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Universality in survivor distributions: Characterizing the winners of competitive dynamics

J. M. Luck1,* and A. Mehta2,†
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We investigate the survivor distributions of a spatially extended model of competitive dynamics in different
geometries. The model consists of a deterministic dynamical system of individual agents at specified nodes,
which might or might not survive the predatory dynamics: all stochasticity is brought in by the initial state. Every
such initial state leads to a unique and extended pattern of survivors and nonsurvivors, which is known as an
attractor of the dynamics. We show that the number of such attractors grows exponentially with system size,
so that their exact characterization is limited to only very small systems. Given this, we construct an analytical
approach based on inhomogeneous mean-field theory to calculate survival probabilities for arbitrary networks.
This powerful (albeit approximate) approach shows how universality arises in survivor distributions via a key
concept—the dynamical fugacity. Remarkably, in the large-mass limit, the survivor probability of a node becomes
independent of network geometry and assumes a simple form which depends only on its mass and degree.
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I. INTRODUCTION

The fate of agents in any situation where death is a
possibility attracts enormous interest: here, death does not
have to be literal but could also refer to bankruptcies in a
financial context or oblivion in the context of ideas. This
panorama of situations is usually captured by agent-based
models, including predator-prey models, the best known being
the Lotka-Volterra model [1–3], or indeed, winner-takes-all
models, which embody the survival of the largest or the fittest.
The model we study here belongs to the second category; the
most massive agents grow at the cost of their smaller neighbors,
which eventually disappear. Motivated by the physics of
interacting black holes in brane-world cosmology [4,5], its
behavior in mean field and on different lattices was investigated
at length in [6], followed by simulations on more complex
geometries [7,8]. The essence of the model in its original
context [4,5] involved the competition between black holes
of different masses in the presence of a universal dissipative
“fluid.” The model also turned out to have a “rich-get-richer”
interpretation in the context of economics, where it was related
to the survival dynamics of competing traders in a marketplace
in the presence of taxation (dissipation) [9,10].

One of the most important questions to be asked of such
models concerns the distribution of survivors, i.e., those agents
who survive the predatory dynamics. In spatially extended
models, the presence of multiple interactions makes this a
difficult question to answer in full generality. The seemingly
universal distributions of survivor patterns put forward in [7]
motivated us to ask: Can one provide a theoretical framework
for the appearance of some universal features in survivor
distributions? The answer is yes, as we demonstrate in this
paper.

We first introduce a much simpler version of the model
investigated earlier [6–9], which, however, preserves features
such as the exponential multiplicity of attractors (Sec. II)
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essential to its complexity. We characterize exactly the
attractors reached by the dynamics on chains and rings of
increasing sizes (Sec. III), an exercise which illustrates how a
very intrinsic complexity makes such computations rapidly
impossible. This leads us to formulate an approximate
analytical treatment of the problem on random graphs and
networks (Sec. IV) based on inhomogeneous mean-field
theory, which yields rather accurate predictions for the survival
probability of a node, given its degree and/or its initial mass.

II. THE MODEL

The degrees of freedom of the present model consist of a
time-dependent positive mass yi(t) at each node i of a graph.
These masses are subject to the following first-order dynamics:

dyi

dt
=

⎛⎝1 − g
∑
j (i)

yj

⎞⎠yi. (1)

Each node i is symmetrically (i.e., nondirectionally) coupled
to its neighbors, which are all nodes j connected to i by a
bond; g is a positive coupling constant.

The dynamics are deterministic, so that all stochasticity
comes from the distribution of initial masses yi(0). This
model is a much simpler version of the one investigated
in [6], which was inspired by black-hole physics [4,5]. In
particular, the explicit time dependence and initial big-bang
singularity of that model are here dispensed with; only a simple
nonlinearity, quadratic in the masses, is retained. Despite these
simplifications, the present model keeps the most interesting
features of its predecessor, such as those to do with its
multiplicity of attractors.

The coupling constant g can be scaled out by means of a
linear rescaling of the masses:

zi(t) = gyi(t). (2)
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The new dynamical variables indeed obey

dzi

dt
=

⎛⎝1 −
∑
j (i)

zj

⎞⎠zi . (3)

As a matter of fact, the model has a deeper dynamical
symmetry. Setting

yi(t) = ai(τ ) et , (4)

where τ is a global proper time, so that dτ = g et dt , i.e.,

τ = g(et − 1), (5)

the dynamical equations (1) can be recast as

dai

dτ
= −

⎛⎝∑
j (i)

aj

⎞⎠ai. (6)

Remarkably, the dynamics so defined are entirely parameter-
free. Quadratic differential systems such as the above have
attracted much attention in the mathematical literature, such
as in discussions of Hilbert’s 16th problem (see, e.g., [11,12]).

Equation (6) can be formally integrated as

ai(τ ) = ai(0) exp

⎛⎝−
∫ τ

0

∑
j (i)

aj (τ ′) dτ ′

⎞⎠. (7)

The amplitudes ai(τ ) are therefore decreasing functions of τ .
For each node i, either of two things might happen:

(i) Node i survives asymptotically. This occurs when the
integral in (7) converges in the τ → ∞ limit. The amplitude
ai(τ ) reaches a nonzero limit ai(∞), so that the mass yi(t)
grows exponentially as

yi(t) ≈ ai(∞)et . (8)

(ii) Node i does not survive asymptotically. This occurs
when the integral in (7) diverges in the τ → ∞ limit. This
divergence is generically linear, so that the amplitude ai(τ )
falls off to zero exponentially fast in τ , while the mass yi(t)
falls off as a double exponential in time t .

The dynamics therefore drive the system to a nontrivial
attractor, i.e., an extended pattern of survivors and non-
survivors. This attractor depends on the whole initial mass
profile (although it is independent of the overall mass scale).
The formula (7) generically implies the following local
constraints:

(1) Each survivor is isolated (all its neighbors are nonsur-
vivors).

(2) Each nonsurvivor has at least one survivor among its
neighbors.

Conversely, every pattern obeying the above constraints is
realized as an attractor of the dynamics, for some domain of
initial data. This situation is therefore similar to that met in a
variety of statistical-mechanical models ranging from glasses
to systems with kinetic constraints. Attractors play the role
of metastable states which have been given various names,
such as valleys, pure states, quasistates, or inherent structures
[13–17]. In all these situations the number M of metastable
states grows exponentially with system size N as

M ∼ eN�, (9)

where � is the configurational entropy or complexity. This
quantity is not known exactly in general, except in the
one-dimensional case where it can be determined by means
of a transfer-matrix approach (see Appendix A). It is rel-
evant to mention the Edwards ensemble here, which is
constructed by assigning a thermodynamical significance to
the configurational entropy [18]. According to the Edwards
hypothesis, all the attractors of a given ensemble (e.g., at fixed
survivor density) are equally probable. This hypothesis holds
generically for mean-field models, while it is weakly violated
for finite-dimensional systems [17,19–23].

III. EXACT RESULTS FOR SMALL SYSTEMS

In this section we consider the model on small, one-
dimensional graphs, i.e., closed rings and open chains of N

nodes. In one dimension, (1) and (6) read

dyn

dt
= [1 − g(yn−1 + yn+1)]yn, (10)

dan

dτ
= −(an−1 + an+1)an, (11)

for n = 1, . . . ,N , with appropriate boundary conditions:
periodic (a0 = aN , aN+1 = a1) for rings and Dirichlet (a0 =
aN+1 = 0) for chains.

Equations (11) are very reminiscent of those defining the
integrable Volterra chain. The coupling term involves the sum
an−1 + an+1 in the present model, whereas it involves the
difference an−1 − an+1 in the Volterra system. The appearance
of a difference is, however, essential for integrability [24,25].
The present model is therefore not integrable, even in one
dimension.

Our goal is to characterize the attractor reached by the
dynamics on small systems of increasing sizes as a function
of the initial mass profile. This task soon becomes intractable,
except on very small systems, due to the intrinsic complexity
of the model. The numbers M

(r)
N and M

(c)
N of these attractors

on rings and chains of N nodes are given in Table II of
Appendix A. These numbers grow exponentially fast with N ,
according to (9), with � given by Eq. (A5).

Ring with N = 2. The system consists of two nodes
connected by two bonds. Both attractors consist of a single
survivor. The dynamical equations (11) read

da1

dτ
= da2

dτ
= −2a1a2. (12)

The difference D = a1 − a2 is a conserved quantity. If a1(0) >

a2(0), the attractor is 〈1〉 (meaning that only node 1 survives)
and its final amplitude is

a1(∞) = D = a1(0) − a2(0), (13)

and vice versa. The survivor is always the node with the larger
initial mass.

In the borderline case of equal initial masses, the integrals
in (7) are marginally (logarithmically) divergent. Both masses
saturate to the universal limit y1(∞) = y2(∞) = 1/(2g),
irrespective of their initial value.

Chain with N = 2. The two nodes are now connected by a
single bond. The dynamical equations are identical to (12), up
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FIG. 1. (Color online) Attractor on the chain with N = 4 in the
a2(0) − a3(0) plane, for fixed a1(0) = a4(0) = 0.3.

to an overall factor of 2. Here, too, the more massive node is
the survivor.

Ring with N = 3. The attractors again consist of a single
survivor. Although there is no obviously conserved quantity,
the attractor can be predicted by noticing that

d

dτ
(a2 − a1) = −(a2 − a1)a3. (14)

The sign of any difference ai − aj is therefore conserved by the
dynamics. In other words, the order of the masses is conserved.
In particular, the survivor is the node with the largest initial
mass.

Chain with N = 3. The central node 2 plays a special
role, so that the two attractors are 〈2〉 and 〈13〉. There are
two conserved quantities, D = a1 − a2 + a3 and R = a1/a3.
If D > 0, the attractor is 〈13〉 and the final amplitudes read

a1(∞)

a1(0)
= a3(∞)

a3(0)
= D

a1(0) + a3(0)
. (15)

If D < 0, the attractor is 〈2〉 and a2(∞) = |D|.
Ring with N = 4. The two attractors are the “diameters”

〈13〉 and 〈24〉. The alternating sum D = a1 − a2 + a3 − a4

is a conserved quantity. If D > 0, the attractor is 〈13〉 and
a1(∞) + a3(∞) = D. If D < 0, the attractor is 〈24〉 and
a2(∞) + a4(∞) = |D|. The attractor is therefore always the
diameter with the larger total initial mass. The individual
asymptotic amplitudes cannot, however, be determined in
general.

Chain with N = 4. The three attractors are 〈13〉, 〈14〉,
and 〈24〉. The alternating sum D = a1 − a2 + a3 − a4 is a
conserved quantity. This is the first case where the attractor
cannot be predicted analytically in general.

Figure 1 shows the attractors reached as a function of a2(0)
and a3(0), for fixed a1(0) = a4(0) = 0.3. It is clear that 〈13〉 can
only be reached for D > 0, i.e., above the diagonal, whereas
〈24〉 can only be reached for D < 0, i.e., below the diagonal.
The intermediate pattern 〈14〉 is observed in a central region
near the diagonal. The form of this region can be predicted,
to some extent. On the horizontal axis, the transition from
〈14〉 to 〈24〉 takes place for a2(0) = a1(0) = 0.3. Similarly,
on the vertical axis, the transition from 〈14〉 to 〈13〉 takes
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FIG. 2. (Color online) Attractor on the ring with N = 5 in the
a4(0) − a5(0) plane, for fixed a1(0) = 0.5, a2(0) = 0.7, and a3(0) =
0.6. The five attractors meet at point P.

place for a3(0) = a4(0) = 0.3. The central region where 〈14〉
is the attractor shrinks rapidly with increasing distance from
the origin. This can be explained by considering the dynamics
on the diagonal, i.e., in the symmetric situation where a1(0) =
a4(0) and a2(0) = a3(0). These symmetries are preserved by
the reduced dynamics

da1

dτ
= −a1a2,

da2

dτ
= −(a1 + a2)a2. (16)

The reduced attractor is 〈1〉, the full attractor is 〈14〉, and
D vanishes identically. The reduced dynamics have another
conserved quantity, C = a1 exp(−a2/a1). The asymptotic
amplitude a1(∞) = C becomes exponentially small as a2(0)
increases. The width of the central green region is expected
to follow the same scaling law, i.e., to become exponentially
narrow with distance from the origin, in agreement with our
observation.

Ring with N = 5. There are five attractors consisting of
two survivors, obtained from each other by rotation: 〈13〉,
〈24〉, 〈35〉, 〈14〉, and 〈25〉. There is no obviously conserved
quantity, and the attractor cannot be predicted analytically in
general.

Figure 2 shows the attractors as a function of a4(0) and
a5(0), for fixed a1(0) = 0.5, a2(0) = 0.7, and a3(0) = 0.6. The
five attractors meet at point P [a4(0) = 0.363 094, a5(0) =
0.313 748]. If launched at P, the system is driven to the unique
symmetric solution where all masses converge to the universal
limit 1/(2g). A linear stability analysis around the latter
solution reveals that its stable manifold is three-dimensional,
in agreement with the observation that its intersection with the
plane of the figure is the single point P.

This is the first case which manifests one of the most
interesting features of the model, that of “winning against
the odds” [7–9]. Numerical simulations with two structureless
distributions of initial masses, uniform (uni) and exponential
(exp), yield the following observations:

(i) The probability that the node with largest initial mass
is a survivor is 0.849 (uni) or 0.937 (exp).
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(ii) The probability that the attractor corresponds to the
largest initial mass sum among the possible attractors is 0.791
(uni) or 0.891 (exp).

(iii) The probability that the node with the smallest initial
mass is a survivor is 0.018 (uni) or 0.019 (exp).

This small but nonzero probability for the smallest initial
mass to survive is the beginning of the complexity associated
with the phenomenon of winning against the odds. It happens
essentially because more distant nodes can destroy massive
intermediaries between themselves and the small masses con-
cerned, thereby letting the latter survive “against the odds.” For
larger sizes, the problem soon becomes intractable. First, the
number of attractors grows exponentially fast with N ; second,
larger system sizes make for increased interaction ranges for
a given node. This makes it increasingly probable to have
winners against the odds, making it more and more difficult to
predict attractors based only on initial mass distributions.

The above algorithmic complexity goes hand in hand with
the violation of the Edwards hypothesis, as well as other
specific out-of-equilibrium features of the attractors, including
a superexponential spatial decay of various correlations [6].
This phenomenon, put forward in zero-temperature dynamics
of spin chains [22], is reminiscent of the behavior of a larger
class of fully irreversible models, exemplified by random
sequential adsorption (RSA) [26].

IV. APPROXIMATE ANALYTICAL TREATMENT

Despite the complexity referred to above, we show here
that some “one-body observables” can be predicted by an
approximate analytical approach. Our techniques are based
on the inhomogeneous mean-field theory and rely on the
assumption that the statistical properties of a node only depend
on its degree k [27]. Such ideas have been successfully applied
to a wide class of problems on complex networks (see [28,29]
for reviews). The thermodynamic limit is implicitly taken; also,
the embedding graph is replaced by an uncorrelated random
graph whose nodes have probabilities pk to be connected to k

neighbors, i.e., to have degree k. In this section, we use this
framework to evaluate the survival probability of a node, given
its degree and/or initial mass.

A. Survival probability of a typical node

We consider first the simplest observable—the survival
probability of a typical node, irrespective of initial mass or
degree.

From the reduced dynamical equations (6), the initial decay
rate of the amplitude ai(τ ) of node i is seen to be

ωi =
∑
j (i)

aj (0) =
∑
j (i)

yj (0). (17)

If node i has degree k, the above expression is the sum of the
k initial masses of the neighboring nodes.

From a modeling point of view, this suggests a decimation
process in continuous time, where nodes are removed at a rate
given by their degree k at time t . The initial graph is entirely
defined by the probabilities pk for a node to have degree
k. Its subsequent evolution during the decimation process is
characterized by its time-dependent degree distribution, i.e.,
by the fractions qk(t) of initial nodes which still survive at

time t and have degree k. The latter quantities start from

qk(0) = pk (18)

at the beginning of the process (t = 0) and converge to

qk(∞) = S δk0 (19)

at the end of the process (t → ∞). Indeed, as in the original
model, survivors are isolated so that their final degree is zero.
The amplitude S is the quantity of interest, as it represents the
survival probability of a typical node. Our goal is to determine
it as a function of the probabilities pk .

The qk(t) obey the dynamical equations

dqk(t)

dt
= −kqk(t)

+ λ(t)[(k + 1)qk+1(t) − kqk(t)]. (20)

The first line corresponds to the removal of a node of degree k

at constant rate k, while the second line describes the dynamics
of its neighbors. The removal of one neighboring node adds
to the fraction qk(t) at a rate proportional to (k + 1)qk+1(t),
while it depletes it at a rate proportional to kqk(t).

The time-dependent quantity λ(t) is the rate at which a
random neighbor of a given node is removed at time t , which,
consistent with the above, is given by the average degree of
a random neighbor of the node at time t . This rate can be
evaluated as follows (see, e.g., [29]). The probability that a
node of degree k has a neighbor of degree � at time t , for
an uncorrelated network, is independent of k and given by
q̃�(t) = �q�(t)/〈�(t)〉. (The shift from q�(t) to q̃�(t) is related
to the “inspection paradox” in probability theory (see, e.g.,
[30]). The average degree of a random neighbor of the node at
time t is then given by

∑
� �q̃�(t), i.e.,

λ(t) = 〈k(t)2〉
〈k(t)〉 . (21)

Introducing the generating series

P (z) =
∑
k�0

pkz
k, Q(z,t) =

∑
k�0

qk(t)zk, (22)

we see that Q(z,t) obeys the partial differential equation

∂Q

∂t
+ [z + (z − 1)λ(t)]

∂Q

∂z
= 0, (23)

with initial condition

Q(z,0) = P (z). (24)

Hence it is invariant along the characteristic curves defined by

dz

dt
= z + (z − 1)λ(t). (25)

This differential equation can be integrated as

z0 = 1 + (zt − 1)e−t−	(t) −
∫ t

0
e−s−	(s) ds, (26)
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with

	(t) =
∫ t

0
λ(s) ds. (27)

We have, therefore,

Q(zt ,t) = P (z0). (28)

For infinitely long times, irrespective of zt , the parameter z0

which labels the characteristic curves converges to the limit

ζ = 1 −
∫ ∞

0
e−t−	(t) dt, (29)

which we call the dynamical fugacity of the model.
We are left with the following simple expression for the

survival probability of a typical node [see (19)]:

S = P (ζ ). (30)

Furthermore, the fugacity ζ can be shown to be implicitly
given by

2〈k〉
∫ 1

ζ

dz

P ′(z)
= 1, (31)

where the accent denotes a derivative.
We list a few quantitative predictions for important graphs

or networks below:
Erdös-Rényi (ER) graph.
This historical example of a random graph [31,32] has a

Poissonian degree distribution of the form

pk = e−a ak

k!
(k � 0), (32)

so that 〈k〉 = a and P (z) = ea(z−1). We obtain

ζ = 1 − 1

a
ln

a + 2

2
, (33)

S = 2

a + 2
. (34)

K-regular graph.
In the case of a K-regular graph, where all nodes have the

same degree K � 2, we have P (z) = zK . We obtain

ζ =
(

2

K

)1/(K−2)

, (35)

S =
(

2

K

)K/(K−2)

(K � 3). (36)

For K = 2 the above results become

ζ = e−1/2 = 0.606 530, (37)

S = e−1 = 0.367 879. (38)

Geometric graph.
In the case of a geometric degree distribution with param-

eter y, i.e.,

pk = (1 − y)yk (k � 0), (39)

we have 〈k〉 = y/(1 − y) and P (z) = (1 − y)/(1 − yz). We
obtain

ζ = 1

y
−

(
(1 − y)2(2 + y)

2y3

)1/3

= 1 + 1

〈k〉 −
(

3〈k〉 + 2

2〈k〉3

)1/3

, (40)

S =
(

2(1 − y)

2 + y

)1/3

=
(

2

3〈k〉 + 2

)1/3

. (41)

Barabási-Albert (BA) network.
The BA network, grown with a linear law of preferential

attachment, has a degree distribution [33,34]

pk = 4

k(k + 1)(k + 2)
(k � 1), (42)

with a power-law tail with exponent γ = 3. We have 〈k〉 = 2
and

P (z) = 3 − 2

z
− 2(1 − z)2

z2
ln(1 − z). (43)

Solving (31) numerically, we obtain

ζ = 0.670 16, S = 0.553 00. (44)

Generalized preferential attachment (GPA) network.
This is a generalization of the BA network, where the

attachment probability to an existing node with degree k is
proportional to k + c [35–37], with the offset c representing
the initial attractiveness of a node. The degree distribution

pk = (c + 2)�(2c + 3)�(k + c)

�(c + 1)�(k + 2c + 3)
(k � 1) (45)

has a power-law tail with a continuously varying exponent γ =
c + 3. We have, as expected for a tree, 〈k〉 = 2, irrespective of
c, and

P (z) = c + 2

2c + 3
z(1 − z)c+2

2F1(c + 3,2c + 3; 2c + 4; z),

(46)

where 2F1 is the Gauss hypergeometric function.
The GPA network can be simulated efficiently by means of

a redirection algorithm [38,39]. Every new node is attached
either to a uniformly chosen earlier node with probability 1 −
ν, or to the ancestor of the latter node with the redirection
probability

ν = 1

c + 2
. (47)

For ν → 0 (i.e., c → +∞), we have a uniform attachment
rule, yielding pk = 2−k and P (z) = z/(2 − z), so that

ζ = 2 − (5/2)1/3 = 0.642 791, (48)

S = 2(2/5)1/3 − 1 = 0.473 612. (49)

For ν → 1 (i.e., c → −1), the model becomes singular. The
pk converge to δk,1, while we still have 〈k〉 = 2, formally. In
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FIG. 3. (Color online) Survival probability S of a typical node,
as predicted by our approximate analysis, against mean degree 〈k〉 for
several examples of graphs and networks. For the ER and geometric
graphs, the predictions for continuously varying 〈k〉 are shown as the
black (lower) and red (upper) curves. Green filled circles correspond
to K regular graphs for integer K . The blue square shows the
prediction (44) for the BA network, while the vertical bar with
arrowheads shows the range of values of S for GPA networks, given
by the bounds (49) and (50).

this singular limit we have

ζ = S = 3

4
. (50)

Finally, the BA network is recovered for ν = 1/2 (i.e., c = 0).
Figure 3 provides a summary of the above results. The

survival probability S of a typical node is plotted against the
mean degree 〈k〉, for all the above. Turning to the specific
example of the GPA networks, we note that (48) and (49)
provide lower bounds for the dynamical fugacity ζ and
the survival probability S, respectively, which both increase
to their upper bounds (50) as functions of the redirection
probability ν. This trend is reflected in the blue arrowheads
in Fig. 3, where the blue square corresponds to the value for
the BA network.

In order to test the above for a few simple cases, we have
measured the survival probability S of a typical node in three
different geometries: the 1D chain, the 2D square lattice,
and the BA network. We solved the dynamical equations (6)
numerically, with initial masses drawn either from a uniform
(uni) or an exponential (exp) distribution. The measured values
of S are listed in Table I, together with our approximate
predictions (36), (38), and (44).

TABLE I. Survival probability of a typical node of the 1D chain,
the 2D square lattice, and the BA network. Comparison of numerical
results for uniform (uni) and exponential (exp) mass distributions and
approximate analytical results (pred).

Geometry 1D 2D BA

Suni 0.4393 0.3851 0.6891
Sexp 0.4360 0.3755 0.6767
Spred 0.3679 0.2500 0.5530

Our numerical results suggest that the survival probability
depends only weakly on the mass distribution, as long as
the latter is rather structureless. While our predictions are
systematically lower than the numerical observations, they do
indeed reproduce the global trends rather well.

It is worth recalling here that our analysis relies on a degree-
based mean-field approach. Such approximate techniques
are expected to give poor results in one dimension, and
to perform much better on more disordered and/or more
highly connected structures. A systematic investigation of the
accuracy of the present approach, including the comparison
of various lattices with identical coordination numbers but
different symmetries, and of various random trees or networks
with the same degree distribution but different geometrical
correlations, would certainly be of great interest. While such
extensive numerical investigations are beyond the scope of the
present, largely analytical work, we hope they will be taken up
in the future.

B. Degree-resolved survival probability

The above degree-based mean-field analysis can be ex-
tended to quantities with a richer structure. In this section
we consider the degree-resolved survival probability S[�] of a
node whose initial degree � is given. The degree distribution
rk(t) of this special node obeys the same dynamical equations
(20) as those of a typical node:

drk(t)

dt
= −krk(t)

+ λ(t)[(k + 1)rk+1(t) − krk(t)], (51)

with the specific initial condition rk(0) = δk�. The above
dynamical equations are along the same lines as in Sec. IV A.
The generating series

R(z,t) =
∑
k�0

rk(t)zk (52)

obeys the partial differential equation (23), with the initial
condition

R(z,0) = z�. (53)

Using again the method of characteristics, we get, instead of
(30), the following simple behavior for the degree-resolved
survival probability:

S[�] = ζ �, (54)

where the dynamical fugacity ζ is given by (31). The
form of this suggests a simple physical interpretation: the
fugacity ζ measures the tendency of a given node to “escape”
annihilation. More quantitatively, ζ is the price per initial
neighbor which a node has to pay in order to survive forever.
By averaging the expression (54) over the initial degree
distribution pk , we recover the result (30) for the survival
probability S of a typical node.

We now introduce the survival scale

ξ = 1

| ln ζ | , (55)
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so that our key result (54) reads

S[�] = exp(−�/ξ ). (56)

This representation makes it clear that the survival scale ξ

corresponds to the degree of the most connected survivors.
We use this to probe the survival statistics of highly

connected graphs. Here, the survival scale ξ is large as a
consequence of a large mean degree 〈k〉; correspondingly, there
is a decay in the survival probability S of a typical node, as
shown in the two examples below:

(i) ER graph. Here, 〈k〉 = a, and so (33) and (34) yield

ξ ≈ 〈k〉
ln 〈k〉

2

, S ≈ 2

〈k〉 . (57)

The survival scale ξ grows almost linearly with 〈k〉, while the
survival probability S falls off as 1/〈k〉.

(ii) Geometric graph. Equations (40) and (41) yield

ξ ≈
(

2〈k〉2

3

)1/3

, S ≈
(

2

3〈k〉
)1/3

. (58)

Both the growth of the survival scale and the decay of the
survival probability are slower than in the ER case. The
survival scale diverges sublinearly with 〈k〉, with an exponent
2/3, while the survival probability decays with an exponent
1/3.

Figure 3 shows that these differing trends for the ER and
geometric graphs are already evident even for low connectivity
〈k〉. This is because of the interesting circumstance that the
behavior of the degree distribution pk for relatively small
degrees (1 	 k 	 〈k〉) determines both the growth of the
survival scale ξ as well as the decay of the survival probability
S in highly connected graphs.

Assuming this regime is described by a scaling form

pk ≈ C kβ−1

〈k〉β (59)

governed by an exponent β > 0, we obtain after some algebra,

ξ ≈ A 〈k〉(β+1)/(β+2), (60)

S ≈ B 〈k〉−β/(β+2), (61)

with

A ≈
(

2

β(β + 2) C �(β)

)1/(β+2)

, (62)

B ≈
(

2β (C �(β))2

(β(β + 2))β

)1/(β+2)

. (63)

The exponents (β + 1)/(β + 2) and β/(β + 2) which enter
the power laws (60), (61) are always smaller than 1 (the value
corresponding to β → ∞), when we find ξ ∼ 〈k〉 and S ∼
1/〈k〉. This is, e.g., the case for the ER graph [see Eq. (57)].

In order to test our key prediction (54), the dependence
of the survival probability S[�] of a node of the BA network
on its degree � was computed numerically for an exponential
distribution of initial masses. Figure 4 shows a logarithmic
plot of S[�] against degree �. We find excellent qualitative

0 2 4 6 8 10 12 14
l

−8

−6

−4

−2

0

ln
 S

[l
]

FIG. 4. (Color online) Logarithmic plot of the measured degree-
resolved survival probability S[�] against degree � for the BA
network. Straight line: least-squares fit of all the data points with
slope −0.588.

agreement with our predictions of exponential dependence,
although the measured slope corresponding to 1/ξobs ≈ 0.59
is larger than our analytical prediction of 1/ξpred = | ln ζ | =
0.400 2 [see Eq. (44)].

C. Mass-resolved survival probability

Here we extend our analysis to the mass-resolved survival
probability of a node whose initial mass y is given. Since this
will only enter through the reduced mass α, defined as the
dimensionless ratio

α = y

〈y〉 , (64)

we denote the mass-resolved survival probability by Sα .
Along the lines of Sec. IV A, we derive the following

dynamical equations for the degree distribution rk(t) of the
special node:

drk(t)

dt
= −krk(t) + λα(t)[(k + 1)rk+1(t) − krk(t)], (65)

with initial condition rk(0) = pk [see Eq. (18)]. To compute
the rate λα(t) at which a random neighbor of the special node
is removed, we argue as follows. This rate is a product of the
probability of finding a random neighbor of degree �, given
by q̃�(t) = �q�(t)/〈�(t)〉, and the rate of removal of this node.
The latter is nothing but its effective degree: while the initial
masses of its � − 1 typical neighbors can be taken to be 〈y〉,
the special node has an initial mass of y = α〈y〉, so that the
effective degree of this node is � − 1 + α. The average degree
of a random neighbor of the special node at time t is then
clearly given by

∑
�(� − 1 + α)̃q�(t), i.e.,

λα(t) = λ(t) − 1 + α. (66)

After some algebra, the mass-resolved survival probability
reduces to

Sα = P (ζα), (67)
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where the mass-dependent fugacity ζα is

ζα = 1 −
∫ ∞

0
e−αt−	(t) dt. (68)

This formula can be recast as

ζα = 1 −
∫ 1

ζ

(
1 − 2〈k〉

∫ 1

z

dy

P ′(y)

)(α−1)/2

dz, (69)

where ζ is the fugacity given by (31). We have, consistently,
ζα = ζ for α = 1.

The mass-resolved survival probability Sα is an increasing
function of the reduced mass α. We compute this explicitly
for the classes of random graphs and networks considered in
Sec. IV A.
ER graph.

In this case we have

Sα = ea(ζα−1), (70)

with

ζα = 1 − 1

a

∫ a

0

(
a(x + 2)

(a + 2)x

)(1−α)/2
dx

x + 2
. (71)

K-regular graph.
In this case we have

Sα = ζK
α , (72)

with

ζα = 1 − 1

2

∫ 1

0
[2x2 + K(1 − x2)]−(K−1)/(K−2)xαdx (73)

in the generic case (K � 3), whereas

ζα = 1 −
∫ 1

0
e(x2−1)/2 xαdx (74)

for K = 2.
Geometric graph.

In this case we have

Sα = 1 − y

1 − yζα

, (75)

with

ζα = 1 − 1

2

∫ 1

0

(
2(1 − y)

2 + (1 − 3x)y

)2/3

x(α−1)/2 dx. (76)

BA and GPA networks.
In these cases, numerical values of ζ and of ζα can be

extracted from (31) and (69), using the expressions (43), (46)
of the generating series P (z).

The dependence of the survival probability of a node
on its initial mass was computed numerically for the one-
dimensional (1D) chain, the two-dimensional (2D) square
lattice, and the BA network, with an exponential mass
distribution. Figure 5 shows plots of the measured values
of Sα against α. The dashed curves show the prediction
(67), rescaled so as to agree with the numerics for α = 1.
In the three geometries considered, the analytical prediction
reproduces the overall mass dependence of Sα reasonably well.
The observed dependence is slightly more pronounced than
predicted on the 1D and 2D lattices, while the opposite holds
for the BA network.

0 1 2 3 4
α

0

0.2

0.4

0.6

0.8

1

S α 1D (obs)
2D (obs)
BA (obs)
1D (pred)
2D (pred)
BA (pred)

FIG. 5. (Color online) Mass-resolved survival probability Sα

against reduced mass α. Full curves: numerical results. Correspond-
ing dashed curves: analytical predictions. Top to bottom near α = 1:
BA network, 1D chain, 2D square lattice.

Last, but by no means least, there is a striking manifestation
of (super-)universality in the regime of large reduced masses,
when (68) simplifies to

ζα ≈ 1 − 1

α
. (77)

The mass-resolved survival probability then goes to unity
according to the simple universal law

Sα ≈ 1 − 〈k〉
α

. (78)

This key result in the large-mass limit is one of the strongest
results in this paper: all details of the structure and embeddings
of networks disappear from the survivor probability of a node,
leaving only a simple dependence on its mass and the mean
connectivity 〈k〉.

D. Degree and mass-resolved survival probability

Finally, our analysis can be generalized to the full degree
and mass-resolved survival probability Sα[�] of a node whose
initial degree � and reduced mass α are given.

The degree distribution of this special node obeys

drk(t)

dt
= −krk(t)

+ λα(t)[(k + 1)rk+1(t) − krk(t)], (79)

where the rate λα(t) is given by (66), and with the specific
initial condition rk(0) = δk�. After some algebra along the lines
of the previous sections, we find

Sα[�] = ζ �
α . (80)

This last result encompasses all the previous ones, including
the expression (54) for the degree-resolved survival probability
S[�] and the expression (67) for the mass-resolved survival
probability Sα .

The detailed numerical evaluation of degree and mass-
resolved data on networks is deferred to future work, although
we expect the levels of agreement to be similar to those
obtained in Secs. IV B and IV C. Our point of emphasis here
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is the simplicity of (80), which shows that the dynamical
fugacity is absolutely the right variable to highlight an intrinsic
universality in this problem. In showing that the result (30) is
resolvable into components of degree and mass, it also points
the way towards a deeper understanding of the “independence”
of these parameters in the survival of a node.

Finally, and no less importantly, the result (80) again
manifests (super-)universality in the regime of large reduced
masses (α 
 1). As a consequence of (77), the degree and
mass-resolved survival probability goes to unity according to
the simple law

Sα[�] ≈ 1 − �

α
. (81)

The beauty of this result (as well as its analog (78)) lies in
the fact that it is exactly what one might expect intuitively; it
suggests that the probability (1 − Sα[�]) that a node of mass
α and degree � might not survive, is directly proportional to
its degree, and inversely proportional to its mass. In everyday
terms, the lighter the node, and the more well connected it
is, the more it is likely to disappear. The emergence of such
startling, intuitive simplicity in an extremely complex system
is a testament to an underlying elegance in this model.

V. DISCUSSION

The problem of finding even an approximate analytical
solution to a model which contains multiple interactions is very
challenging. In the context of predator-prey models, the (mean-
field) Lotka-Volterra dynamical system and the full Volterra
chain are among the rare examples which are integrable. Most
other nonlinear dynamical models with competing interactions
are not, and are quite simply intractable analytically.

The model inspired by black holes [6], on which this paper
is based, shows how competition between local and global
interactions can give rise to nontrivial survivor patterns and to
the phenomenon referred to as “winning against the odds.”
That is, a given mass can win out against more massive
competitors in its immediate neighborhood provided that they
in turn are “consumed” by ever-more-distant neighbors. When
it was found numerically [7–9] that such survivor distributions
seemed to exhibit somewhat surprising features of universality,
it was natural to ask the question: Could one find the reasons for
such behavior, in the sense of characterizing these distributions
at least approximately from an analytic point of view? An
additional motivation was found in the work of the Barabási
group [40] on citation networks, where the authors put forward
a universal scaling form for the “survival” of a paper in terms
of its citation history.

The black-hole model, as defined in its original cosmo-
logical context [4,5], had an explicit time dependence due to
the presence of a ubiquitous “fluid,” as well as a threshold
below which even isolated particles did not survive. Neither
of these attributes was necessary for the behavior of most
interest to us, namely, the multiplicity of attractors (which in
our case involve survivor distributions) and their nontrivial
dependence on the initial mass profile as a result of multiple
interactions. One of our major achievements in this paper
has been the construction of a much simpler model (without
the unnecessary complications referred to above) which still

retains its most interesting features from the point of view of
statistical physics.

Once derived and established, this simple model was the
basis of our investigations of universality in survivor distri-
butions. The exact characterization of attractors as a function
of the initial data becoming rapidly impossible, we were led
to think of approximate analytical techniques. Our choice of
the inhomogeneous (or degree-based) mean-field theory was
motivated by our emphasis on random graphs and networks in
earlier numerical work [7–9]. This approach was embodied in
an effective decimation process. Some of the analytical results
so obtained were robustly universal, including the exponential
fall-off (54) of the survival probability of a node with its degree,
or the asymptotic behaviors (78) and (81) in the large-mass
regime.

Our approach led us to introduce the associated concept of
a dynamical fugacity, key to unlocking the reason behind the
manifestation of universality in diverse survivor distributions.
Physically, this signifies the tendency of a typical node in
a network to escape annihilation, which we illustrate via
a simple argument. Every time an agent encounters other,
potentially predatory agents, it pays a price in terms of its
survival probability: as the probability of each such encounter
is independent of the others, the “cost” to the total probability
is multiplicative in terms of the number of predators encoun-
tered. The dynamical fugacity is then nothing but the cost
function per encounter (i.e., per neighbor), so that the survival
probability of the original agent depends exponentially on the
number of its competitors. In a statistical sense, this depends
only on the degree distribution of the chosen network, leading
to the emergence of a universal survival probability for a given
class of networks. The asymptotic survival probability of very
heavy nodes becomes “superuniversal,” in the sense of losing
all dependence on different geometrical embeddings. Its form
also has an appealing simplicity as the complement of the ratio
(degree to mass) of a given node; the heavier the node and the
more isolated it is, the longer it is likely to survive.

In conclusion, we have used inhomogeneous mean-field
theory to formulate and solve analytically an intractable
problem with multiple interactions. While our analytical
solutions are clearly not exact (due to the technical limitations
of mean-field theory), they are nevertheless the only way
to date of understanding the behavior of the exact system.
In particular, and importantly, our present analysis strongly
reinforces the universality that has indeed been observed in
earlier numerical simulations of this problem [7–9]. That such
universal features emerge in a highly complex many-body
problem with competing predatory interactions is nothing
short of remarkable.
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APPENDIX: NUMBERS OF ATTRACTORS AND
COMPLEXITY IN ONE DIMENSION

In this Appendix we investigate the attractor statistics of
the one-dimensional problem by means of the transfer-matrix
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TABLE II. Numbers of attractors M
(r)
N on rings and M

(c)
N on chains

of N nodes, for N up to 12.

N 1 2 3 4 5 6 7 8 9 10 11 12

M
(r)
N 0 2 3 2 5 5 7 10 12 17 22 29

M
(c)
N 1 2 2 3 4 5 7 9 12 16 21 28

formalism. We describe an attractor as a sequence of binary
variables or spins:

σn =
{

1 if i is a survivor,
0 if i is a nonsurvivor. (A1)

From a static viewpoint, attractors are defined as patterns
obeying the constraints listed in Sec. II. They can therefore
be identified with sequences which avoid the patterns 11 and
000. The last two symbols of such a sequence may therefore
be 00, 01, or 10. The numbers M00

N , M01
N , and M10

N of attractors
of length N of each kind obey the recursion⎛⎜⎝M00

N+1

M01
N+1

M10
N+1

⎞⎟⎠ = T

⎛⎜⎝M00
N

M01
N

M10
N

⎞⎟⎠, (A2)

where the transfer matrix T reads

T =
⎛⎝0 0 1

1 0 1
0 1 0

⎞⎠. (A3)

Its characteristic polynomial is P (x) = x3 − x − 1, and so the
Cayley-Hamilton theorem implies the recursion

TN = TN−2 + TN−3. (A4)

Hence all the numbers MN grow exponentially with N , in
agreement with (9). The complexity reads

� = ln x0 = 0.281 199, (A5)

with x0 = 1.324 717 being the largest eigenvalue of T, i.e., the
largest root of P (x).

The total numbers of attractors M
(c)
N = M00

N + M01
N + M10

N

on chains and M
(r)
N on rings of N nodes obey recursions derived

from (A4), i.e.,

MN = MN−2 + MN−3, (A6)
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FIG. 6. (Color online) Density-dependent static complexity
�(ρ) against survivor density ρ in the allowed range
(1/3 � ρ � 1/2).

with two different sets of initial conditions. The sequences
M

(r)
N and M

(c)
N are listed in the OEIS [41] as entries A001608

and A000931, respectively, together with many combinatorial
interpretations and references. The first few terms are listed in
Table II.

The transfer-matrix approach can be generalized in order
to determine the density-dependent static complexity �(ρ),
characterizing the exponential growth of the number of
attractors with a fixed density ρ of survivors. Introducing a
static fugacity z conjugate to the number of survivors, the
transfer matrix becomes

T(z) =
⎛⎝0 0 1

z 0 z

0 1 0

⎞⎠, (A7)

whose characteristic polynomial is P (z,x) = x3 − zx − z.
The reader is referred to [22,23] for details. We obtain after
some algebra

�(ρ) = −(1 − 2ρ) ln
1 − 2ρ

ρ
− (3ρ − 1) ln

3ρ − 1

ρ
. (A8)

Figure 6 shows a plot of this quantity against survivor density
in the allowed range (1/3 � ρ � 1/2). The expression (A8)
reaches a maximum equal to � [see (A5)] when ρ equals the
mean static density of survivors:

ρ0 = x0 + 1

2x0 + 3
= 0.411 495. (A9)
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[22] G. de Smedt, C. Godrèche, and J. M. Luck, Eur. Phys. J. B 27,

363 (2002).
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