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Analytical solution and scaling of fluctuations in complex networks traversed by damped,
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A general model for random walks (RWs) on networks is proposed. It incorporates damping and time-dependent
links, and it includes standard (undamped, noninteracting) RWs (SRWs), coalescing RWs, and coalescing-
branching RWs as special cases. The exact, time-dependent solutions for the average numbers of visits (w) to
nodes and their fluctuations (σ 2) are given, and the long-term σ -w relation is studied. Although σ ∝ w1/2 for
SRWs, this power law can be fragile when coalescing-branching interaction is present. Damping, however, often
strengthens it but with an exponent generally different from 1/2.
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I. INTRODUCTION

Complex networks have diverse applications in biology
[1–4], finance [5], traffic [6,7], the world-wide web [8], social
networks [9], etc. In these networks, random walks (RWs) are
often used as a generic model for the flow of the quantity
of interest [2–4,6,8]. Two RW models, namely, the standard
RW (SRW) and the coalescing RW (CRW), are of particular
interest because of their widespread applications. For SRW, its
applications are well known. On the other hand, a specialized
version of CRW can be mapped to the voter model [10],
which has numerous applications such as spatial conflict [11],
diffusion-controlled reaction [12], opinion dynamics [9,13],
population genetics [14], etc. In a SRW, noninteracting random
walkers (RWers) freely diffuse on the network, whereas in a
CRW, RWers reaching a node coalesce into one before moving
to the next node. Interestingly, these two seemingly distinct
RW models can be treated under one unified framework,
because in either model RWers reaching the same node become
indistinguishable. Capitalizing on the indistinguishability, we
present in this paper a general formalism that covers SRW and
CRW as special cases, handles the flow loss (damping) that is
prevalent in most networks, and can be applied to networks
with time-dependent links. We give the exact solutions for the
average number of visits (wi) to node i and its variance (σ 2

i )
at any given time.

Calculating σ with full time dependence can be useful
for many reasons. First, when σ is used to define extreme
events [15,16], its short-time solution is helpful in disaster
preparedness. Second, systems with intrinsic time dependence
may never reach equilibrium and require a fully time-
dependent solution. For instance, effective disease control
requires good estimates of the growth or movement of the
infected population and their fluctuations as functions of time.
Third, it allows us to broaden the scope of the extensively
studied CRW model to include its long-time σ -w relation.
This relation has been extensively studied in other context. For
example, Menezes and Barabasi [8] studied several real-world
networks and found σ ∝ wα , with α close to either 1/2 or
1. They argued that strong external driving causes α ≈ 1 and
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that α can be smaller (still �1/2) when the externally induced
fluctuations are modest. For a SRW, Meloni et al. [17] showed
analytically that absent any external force α = 1/2 in the
stationary regime and that in some cases even a small external
drive can result in an α close to 1. Defining w to be the total
number of visits to a node multiplied by a power of its degree,
Eisler and Kertesz [18] concluded that 0 < α < 1 even when
there is no external driving. Duch and Arenas proposed a model
in which, after arriving at a node, noninteracting RWers wait
in a queue to be processed. They showed that in the absence
of a driving force α can vary between 1/2 and 1 [6]. Huang
et al. showed that for small networks the power law fails [19].
To compare with the aforementioned results, we also provide
the long-time σ -w relations for both the SRW and CRW.

II. MODEL

In our model, RWers, each carrying one unit of information
(content), are injected into an undirected network (with N
vertices) through “source” nodes. At a given time, the numbers
of RWers entering the network through different source
nodes are assumed to be uncorrelated and independent of
the content already present in the system. However, these
numbers and also the entry points (source nodes) may change
with time. Containing no disjointed component, the network
is represented by A(t), a generally time-dependent adjacency
matrix. To incorporate damping, we take an approach that is
similar to that of Bonner et al. [20], i.e., the content of each
RWer is multiplied by a factor of r < 1 after each time step
(unlike “mortal” RWers [21,22], the RWers in our model do
not die instantly). Therefore, the RWers arriving at node m

at time t may not carry the same content. The total weight
wm(t) of node m is defined as the sum of the contents of all
RWers arriving at this node at time t . Before diffusing at time
t + 1, the weight wm(t) is equally redistributed between Nm(t)
new independent RWers. In other words, the RWers reaching
a node first coalesce and then branch to identical RWers each
carrying wm(t)

Nm(t) unit of information. This aspect of our model
is different from that of the branching RW models (widely
studied in the mathematical literature [23]) in which the weight
is not conserved (i.e., after branching the RWers carry the
same weight as the original RWer). This effectively introduces
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a “mixing” interaction that leads to indistinguishability. The
number of packets arriving at node m at time t and those
departing at t + 1 (Nm(t)) may differ. However, if damping
is eliminated (r = 1) and these numbers are set equal (i.e.,
Nm(t) = wm(t)), SRW is recovered. The model reduces to
the CRW, if Nm(t) = 1, which in turn can be considered as
a special case of coalescing-branching RW (CBRW) where
Nm � 1 is independent of both wm(t) and t . In our analysis we
consider the general case in which Nm(wm(t),t) is a function
of wm(t) and t . At time t + 1, the Nm(wm(t),t) packets move
independently to one of nm(t) neighbors of node m with
probability 1/nm(t).

Let w(t) be a row vector whose elements are the total
weights of the nodes of the network, and ws(t) be a row vector
representing the injected content into the system at time t . A
possible value for w(t + 1) is then given by

w(t + 1) = r w(t)P(t) + ws(t), (1)

where P(t) is a row-stochastic matrix whose average 〈P(t)〉, de-
noted by P (t), is given by Pij (t) = Aij (t)/ni(t). Equation (1)
for the average values can be written as

w(t + 1) = r
∑

w

πww(t)〈P(t)〉w + ws(t),

where the sum is over all possible values of w(t), πw is the
probability of the weight vector to be w(t), 〈•〉w is the average
of • provided that the weight vector is w(t), w(t) ≡ 〈w(t)〉, and
ws(t) ≡ 〈ws(t)〉 = ws(t). Although in general P(t) depends on
w(t), it is easy to see that 〈P(t)〉w = 〈P(t)〉 = P (t), and hence

w(t + 1) = r w(t)P (t) + ws(t), (2)

Using Eqs. (1) and (2) one finds the following for the
covariance matrix C(t) ≡ 〈wT (t)w(t)〉 − w(t)T w(t):

C(t + 1) = r2[P (t)T C(t)P (t) + X(t)], (3)

X(t) = 〈P(t)T w(t)T w(t)P(t)〉 − P (t)T 〈w(t)T w(t)〉P (t),

where T denotes transpose. To find X(t), we notice

〈Pmi(t)wm(t)2Pmj (t)〉 =
∑

w

πw〈Pmi(t)Pmj (t)〉wwm(t)2.

Assuming that node i is connected to node m and that there
are Nm packets present at this node, one can write

〈
P2

mi

〉 =
Nm∑
n=1

P(n)

(
n

Nm

)2

= Nm + nm − 1

Nmn2
m

,

P(n) = Nm!

n!(Nm − n)!

(
1

nm

)n(
1 − 1

nm

)Nm−n

,

where P(n) is the probability for node i to receive n (out
of Nm) packets (dependence on time and wm(t) have been
omitted for simplicity). Given that node i has received n

packets, the average number of packets sent to node j �= i

is (Nm − n)/(nm − 1), and so

〈PmiPmj 〉 =
Nm∑
n=1

P(n)
n(Nm − n)

N2
m(nm − 1)

= (Nm − 1)

n2
mNm

,

provided that nodes i and j are both connected to node m. In
other words

〈PmiPmj 〉 = δij

Nm

Pmi + Nm − 1

Nm

PmiPmj . (4)

Note that when calculating X(t), terms containing
〈wm(t)wk(t)〉 cancel out, and hence Eq. (4) can be used to
find

X(t) = −P (t)T diag(v(t)) P (t) + diag(v(t)P (t)), (5)

where diag(v(t)) is a diagonal matrix whose diagonal ele-
ments are the components of vector v(t) given by vm(t) =
〈wm(t)2/Nm(wm(t),t)〉.

III. RESULTS AND DISCUSSION

Equations (3) and (5) are valid for any RW model that
follows Eq. (1) and provide an exact, recursive solution
for time-dependent fluctuations in a network with a time-
dependent adjacency matrix. However, in the rest of this paper
we assume that {Aij } are time independent, and mainly focus
on the effect of r on the solutions for the special cases of
SRW, CRW, and CBRW under special conditions. One should
keep in mind that, for given r and ws , in a time-independent
network, w(t) is the same for all RWs that are described by
the proposed model, and is given by

w(t) =
t∑

n=0

ws(t − n)rnP n.

However, σ (t) (a vector consisting of the node-wise standard
deviations) depends on the details of the RW model, i.e., v(t).
It should also be noted that both w(t) and σ (t) depend on
ws and how it varies with time. For simplicity, here we only
consider RWs in which ws(t) either is a constant or vanishes
after t = 0 (ws(t > 0) = 0; RWers are injected into the system
only at t = 0). The latter case (ws(t > 0) = 0) is considered
only for undamped SRW and a special but important case
of undamped CRW in which RWers enter the system from
all nodes at t = 0. In what follows, we first calculate w(t)
and σ (t) (for some important special cases) in the absence
of damping, and then investigate the effect of damping. In
each case the long-term σ -w relation is also studied, while the
formal asymptotic analyses are provided in the Appendix.

A. Undamped RWs (r = 1)

In an undamped RW on a time-independent network, the
solution for w(t) is further simplified to w(t) = ∑t

n=0 ws(t −
n)P n. If RWers are injected into the network only at t = 0, i.e.,
if ws(t > 0) = 0, we get w(t) = ws(0)P t . On the other hand,
when ws is constant we have

w(t) = ws

t∑
n=0

P n,

which may be rewritten as

w(t) = NRW(w∞t + w1 + w2),

where NRW = ∑
i wsi

is the number of RWers injected into
the system at each time step, w1 = 1

NRW
ws

∑∞
n=0(P n − P ∞)
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is a constant, and w2 = − 1
NRW

ws

∑∞
n=t+1(P n − P ∞) has a

decreasing magnitude with time. Here P ∞
ij = nj

2E
with E being

the number of edges in the network. Therefore, when ws

is constant, w(t → ∞) ≈ NRWw∞t , where w∞i
= ni

2E
. This

expression for w(t → ∞) is equivalent to the previously
reported formula for SRW (see, for example, [24]). As
mentioned before, the solution for σ (t) depends on the type of
RW. In the following paragraphs we consider a few cases of
interest.

1. SRW when ws(t > 0) = 0

With Nm(t) = wm(t), a SRW has v(t) = 〈wm(t)2/Nm〉 =
w(t). Assuming ws(t > 0) = 0 (w(t) = ws(0)P t ), Eq. (3)
is simplified to C̃(t) = P T C̃(t − 1)P = P tT C̃(0)P t , where
C̃(t) = C(t) − diag(w(t)). Therefore,

σ (2)(SRW; t) = w(t) − ws(0)(P t )(2) = ws(0)[P t − (P t )(2)],

where (2) denotes an element-wise square and σ (t)(2) is a
vector consisting of the diagonal elements of C(t) (note that
C(0) = 0 and that w(0) = ws(0)). If the smallest eigenvalue
λm of P is not −1, P t
1 approaches P ∞ [15,24]. However,
when λm = −1, P t
1 alternates between two matrices whose
average converges to P ∞. Therefore,

σ (2)(SRW; t → ∞) ≈ NRW
(
w∞ − aw2

∞
)
,

where a = 1 + δλm,−1. This result is in agreement with the pre-
viously reported long-term σ for SRW (see, for example, [15]).

2. SRW with a constant ws

If the SRWers enter the system at a constant rate and from
the same sources, i.e., if ws is constant, we can add their
variances to get

σ (2)(SRW; t) = w(t) − ws

t∑
n=0

(P n)(2). (6)

Since the total number of SRWers at t is NRWt and the
long-time variance for a single SRWer is w∞ − aw

(2)
∞ ,

we get σ (2)(SRW; t → ∞) = NRWt(w∞ − aw
(2)
∞ ). Hence,

if ni/2E � 1 (e.g., for typical large networks), we get
σ (2)(SRW; t → ∞) ≈ w(t → ∞), which indicates α ≈ 1/2
for SRWs.

3. CRW when wsi = δt0

In a CRW, lacking a simplified short-term solution similar
to Eq. (6), one must use Eq. (3) to find σ (t). (Here Nm = 1
and vm(t) = 〈w2

m(t)〉 = w2
m(t) + σ 2

m(t)). As an example, we
consider a special case of CRW in which undamped CRWers
are injected from all nodes into a time-independent network
at t = 0. This example is of special interest because it can be
mapped to the extensively studied voter model [10]. However,
previous studies focus on calculating the average time for all
RWers to coalesce. Our results complement published reports
by giving a solution for w and σ . Using a random scale-
free network, we solve the time dependence of w and σ , as
shown in Fig. 1. The figure indicates that after a short time,
nodes with the same degree do not necessarily have the same
w or σ 2. After a long time, however, nodes with the same

node index node index

FIG. 1. (Color) Plots of σ and w at different times for all nodes
of a scale-free network (γ = 3) [25] with 1000 nodes, traversed by
coalescing RWers that have entered the system from all nodes at t = 0.
The nodes are sorted based on their degrees, i.e., if the index of node
i is higher than that of node j , then ni � nj . After a long enough
time both w and σ (although with different time scales) converge to
values that only depend on the node degrees.

degree converge to the same values. This behavior is expected,
because all RWers eventually coalesce, after which the model
becomes equivalent to a SRW.

4. CBRW with a constant ws

It can be shown (see the Appendix) that when ws is constant
and for large t , C(t) = C∞t2 + O(t) for CRW and CBRW.
Substituting this asymptotic form into Eqs. (3) and (5) (with
v(t) = (1/Nm)[w2

m(t) + σ 2
m(t)]), we find the diagonal elements

of C∞ [called σ
(2)
∞ (CBRW)] to be (see the Appendix)

σ (2)
∞ (CBRW) = (

N2
RW/a

)[
w∞B − a w(2)

∞
]
, (7)

where

B = [I + DQ (I − Q)−1]−1,

Dml = δml

Nm − 1

Nm

,

Q =
∞∑

n=0

[P (P n)(2) − (P n+1)(2)],

and I is the identity matrix. Remember that a CRW has Nm = 1
(for all m), thus B = I and the result is very similar to that of
SRW, albeit the latter grows linearly with time. In addition,
if ni/2E � 1 (e.g., for typical large networks), SRW has
σ (2)(t → ∞) ≈ w(t → ∞) while CRW has σ (2)(t → ∞) ≈
NRWt

a
w(t → ∞), both indicating that α ≈ 1/2. Note that one

should investigate the relation between σ and w̃ = w − ws

rather than w, because the added RWers at each step (ws(t))
do not diffuse until the next step. However, at this limit w ≈ w̃.

In Fig. 2(a), where log-log plots of σ vs w̃ are shown, we see
that the data points corresponding to CRW (top line), and those
associated with SRW (bottom line), lie on lines with slopes that
are very close to 1/2 (α = 0.498). On these two lines, each
point represents a population of nodes with the same degree
that also have the same w̃ and σ . For comparison, Fig. 2(a) also
shows the results for the CBRW (where B is not the identity
matrix) when branching occurs based on the node degrees
(i.e., Nm = nm). In this case, nodes with the same degree do
not necessarily have the same σ . Although α = 0.502 (when a
least-square fitting is applied to the entire data set), the quality
of the fit, measured by R2, is lower (0.963).
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FIG. 2. (Color) (a) Plots of σ vs w̃, calculated using Eqs. (2), (3),
and (5) at t = 6 × 105, are shown for a scale-free network with
1000 nodes when r = 1. (b) Logarithmic σ − w̃ plots are shown for
CRW and CBRW with a randomly picked source and when r = 0.1.
Equation (8) was used to calculate σ . When computing Q, the series
was truncated after n terms, where n is the first integer for which
rn < 10−16. The nodes are color-coded based on their distances from
the source. (c) The average α is plotted as a function of r and for
different values of q for a GCBRW, when there is only one source.
An α was calculated corresponding to each node (selected as the
single source) and the results were averaged. In each case α was
computed by a least-square linear fit. The error bars show three times
the standard deviations in α.

5. Generalized CBRW with a constant ws

CBRW, which includes CRW as a special case, can be
further generalized to incorporate a branching probability q.
In such a model, which we call generalized CBRW (GCBRW),
the content of node m either branches, with probability q, into
Nm > 1 packets or moves as one (Nm = 1), with probability
1 − q. It is easy to show that for such a model Eq. (7) is
valid if D is replaced by qD. For comparison with CRW
(q = 0) and CBRW (q = 1), the results for q = 0.5 are also
shown in Fig. 2(a). Interestingly, a much larger spread in σ is
observed for GBCRW when q = 0.5. Again α remains close
to 1/2 (0.504), although the fit quality is poor (R2 = 0.688),
suggesting that the power law can be fragile upon introduction
of coalescing-branching interaction among the RWers.

B. Damped RWs (r < 1)

We now discuss the important effect of damping, present
in most real-life networks. For example, protein degradations
by proteases can be viewed as damping in protein-protein
interaction networks [2–4]. Damping also brings out a fun-
damental difference between GCBRW (including CBRW and
CRW) and SRW: unlike GCBRWers, SRWers are generally
distinguishable when r < 1. With multiple damped SRWers
(dSRWers), Eq. (1) does not hold (although the problem is
solvable; see the Appendix). To preserve indistinguishability,
the simplest choice is to introduce the coalescing-branching
interaction among the RWers in GCBRW or its variants. Here,
we compute the long-term (steady state) σ for a GCBRW in

which ws and Nm are time independent. The steady state has

w = ws

∞∑
n=0

rnP n = ws(I − rP )−1.

Also, C(t + 1) = C(t) = C and X(t) = X are constants,
hence Eq. (3) can be solved to get C = ∑∞

n=0 r2n+2P nT

XP n or
σ (2) = v Q (the diagonal values of C), where Q is generalized
to incorporate damping, i.e.,

Q =
∞∑

n=0

r2n+2[P (P n)(2) − (P n+1)(2)].

Note that for a GCBRW, vm(t) = [σ 2(t) + w2(t)]K , where
K = I − qD. Hence

σ (2)(GCBRW; t = ∞) = w(2)[(I − KQ)−1 − I ]. (8)

Equation (8) implies that, unlike the r = 1 case, the nodes
do not necessarily cluster based on their node degrees. In fact,
as shown in Fig. 2(b), when r � 1 and with a single source, the
nodes are clustered based on their distances from the source,
because the RWers taking the shortest path from the source to
a given node carry much larger weights than the others. Thus,
both node degrees and proximity to the source may contribute
to node population formation. As demonstrated in Fig. 2(c),
these two competing effects can significantly change α. The
figure indicates that when there is only one source and in a
damped (r � 0.95) scale-free network with 1000 nodes, σ

and w̃ can be well fitted (R2 > 0.95) by a power-law relation
with α > 1/2. Indeed, αs larger than 1/2 have been reported
in real-world complex networks [17,26]. However, α < 1/2
can occur depending on the network size (see the Appendix).
Interestingly, deviation of α from 1/2 is significant even when
damping is very small (especially for CBRW, i.e., q = 1), a
phenomenon that is expected to be more pronounced in larger
scale-free networks (see the Appendix).

Evidently, the system parameters such as r , q (if such
a probability is introduced in the model), and the source
locations influence how the (w̃,σ ) pairs scatter on the log-log
plane, thus determining the goodness of a power-law fit. A
complete investigation of how the data distribution, e.g., the
shapes of data point clusters and the spread size within each
cluster, varies with the system parameters is beyond the scope
of the current study, but it definitely deserves to be further
investigated.

IV. CONCLUSIONS

In summary, our RW model incorporates three distinguish-
ing features: time dependence, information loss (damping,
r � 1), and coalescing-branching interactions among RWers.
This model is general and includes widely studied SRW and
CRW (and its variants CBRW and GCBRW) as special cases.
Exact, node-wise solutions are provided for w̃ and σ . For
time-independent networks, we also numerically investigate,
when t 
 1, whether σ and w̃ are related by a power law.
It is shown that in undamped (r = 1) GCBRW, although a
power-law relation (σ ∝ w̃α) can be fitted with α ≈ 1/2, the
quality of fit can be poor for intermediate q values. However,
for a single source and when the pervasive damping effect is
considered, the power-law relation becomes robust (R2 > 0.95
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for r � 0.95) with a new twist: the exponent α can easily take
a value other than 1/2.
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APPENDIX

1. Asymptotic behavior

As shown in the main text, for an undamped system with
time-independent ws and P , we have

w(t) = NRW[w∞t + w1 + O(t−η)],

where NRW = ∑
i wsi

is the number of RWers injected into the
system at each time step, w1 = 1

NRW
ws

∑∞
n=0(P n − P ∞) does

not depend on time, and η > 0. This solution is valid for any
RW model that is described by Eq. (1), including SRW and
CBRW.

For the covariance matrix, we assume the asymptotic form

C(t) = C∞tβ + O(tν) (ν < β),

and find β and C∞. Note that C∞, and any other coefficient
in the asymptotic expansion, has the following property:
P ∞T

C∞P ∞ = 0. To prove this, we observe that for any ma-
trix X, [P ∞T

XP ∞]ij = [ninj/(2E)2]sum(X), where sum(X)
denotes the sum of all elements of X. Therefore, for any vector
v, P ∞T

[−P T diag(v)P + diag(vP )]P ∞ = P ∞T

[diag(v(P −
I ))]P ∞ vanishes, because

∑
k vk = ∑

k,k′ Pk′kvk′ (recall that∑
k Pk′k = 1). Thus, Eq. (3) implies that

P ∞T

C(t + 1)P ∞ = P ∞T

C(t)P ∞

= · · · = P ∞T

C(0)P ∞ = 0, (A1)

because C(0) only has zero matrix elements. Hence, any
coefficient in the asymptotic expansion of C(t) must also
satisfy Eq. (A1). In the following subsections we use the
asymptotic expansion of w(t), and Eq. (A1) to find the
asymptotic behavior of σ (2)(t) in SRW and CBRW, provided
that P and ws are time independent.

a. SRW

Since w(t → ∞) = NRWw∞t , Eq. (6) suggests that, in a
SRW and in the limit of large t , the leading term of σ (2)(t)
grows linearly (or slower) with time. This is because the second
term in Eq. (6) cannot be larger than the first. Therefore, β � 1
and we first attempt the largest possible β value, i.e., C(t) =
C∞t + O(tν), where ν < 1. Recall that for a SRW v(t) =
w(t) = NRW[w∞t + w1 + O(t−η)]. Substituting these values
in Eqs. (3) and (5) and keeping the leading terms, we find

C∞ = P T C∞P + NRW[−P T diag(w∞)P + diag(w∞P )].

(A2)

Equation (A2) can be iteratively solved to get C∞ =
NRW

∑∞
n=0 P nT

[−P T diag(w∞)P + diag(w∞P )]P n. The di-
agonal elements of C∞ are then given by σ

(2)
∞ = NRWw∞Q,

where Q = ∑∞
n=0[P (P n)(2) − (P n+1)(2)]. Noting that w∞P =

w∞ and w∞(P ∞)(2) = w
(2)
∞ , we find w∞Q = w∞ − aw

(2)
∞ .

Thus

σ (2)
∞ (SRW) = NRW

(
w∞ − aw(2)

∞
)
. (A3)

To find the subleading term of σ (2)(t), we assume

C(t) = C∞t + C1t
ν + O(tν0 ) (ν0 < ν < 1),

and find the largest ν for which C1 does not vanish. For
any ν > 0, substituting C(t) in Eq. (3) and taking the sub-
leading contributions (terms in tν) results in C1 = P T C1P =
P ∞T

C1P
∞ = 0. If ν = 0, however, the same procedure results

in

C1 = P T C1P + NRW[−P T diag(w1)P + diag(w1P )] − C∞.

(A4)

Solving this equation iteratively, we find the following for the
diagonal elements of C1 (denoted by ρ1)

ρ1 = NRWw1Q − g(C∞), (A5)

where g(•) = (
∑∞

n=0 P nT • P n)diag, and (x)diag is a vector
comprising the diagonal elements of the matrix x.

b. CBRW

Assuming Nm is also time independent, we consider the
asymptotic form C(t) = C∞tβ + O(tν) and find the largest β

for which C∞ is nonzero (here ν < β). In a CBRW, v(t) =
[σ (2)(t) + w(2)(t)]K with K = I − D, where (as defined in
the main text) Dlm = δlm

Nm−1
Nm

. Therefore, v(t) takes the
asymptotic form of v(t) = v∞tμ + O(tμ0 ), where μ0 < μ, μ

is the maximum of 2 and β, and

v∞ = (
b1σ

(2)
∞ + b2N

2
RWw(2)

∞
)
K, (A6)

FIG. 3. (Color online) The figure shows the maximum relative
difference (as defined in the text) between the exact variances and the
approximate values. The red line (light gray in the print version) shows
how � decreases when the variances are approximated by σ (2)

∞ t2 +
ρ1t + ρ2. When only the leading term (σ (2)

∞ t2) is kept, the decrease in
� is much slower (blue line; dark gray in the print version). However,
after a long enough time, the variances are well approximated by the
dominant term. The results shown in the figure were computed for the
same network used in the main text and for a CBRW. A similar trend
is observed for a GCBRW with different q values (data not shown).
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FIG. 4. (Color online) For a scale-free network with 1000 nodes,
the maximum relative difference between the variances given by the
SRW and CBRW (with the assumptions Nm(t) = wm(t)�, r = 1) is
plotted as a function of time.

where b1 and b2 are either 0 or 1 depending on β: if β < 2,
b1 = 0 and b2 = 1, if β = 2, b1 = b2 = 1, and if β > 2, b1 = 1
and b2 = 0. Note that for the special case of CRW, K = I .
With the assumption that β � 2, we substitute C(t) and v(t)
in Eqs. (3) and (5) and keep only the leading terms to find

C∞ = P T C∞P − P T diag(v∞)P + diag(v∞P ). (A7)

From Eq. (A7) we get C∞ = ∑∞
n=0 P T n

[−P T diag(v∞)P +
diag(v∞P )]P n or σ

(2)
∞ = v∞Q. If β > 2, and so v∞ = σ

(2)
∞ K ,

we find σ
(2)
∞ = 0, showing that in the asymptotic expansion of

σ (2)(t) no term with an exponent larger than 2 exists. If β = 2,
v∞ = (σ (2)

∞ + N2
RWw

(2)
∞ )K , and we arrive at

σ (2)
∞ = N2

RWw(2)
∞ (F − I ), (A8)

where F = [I − KQ]−1. Equation (A8) is the same as Eq. (8)
with w replaced by NRWw∞. It is easy to see that F =
(I − Q)−1B, where B = [I + DQ (I − Q)−1]−1. Also, note
that w∞Q = w∞ − aw

(2)
∞ or equivalently w

(2)
∞ (I − Q)−1 =

(1/a)w∞. Therefore, Eq. (A8) can be rewritten as Eq. (7).
In a very similar way, one can show that the two subsequent

terms in the asymptotic expansion of C(t) are linear and

constant in time, i.e.,

C(t) = C∞t2 + C1t + C2 + O(t−ε) (ε > 0),

and that C1 and C2 satisfy the following equations:

C1 = P T C1P − P T diag(v1)P + diag(v1P ) − 2C∞,

C2 = P T C2P − P T diag(v2)P + diag(v2P ) − (C∞ + C1),

(A9)

where v1 and v2 are given by

v1 = (
ρ1 + 2N2

RWw∞ ∗ w1
)
K,

(A10)
v2 = (

ρ2 + N2
RWw

(2)
1

)
K,

where ∗ denotes element-wise multiplication. Here ρ1 and ρ2

are two vectors comprising of the diagonal elements of C1 and
C2 respectively, i.e.,

σ (2)(t) = σ (2)
∞ t2 + ρ1t + ρ2 + O(t−ε) (ε > 0).

Solving Eqs. (A9) one finds

ρ1 = 2N2
RW(w∞ ∗ w1)(F − I ) − 2g(C∞)F,

(A11)
ρ2 = N2

RWw
(2)
1 (F − I ) − g(C∞ + C1)F.

It is worth noting that CRW and CBRW can both be
regarded as special cases of GCBRW with q = 0 and q = 1,
respectively (q is the branching probability). The matrix K

for CRW and CBRW is equal to I and I − D respectively.
This suggests that in general for a GCBRW K = (I − qD).
Therefore, in the case of a GCBRW, one can use the
aforementioned equations to calculate σ

(2)
∞ , ρ1, and ρ2 with

K = (I − qD).
To compare the approximate solution given here with the

exact result obtained from Eq. (3), in Fig. 3 we plot (in red;
light gray in the print version) the maximum relative difference
between the two solutions, i.e.,

� = max
[
abs

([
σ 2

ai
(t) − σ 2

ei
(t)

]/
σ 2

ei
(t)

)]
,

where σ 2
ei

(t) is the exact solution for the variance of the node i

at time t , σ (2)
a (t) = σ

(2)
∞ t2 + ρ1t + ρ2, max denotes maximum,

and abs denotes absolute value. The figure also shows �, in
blue (dark gray in the print version), when only the leading
term (at large t) is considered, i.e., when σ (2)

a (t) = σ
(2)
∞ t2. As

FIG. 5. (Color online) For a scale-free network with 1000 nodes, the average total number of packets Ntot is plotted as a function of time
when (a) Nm = nm and (b) Nm(t) = wm(t)�. A random node was chosen as the source. When the data shown in (b) are fitted by a straight line
(red; light gray in the print version), the slope is 1.06 with R2 being 0.999.
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FIG. 6. (Color online) (a) The average α is plotted vs the number of the nodes in the network N , when damping is very small (r = 0.99).
The error bars represent the standard deviations of α. The top, middle, and bottom lines correspond to q = 1, q = 0.5, and q = 0 respectively.
(b) The average R2 is shown. The error bars are the standard deviations of R2. The top, middle, and bottom lines correspond to q = 0, q = 1,
and q = 0.5 respectively.

expected, in both cases � decreases as a function of time,
but a much faster decrease is observed when the constant and
the linear terms are also included in the solution. The results
indicate that after a large enough time σ (2)(t) = σ

(2)
∞ t2 is indeed

a good approximation.
Our results seem to suggest that CBRW differs from SRW

significantly even without damping (r = 1). We attribute this
difference to the packet branching rule at each node being time
independent. In fact, when Nm is set to increase linearly with
time, i.e., Nm(t) = wm(t)� (here x� gives the ceiling of x), at
the limit of large t , CBRW captures the key features of SRW:
σ 2

m(t → ∞) grows linearly with t and the leading contribution
depends only on node degrees. To verify this, we numerically
calculated σ 2

m(t) for such a system and for the SRW, and, for
each node, computed the relative difference between the two.
Figure 4 shows how

δ = maxm

{∣∣σ 2
m(SRW; t) − σ 2

m(t)
∣∣/σ 2

m(SRW; t)
}

varies with time, which clearly shows the convergence of the
two models in the limit of large t .

It is also of interest to investigate how the average total
number of packets Ntot scales with time when Nm(t) =
wm(t)� in comparison with the case of Nm = nm. The results
of our numerical calculations, obtained using a randomly
picked node as source and shown in Fig. 5, indicate that when
Nm = nm is time independent, Ntot converges to a constant
[Fig. 5(a)]. On the other hand, the figure indicates when
Nm(t) = wm(t)�, Ntot, with a good approximation, increases
linearly with time [Fig. 5(b)]. Note that the constant to which
Ntot converges, when Nm = nm, and the slope of the line, when

Nm(t) = wm(t)�, are generally dependent on the number of
sources.

2. Size dependence of the effect of small damping

In most cases even a small damping significantly changes
the power α when a single source is present. To investigate how
this effect is dependent on the size of the network, in Fig. 6(a)
we plot the average α as a function of the number of nodes N
for CRW (q = 0), CBRW (q = 1), and GCBRW with q = 0.5,
when r = 0.99. For eachN , the power α was averaged over all
nodes of 100 scale-free networks with N nodes. For CBRW
and GCBRW (with q = 0.5), the figure shows a significant
deviation from α = 1/2 for all studied networks. In the case
of a CRW the deviations are smaller, but still significant for
larger networks. The figure clearly indicates that damping,
even if very small, becomes more and more important in larger
networks. The average R2s are shown in Fig. 6(b).

3. Damped SRW

Although a network traversed by multiple damped SRWers
(dSRWers) is not described by Eq. (1) (because the RWers are
distinguishable), we can still find σ (2)(t) for such a system.
Since the variance of a dSRWer after t steps is just r2t

multiplied by that of a SRWer at time t , the following can
be written for a dSRW, provided that P and ws are constant,

σ (2)(dSRW; t) = ws

t∑
n=0

r2n[P n − (P n)(2)]. (A12)
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