calculate ρq(s) for N = 10 000 pairs of the
randomized ARFIMA signals and estimate the dispersion of
ρq(s). The related standard deviations σρ(q,s) are shown in
Fig. 4. A direct comparison between Fig. 3 and Fig. 4 leads
us to a conclusion that the deflections from zero observed for
q > 0 in Fig. 3 cannot be considered statistically significant.
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FIG. 4. (Color online) Mean 〈ρq (s)〉 (black solid lines) and stan-
dard deviation σρ(q,s) [blue (gray) lines with error bars] of the
coefficient ρq (s) calculated for 10 000 pairs of the shuffled ARFIMA
time series. In each panel, the result for different q is displayed.

Although we show here the results for the ARFIMA processes
only, the qualitatively similar results can be obtained for
time series representing other examples of the uncorrelated
statistical processes, which supports our claim that ρq(s)
correctly estimates the level of cross-correlations between
uncorrelated signals.

This is a good time to stress that a necessary condition for
obtaining the correct results (i.e., the lack of cross-correlations)
shown in Fig. 3 is a proper definition of the q-dependent fluc-
tuation function F

q

XY (s). Such a definition requires preserving
the signs of the covariances f 2

XY (s,ν) exactly as was done in
Eq. (5). Unfortunately, it often happens in literature that those
signs are neglected and only the moduli of the covariances are
considered (e.g., Ref. [40]). What consequences this approach
can have is illustrated in Fig. 5. We take the same data as
in Fig. 3 and calculate a modified coefficient ρ ′

q that uses
the no-sign definition of F

q

XY (s). As one can see, for q � −1
this coefficient falsely indicates the presence of statistically
significant positive cross-correlations across all the scales,
even though we know that such correlations cannot exist
between the independently randomized signals.

C. Partially cross-correlated signals

The above examples of the almost perfectly correlated
and the almost perfectly uncorrelated signals form the two
extremes that are the least interesting trivial cases between
which one can find a spectrum of much more interesting cases
where the signals may reveal partial cross-correlations. For
example, the correlations that are restricted to the signals’
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FIG. 5. (Color online) The incorrectly defined coefficient ρ ′
q (s)

[using the no-sign definition of F
q

XY (s) in Eq. (5)] calculated for
the same pair of the randomized ARFIMA time series that was
already used in Fig. 3. Observe that for q � −1 the coefficient gives a
false indication of positive cross-correlations. The apparent statistical
significance of these results can be seen by comparing them with
Fig. 4.

specific components or that are transient in time. We shall
discuss here both these situations.

First, we test sensitivity of the qDCCA approach if the
cross-correlations are transient. In order to do this, we take
two cross-correlated ARFIMA time series [with ρq(s) 
 1 as
in Sec. IIIA] and randomize a part of the data points in one of
these time series. After this operation, the modified time series
consists of a fraction φ of the original data points in its center
and a fraction 1 − φ of the shuffled points. Sample results of
these calculations are shown in Fig. 6 for different choices of
φ. It is clear that in this particular case the method gives
a statistically significant indication of the cross-correlated
character of fluctuations for as low as φ = 2% correlated
data points in both signals. This indication is restricted to the
small and medium temporal scales (s � 103) only, however. In
order to obtain similar significance for the larger scales up to
s = 105, one has to increase the correlated fraction to φ > 0.1,
so s < φT , where T is the length of the time series.

Second, we assume that each time series under study con-
sists of different components that have different amplitudes.
Only some of these components are cross-correlated between
the time series, while the other ones remain uncorrelated.
For instance, a pair of time series may be cross-correlated
only via large or via medium fluctuations and uncorrelated in
small ones. We therefore expect that the qDCCA analysis will
allow us (i) to identify the existence of the cross-correlations
and (ii) to show what fluctuation amplitudes carry these
cross-correlations.
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FIG. 6. (Color online) Sensitivity test for the ρq (s) coefficient
calculated based on the ARFIMA time series (q > 0). An original
time series 1 is compared with a modified time series 2, in which
only a fraction φ of the data points is preserved, while the rest is
randomized (black lines). The results for the null hypothesis of the
uncorrelated time series are also shown for reference as the +/−
standard deviation of 100 independent realizations of the shuffled
surrogates [magenta (gray) lines symmetric with respect to ρq = 0].

The ARFIMA processes are not ideal for being a subject
of the present analysis since their fluctuations are essentially
Gaussian distributed and the range of their amplitudes is rather
small. The method works fine also in this case, but here a much
more instructive example can be the nonstationary processes
with heavy-tailed fluctuations, where the amplitudes of the
large and the small fluctuations differ considerably. The heavy-
tailed fluctuations often appear in empirical data recorded from
both natural and social systems, so our choice is realistic and
it does not limit the applicability domain of the method.

Let us consider time series generated according to
the Markov-switching multifractal model developed in
Refs. [59,62]. This is a multiplicative, hierarchical model
that is able to reproduce the multifractal characteristics of
some types of empirical data (for example, the financial
volatility). From the point of view of the present analysis, it is
important that it produces the (unsigned) signals with heavy-
tailed probability distribution functions, whose fluctuations
can exhibit long-range, multiscale autocorrelations. According
to the MSM model, an observable x(i) is given by:

x(i) = σ (i)u(i), (18)

where u(i) is a Gaussian random variable and i plays a role
of discrete time. σ (i) is called the instantaneous volatility and
defined as a product of a constant factor σ and k multipliers
Mj (i) drawn from the binary or the lognormal distribution:

σ 2(i) = σ 2
k∏

j=1

Mj (i). (19)

In the binomial case, Mj (i) = [m,2 − m], 1 � m � 2, while
in the lognormal case: Mj (i) = LN (−λ,2λ) [59]. Each mul-
tiplier Mj (i) changes its value at time i with probability:

γj = 1 − (1 − γk)b
j−k

, j = 1, . . . ,k, (20)
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FIG. 7. (Color online) The qDCCA coefficient ρq (s) calculated
for a pair of time series from the log-normal Markov-switching
multifractal (MSM) model with k = 10, b = 2, λ = 1.1, and α =
0.01 (see text for the description of these parameters). Four selected
values of q are shown denoted by different lines. q = 2 corresponds
to the standard coefficient ρDCCA. (a) The original time series. (b) Both
time series are filtered (see text) in order to remove the correlations
among the small fluctuations [x(i) < 0.01]. (c) The randomized data
(single realization of the shuffled surrogates) without any temporal
correlations. (d) Both time series are filtered in order to remove the
correlations among the medium and large fluctuations [x(i) � 0.01].
For clarity of the pictures, the inverted values of ρq (s) are not
distinguished.

where 0 � γk � 1 and b = 2,3,4, . . . . Here we choose the
cascades with k = 10 levels and b = 2 branches. We also
omit the Gaussian-distributed factor u(i) in Eq. (18) as being
unnecessary from the point of view of our analysis, because
the complexity of x(i) is related to the instantaneous volatility
σ (i).

As a consequence of the stochastic character of the multi-
plier values, two independently produced signals would not be
cross-correlated. A pair of the multiscale cross-correlated time
series can nevertheless be obtained from an MSM time series
by copying the set of its multipliers M

(1)
j (i) and adding a small

amount of noise to each one: M
(2)
j (i) = M

(1)
j (i) + |αε(i)|,

where ε(i) is an independent and identically distributed
Gaussian random variable and α 
 1.

Our objective is to show that the qDCCA coefficient
ρq(s) can provide us with more information on the cross-
correlation structure of these time series than can the ordinary
coefficient ρDCCA(s). We generate two log-normal MSM
time series of length T = 106 with λ = 1.1. The parameter
α = 0.01 guarantees that their detrended fluctuations are
cross-correlated. Indeed, Fig. 7(a) displays that for q ∈ 〈−4,4〉
the coefficients ρq(s) detect strong cross-correlations (for
q > 0 even the maximum ones over all the scales). What
then happens if we apply a filter that randomizes all the data
points with small amplitude x(i) < 0.01? Action of this filter is
equivalent to removing the cross-correlations among the small
fluctuations and preserving the ones among the medium and
large fluctuations. Figure 7(b) presents the results obtained
for such filtered signals. One can see that while the cross-

correlations at the longer scales (roughly, for s > 103) are still
detected by ρq(s) for any q, for q < 1 the qDCCA coefficients
indicate a significant decrease of the cross-correlations at the
shorter scales (s < 103). This decrease is more explicit for
q < 0 and for q = −4 the corresponding coefficient indicates
that the signals are completely uncorrelated. Since such small
values of q are related to very small fluctuations, this result
is exactly what one might expect for the filtered signals. On
the other hand, for q � 2 the filtering does not introduce any
change in ρq(s) and this is also perfectly compliant with
the a priori expectation that for the large fluctuations the
cross-correlations should survive. Now let us look at the results
for q = 2 in Figs. 7(a) and 7(b): A change is hardly seen. Thus,
in this case the ρDCCA coefficient proves totally insensitive to
a significant change in the correlation structure of the data.

Another example of such an evident lack of sensitivity
of ρDCCA can be seen in the bottom panels of Fig. 7. If the
same MSM time series as above are completely shuffled,
all their temporal correlations are destroyed. Figure 7(c)
shows that the coefficients ρq(s) do not detect any cross-
correlations accordingly. The results for the large scales are
within statistical error even if they are far from zero; among
them the coefficient for q = 2 is almost flat for the majority of
scales except the largest ones. These results can be compared
with the results obtained for the filtered signals [Fig. 7(d)],
in which only the correlations among the small fluctuations
[x(i) < 0.01] are preserved and all the other correlations are
removed via data shuffling. Now the coefficients ρq(s) indicate
the presence of cross-correlations for the medium scales (for
q = 0.25, q = −1, and q = −4) and for the small scales (for
q = 0.25 and q = −1). Such values of q correspond to the
small fluctuations. In contrast, for q = 2 the related coefficient
does not show anything significant and behaves roughly similar
to the no-correlation case of Fig. 7(c).

The two further examples illustrating usefulness of the
qDCCA coefficient are obtained from the binary MSM model
producing a pair of the k = 20-level binary multiplicative
cascades with the j -level multipliers Mj (i) drawn from the set
[1.2,0.8] and the set [1.25,0.75], respectively. The resulting
time series are of length T = 1,048,576 and their values
belong to the interval (0.01,100). In order to prepare the
top panels of Figs. 8(a) and 8(b), we modify both time
series in such a way that we leave the original values if
they do not exceed a threshold of x = 1.25 and randomize
the values above this threshold. Then we create copies of
the so-modified time series and once again randomize their
values if they are below x = 0.15. By doing this, we get
the two pairs of signals: (i) a pair of signals without the
largest fluctuations and (ii) a pair of signals without the
largest and the smallest fluctuations. Now we compare the
coefficients ρq(s) calculated for these pairs. First, we look at
ρ2(s) (black solid lines). In both top panels, we see that ρ2(s)
deviates significantly from unity for the scales s < 103, which
suggests that the cross-correlations are not uniform across
the fluctuation amplitudes. However, based solely on q = 2
we cannot state decisively which fluctuations correspond to
this decreased correlations. As regards a comparison between
Figs. 8(a) and 8(b), there is some visible difference in ρ2(s)
for the middle scales (102 � s � 104), but, again, one cannot
decide what is the origin of this difference.
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FIG. 8. (Color online) The qDCCA coefficient ρq (s) calculated
for a pair of time series from the binary Markov-switching multifractal
(MSM) model with k = 20 and Mj (i) = [1.25,0.75] (cascade no. 1)
or Mj (i) = [1.2,0.8] (cascade no. 2). Different values of q are denoted
by different lines. The case of q = 2 corresponds to the standard
DCCA coefficient ρDCCA. Top: ρq (s) for (a) a pair of time series with
randomized fluctuations of large amplitudes x > 1.25 and for (b) a
pair of time series with randomized fluctuations of large amplitudes
x > 1.25 and small amplitudes x < 0.15. Bottom: ρq (s) for (c) a pair
of time series with randomized fluctuations of medium amplitudes
0.25 < x < 0.75 and for (d) a pair of time series with randomized
fluctuations of small and medium amplitudes x < 0.75. For clarity of
the pictures, the inverted values of ρq (s) are not distinguished.

Let us now include q �= 2. For q = 4 the values of ρq(s) in
both panels are even smaller than their counterparts for q = 2
and this is especially strong for the smallest scales s < 102.
The opposite relation is seen for q = 0.25, where ρ0.25(s) is
much larger than ρ2(s). This means that by increasing q we
obtain a decrease of ρq(s), which can correctly be interpreted
as a manifestation of uncorrelated behavior of the largest
fluctuations in both pairs of the signals. If we then compare
the coefficients for q = 0.25 and q = −1, then we realize that
they are systematically larger in Fig. 8(a) than in Fig. 8(b).
Even for q = −2 the instability of ρ−2(s) suggest a lack of
cross-correlations. All this means that the small fluctuations
are weaker cross-correlated in (b) than in (a), exactly as it is
expected from the signal construction in both cases.

Next we once more use the time series generated by
the binary MSM model. We randomize the fluctuations in
the middle range of the amplitudes: 0.25 < x < 0.75, which
comprises the most frequent fluctuations in both time series,
so only the small and the large fluctuations remain cross-
correlated. The results for this pair of signals are shown in
Fig. 8(c). A copy of each time series is created and now the
small fluctuations are a subject of additional randomization.
Thus, we obtain the second pair of time series with only the
large fluctuations that are still cross-correlated [Fig. 8(d)]. The
difference between these pairs is the existence [Fig. 8(c)]
and the lack [Fig. 8(d)] of the cross-correlations among the
fluctuations with small amplitude. On the one hand, for q = 2
and q = 4 we do not observe any difference in ρq(s) between
Figs. 8(c) and 8(d) as they are close to unity in both panels. On
the other hand, the values of ρq(s) for q = −1 and q = −4 are

substantially smaller for small s in Fig. 8(d) than in Fig. 8(c).
Taking these results altogether, one can correctly conclude that
both signal pairs are cross-correlated in the large fluctuations
and uncorrelated in the small ones. It has to be stressed that
drawing this conclusion would be impossible if we restricted
our analysis to the q = 2 case of ρDCCA. (The uncorrelated
character of the fluctuations of the medium amplitudes can
be revealed in other comparative analyses, but here in this
example such a range of amplitudes is beyond our interest.)

IV. EMPIRICAL DATA

Financial data are known to be cross-correlated across
different temporal scales [12,45,63], so it can serve as a
suitable subject to show practical application of the qDCCA
coefficient. We choose data from two large financial markets:
the American stock market represented by the stocks traded
at New York Stock Exchange (NYSE) or NASDAQ and
the foreign currency exchange market (Forex), which is a
global market. In the former case, our data set comprises
high-frequency recordings of the stock prices corresponding
to the 100 largest American companies over the years 1998
to 1999. For each considered stock i, the corresponding time
series represents the logarithmic price increments (returns)
ri(t,�t) = log Pi(t + �t) − log Pi(t) sampled at a fixed time
interval �t = 5 min. The length of such time series is T =
40 638 data points. The sample results for two pairs of stocks,
[Fig. 9 (top)] Microsoft-Intel and [Fig. 9 (bottom)] Microsoft-
3M are displayed and tested against the null hypothesis that
the cross-correlations are random (standard deviation of 100
independent realizations of the shuffled surrogates).

For q � −2 corresponding to small fluctuations, there
is no statistically significant indication of cross-correlations
between any pair of stocks. Genuine cross-correlations are,
however, visible starting from q = −1 up to high positive
qs. One can see here that even if a vast majority of the
ρq(s) values are originally larger than 1 (see the red dots
representing the inverted values of the coefficient for q = −1),
the cross-correlations may be considered genuine as long as
the function ρq(s) is approximately stable (i.e., without strong
fluctuations) over some range of the scales.

It is interesting to notice the weakening of the cross-
correlations if one goes from small positive qs towards larger
ones. It may be interpreted as a manifestation of the fact that
the most cross-correlated fluctuations are those of the medium
amplitudes, while the largest fluctuations are less correlated
among the stocks. One can also infer that in both examples, the
coefficients ρq(s) are larger for the small scales and smaller for
the large scales. However, it can be the opposite for a different
choice of the stocks (not shown) so there is no regularity here.
By looking at both parts of Fig. 9, one can see that there is an
important difference between them: the correlations are much
stronger [larger values of ρq(s)] for the stocks representing
mutually related industrial sectors [Microsoft-Intel, Fig. 9
(top)], while they are weaker for the stocks from unrelated
sectors [Microsoft-3M Fig. 9 (bottom)].

That this is a systematic effect one can learn from Fig. 10,
where three groups of the stock pairs are considered, repre-
senting different levels of the industrial similarity between
companies: (i) the stocks corresponding to different industrial
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FIG. 9. (Color online) The qDCCA coefficient ρq (s) calculated
for two pairs of time series representing stock price logarithmic
returns sampled with �t = 5 min frequency. Top: Two stocks from
the same industrial sector: Microsoft vs Intel. Bottom: Two stocks
from different industrial sectors: Microsoft vs 3M. Each panel for
both pairs shows ρq (s) calculated for different value of q (heavy
black line) together with the mean 〈ρq (s)〉 and the standard deviation
σρ(q,s) obtained from 100 independent realizations of the shuffled
surrogate data [thin blue (gray) lines with error bars]. The inverted
values of ρq (s) for q < 0 are denoted by circles.

sectors, (ii) the stocks representing the same sector but
different subsectors, and (iii) the stocks corresponding to
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FIG. 10. (Color online) The average qDCCA coefficients 〈ρq (s)〉
calculated for the stock pairs divided into three groups: the stocks
representing different industrial sectors (solid black), the stocks
representing the same sector but different subsectors [dashed red
(gray)], and the stocks representing the same subsector [dash-dotted
green (gray)]. Dotted lines denote the zero-correlation level.

the same subsector (according to Ref. [64]). Obviously, the
similarity level increases here gradually from (i) to (iii). We
calculate ρq(s) for each pair of stocks [4950 pairs total: 4218
pairs in (i), 548 pairs in (ii), and 184 pairs in (iii)] and
then average the obtained functions over the pairs within
each group. Figure 10 confirms that the values of 〈ρq(s)〉
systematically increase if the pairs consist of the stocks with
increasing industrial similarity.

It is worth mentioning that the correlations that lead to the
nonzero values of ρq(s) are nonlinear. We infer this from a
failed test of the null hypothesis that the surrogate signals with
the same Pearson autocorrelation function can reproduce the
ρq(s) functions. Figure 11 documents the results of this test,
showing that, on average, the Fourier-phase shuffling leads
to complete destruction of the correlations to which ρq is
sensitive [compare with Fig. 9 (top)]. This is especially evident
for the positive qs, for which the standard deviation σρ(q,s)
obtained from 100 independent realizations of the surrogates
is relatively small, especially for the small and medium scales
s. For the large scales the MFDFA and MFCCA procedures
are less efficient in detrending (the related polynomial degree
m = 2 is too low in this case) and this produces the nonzero
deviations of 〈ρq(s)〉 observed in Fig. 11.

The second empirical example comes from the Forex. We
consider high-frequency (�t = 1 min) logarithmic returns
of the exchange rates among a set of major currencies
recorded over the years 2004 to 2008. Figure 12 presents
ρq(s) calculated for two such time series corresponding to
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KWAPIEŃ, OŚWIĘCIMKA, AND DROŻDŻ PHYSICAL REVIEW E 92, 052815 (2015)

−0.5

0

0.5

1

−0.5

0

0.5

1

−0.5

0

0.5

1

〈ρ
q(s

)〉
,σ

ρ( q
,s)

102 103 104

s
−1

−0.5

0

0.5

1

102 103 104

s

q = −4

q = −2

q = 1

q = 3 q = 4

q = 2

q = −1

q = −3

FIG. 11. (Color online) The average qDCCA coefficient 〈ρq (s)〉
and its standard deviation σρ(q,s) calculated for the Microsoft-Intel
pair [the same as in Fig. 9 (top)] after randomizing the Fourier
phases of the original signals, which destroyed all the statistical
dependencies except for the Pearson autocorrelation function. One
hundred independent realizations of such surrogate data are used
[thin blue (gray) lines with error bars].

the USD-EUR and GBP-USD rates. Since the euro and
the British pound are positively cross-correlated (both are
currencies used in the European Union countries) and since
the U.S. dollar appears in the numerator of the first rate and in
the denominator of the second rate, these time series reveal
negative cross-correlations of their detrended fluctuations.
They are the strongest for q = −1 and q = 1, while their
strength decreases if we move away from these values in
both directions. One can also see in the topmost panels
of Fig. 12 that even for q < −2 there is a statistically
significant indication of genuine cross-correlations for large
s (if compared with the standard deviation of the shuffled
surrogates). We infer from these results that the most strongly
cross-correlated fluctuations of the Forex data are those of
the medium amplitudes. The large-amplitude fluctuations are
relatively weaker but still substantially cross-correlated and
even the fluctuations with the small amplitudes reveal weak
cross-correlations (unlike their uncorrelated counterparts from
the stock market in Fig. 9).

V. SUMMARY

We proposed a measure of the multiscale detrended
cross-correlations between a pair of time series, called the
qDCCA coefficient. This coefficient forms actually a family
of functions ρq(s) that depend on the exponent q and the
temporal scale s. Like in the case of the multifractal, q-
dependent fluctuation functions, by varying a value of q, we
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FIG. 12. (Color online) The qDCCA coefficient ρq (s) calculated
for a pair of time series representing returns of the USD-EUR and
GBP-USD exchange rates sampled with �t = 1 min frequency. Each
panel shows ρq (s) calculated for different value of (heavy black line)
together with the mean 〈ρq (s)〉 and the standard deviation σρ(q,s)
obtained from 100 independent realizations of the shuffled surrogate
data [thin blue (gray) lines with error bars]. The inverted values of
ρq (s) for q < 0 are denoted by circles.

can amplify those fluctuations that are of specific amplitudes,
e.g., the small ones for q 
 0 or the large ones for q � 0,
and study the structure of the cross-correlations among such
fluctuations. A specific case of ρq for q = 2 corresponds to
the DCCA coefficient ρDCCA already known from literature
[45], so from this perspective the ρq coefficient may be
viewed as its generalization. For q � 0, the interpretation
of ρq is straightforward as its value is confined in the range
−1 � ρq � 1: The maximum value of ρq = 1 means that the
corresponding detrended fluctuations of both signals under
study show exactly the same correlation structure, ρq = −1
means that such fluctuations are completely anticorrelated,
and ρq = 0 indicates that they are independent of each other.
For q < 0, on the other hand, the coefficient |ρq | may assume
arbitrarily large values, which can lead to interpretation
problems, but this may happen especially if the detrended
fluctuations of the two signals are uncorrelated. Knowing that,
we may be concerned about the exact values of ρq in this case.
For practical reasons, we overcome this problem by replacing
the original values |ρq | > 1 by their inversion and thus forcing
them to fit into the normal interval 〈−1,1〉. In the case of no
correlations, a course of the function ρq(s) becomes strongly
unstable and its values wildly fluctuate. This effect can thus
serve as an optical indication of the signal independence. In
contrast, if the signal fluctuations are cross-correlated, we
obtain largely stable behavior of ρq(s) even for q < 0 and even
if the original values of |ρq(s)| slightly exceed 1. Therefore,
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in this case a lack of wild fluctuations of ρq(s) and its nonzero
value can signalize the existence of cross-correlations. All this
means that the family of the coefficients ρq is a well-defined
tool of the multiscale detrended cross-correlation analysis.
Obviously, because of the more demanding interpretation of
results for q < 0, one may restrict an analysis to the q � 0
case, but this is equivalent to ignoring the cross-correlation
structure of small fluctuations, so we do not recommend it.

In order to illustrate the performance of this new mea-
sure, we applied it to a few selected data sets representing
long-memory processes: ARFIMA and the Markov-switching
multifractal. We showed that ρq is able to identify correctly
specific cross-correlations that remain undetected by the
standard DCCA cross-correlation coefficient ρDCCA as well as
it is able to distinguish between the processes whose detrended

fluctuations are cross-correlated in different amplitude
ranges—a task that is infeasible with ρDCCA. We also carried
out the ρq analysis based on sample empirical data from
the financial markets and found that the detrended cross-
correlations among such data also depend on the detrended-
fluctuation amplitude. Straightforward and likely fruitful for
a more global correlation analysis would be to form the q-
dependent counterparts of the conventional correlation matri-
ces for larger sets of multivariate data and to study their spectral
properties as it is commonplace in the standard correlation
matrix analysis. By proceeding further in this direction, one
may then also consider constructing the q-dependent graphs.
On the other hand, a parallel approach would be to define the
q-generalized version of the DMCA coefficient ρDMCA [50]
fully analogously to our approach.
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