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Spatial interactions in a modified Daisyworld model: Heat diffusivity and greenhouse effects
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In this work we investigate a modified version of the Daisyworld model, originally introduced by Lovelock
and Watson to describe in a simple way the interactions between an Earth-like planet, its biosphere, and the
incoming solar radiation. Here a spatial dependency on latitude is included, and both a variable heat diffusivity
along latitudes and a simple greenhouse effect description are introduced in the model. We show that the spatial
interactions between the variables of the system can locally stabilize the coexistence of the two vegetation types.
The feedback on albedo is able to generate equilibrium solutions which can efficiently self-regulate the planet
climate, even for values of the solar luminosity relatively far from the current Earth conditions.
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I. INTRODUCTION

The comprehension of the interaction mechanisms between
the Earth, its biosphere, and the solar radiation, driving global
climate changes, represents a complex and still open prob-
lem that requires a deeper understanding. Advanced climate
simulations can provide some insight into the complexity of
the system, even though the existence of many forcings and
parameters that are not easy to control represent a considerable
difficulty. As an alternative approach, simple models can
sometimes capture the fundamental dynamical mechanisms
of the system. The so-called Daisyworld model, originally
developed by Lovelock and Watson and [1–3], is one of the
most famous examples. The model is based on a hypothetical
planet, like the Earth, which receives the radiant energy coming
from a Sun-like star, and is populated by two kinds of identical
plants differing in their color: white daisies reflecting light and
black daisies absorbing light. The interactions and feedbacks
between the collective biota of the planet and the incoming
radiation form a self-regulating system where the conditions
for life are maintained. For a more complete review, see
Ref. [3].

The original Daisyworld is a zero dimensional model with
no explicit representation of space and negligible atmospheric
greenhouse effect. Solar radiation is assumed to be distributed
evenly over the planet and the two daisy populations receive
the same amount of radiation but, because of their contrasting
albedos, local microclimates with different temperatures are
generated. Results show that the surface temperature of the
Daisyworld remains almost constant for a broad range of the
solar constant. On the other hand, the fractions of daisies
covering the planet depend on the solar input.

The first model has been revisited and refined in several
papers [4]. However, only a few authors (see, e.g. [3])
investigated the spatial dependence of the model to study
the impact of different vegetation patterns and the role of
feedbacks in desert formation [3,5–9]. When the heat diffusion
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is constant, and the temperature does not continuously change
with latitude, the coexistence equilibrium of the two daisy
types is destabilized. Thus a striped pattern, consisting of black
and white daisy bands, related to a Turing-like process [4]
which causes the uniform equilibrium state to be unsta-
ble to nonconstant perturbations, emerges as an unrealistic
aspect [7,8].

In this work we present a version of the Daisyworld model
which includes spatial dependency, variable heat diffusivity,
and the greenhouse effect by means of a grayness function. It
is shown that the model exhibits significant features, including
a destabilization effect due to heat diffusion, a global heating
process driven by the greenhouse effect, and a remarkable
dependence on the initial conditions of both daisy coverage
and temperature profile.

II. MODEL

According to the Daisyworld model [1,2], the evolution of
white and black daisies is described by the logistic equations

dαw

dt
= αw(xβw − γ ), (1)

dαb

dt
= αb(xβb − γ ), (2)

where αw and αb are the fractions of surface covered by white
and black daisies, respectively, x = 1 − αw − αb is the fraction
of surface of fertile ground not covered by daisies, βw and
βb are the growth rates of white and black daisies, and γ is
the death rate per unit of time. The parameter γ is fixed to
0.3 [1,2,8], while the growth rate of the daisies is assumed to
be

β�(T ) =
{

1 − δ(Te − T�(T ))2 |Te − T�(T )| � δ− 1
2 ,

0 otherwise,
(3)

where the subscript � denotes the species (either w or
b), δ = 0.003 265, which corresponds to a growth interval
5 ◦C � T�(T ) � 40 ◦C, T is the surface temperature, and T�

represents the local temperature of each daisy species [1,2].
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The maximum value β = 1 is reached when the local tem-
perature is equal to the effective temperature Te = 22.5 ◦C.
In a simple linear approximation [1,3], the local temperature
depends on the albedo of the Daisyworld surface A and on
T as T� = q(A(θ,t) − A�) + T (θ,t), where q is a measure of
local heat diffusion, assumed to be q = 20 K according to the
original model [1,2]. The albedo A of the planet depends on
the coverage in the following way:

A = αwAw + αbAb, (4)

where Aw and Ab represent the albedos of the two species,
which, in the original papers [1,2], are set to Aw = 0.75
and Ab = 0.25, respectively (here we assume that there is no
bare ground). The temperature at which the planet radiates is
calculated from the equilibrium between absorbed and emitted
radiation, σT 4 = SL(1 − A), where σ is the Stefan’s constant,
S is the solar constant, and L is a dimensionless parameter that
describes the luminosity of the Daisyworld’s sun (L = 1 for
the present Earth). Numerical simulations show that the system
settles down towards an equilibrium solution for a wide range
of values of the luminosity 0.5 � L � 1.5 [1,8].

The development of a Daisyworld model with spatial de-
pendence gives room for (1) the possibility of inhomogeneous
solar forcing in a spherical planet, with explicit differences
between poles and equator, and (2) the direct use of the heat
diffusion equation, so that the radiative equilibrium equation
can be replaced by

ρcp

∂T

∂t
= (1 − A)R(θ ) − σT 4 + ∇ · [χ (∇T )], (5)

where cp and χ are the heat capacity and the conductivity
of the Earth, ρ is the mass density of the atmosphere, and R

describes the incident radiation. As a first approach, to describe
a spherical planet, we assume that the temperature T (θ,t) and
the surface coverage depend only on time and on latitude θ

(−90◦ � θ � 90◦). The inhomogeneous solar forcing is taken
into account by introducing the following simple functional
form for R:

R(θ ) = 4

π
SL cos(θ ), (6)

where we used S = 1366 W m2, which is a typical value for
the solar constant. Since one of the weak points of the classical
Daisyworld model is the absence of the atmosphere and the
contribution of greenhouse gases, playing an important role in
an Earth-like planet, is not included, we introduce, as a further
step, the greenhouse effect in the model. This effect can be
described by introducing a grayness function g(T ) [10,11] in
Eq. (5), through the term g(T )σT 4. As a final step, we consider
a latitude dependence of the Earth’s conductivity, χ = χ (θ ).
Both functions g(T ) and χ (θ ) require to be properly modeled.

By adding these terms and using spherical coordinates, the
modified Daisyworld model is described by the following set
of equations:

∂αw

∂t
= αw[(1 − αw − αb)βw(T ) − γ ], (7)

∂αb

∂t
= αb[(1 − αw − αb)βb(T ) − γ ], (8)

∂T

∂t
= 1

ρcp

[1 − A(θ,t)]R(θ ) − σ

ρcp

g(T )T 4

+ 1

r2
E cos θ

∂

∂θ

[
κ(θ ) cos θ

∂T

∂θ

]
, (9)

where αw,b are functions of both latitude and time, κ(θ ) =
χ (θ )/ρcP , and rE � 6.37 × 108 cm is the Earth’s radius.
We use the expression of the Laplace operator in spherical
coordinates, taking into account that, in our case, −90◦ �
θ � 90◦.

III. STABILITY ANALYSIS

To investigate the role of the greenhouse effect into the
energy budget between emitted and absorbed radiation in
the Daisyworld we performed the stability analysis on the
model described by Eqs. (7)–(9). By following the approach
of Refs. [7,8], these equations can be written in a compact
form as

∂u

∂t
= uφ(u,v,T ), (10)

∂v

∂t
= vψ(u,v,T ), (11)

∂T

∂t
= h(u,v,T ) + 1

r2
E cos θ

∂

∂θ

[
κ(θ ) cos θ

∂T

∂θ

]
, (12)

where u
.= αw, v

.= αb, and

φ(u,v,T ) = (1 − αw − αb)βw(T ) − γ,

ψ(u,v,T ) = (1 − αw − αb)βb(T ) − γ,

h(u,v,T ) = 1

ρcp

{[1 − A(θ,t)]R(θ ) − σg(T )T 4}.

Note that in Eq. (12) the greenhouse term is included in
h(u,v,T ).

In the following subsections, we discuss the stability of the
system for three different cases: (A) without greenhouse effect
and diffusion; (B) with greenhouse effect and no diffusion;
(C) with both greenhouse effect and diffusion.

A. No greenhouse effect [g(T ) = 1] and no diffusion [κ(θ ) = 0]

For fixed T , four equilibrium points Pi = (u,v), corre-
sponding to four different physical situations, are obtained
as follows.

(i) P1 = (0,0) ⇒ No daisies. Unstable equilibrium point.
(ii) P2 = (ū,0) ⇒ White daisies only. This is a stable

equilibrium point if T � 292.13 K.
(iii) P3 = (0,v̄) ⇒ Black daisies only. This is a stable

equilibrium point if T � 298.87 K.
(iv) P4 = (uc,vc) ⇒ Coexistence of white and black

daisies. This is a stable equilibrium point if 292.13 K < T <

298.87 K.
This case was previously studied in Refs. [7,8].
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B. Greenhouse effect [g(T ) �= 1] and no diffusion [κ(θ ) = 0]

Let’s now study the effects of the greenhouse by choosing
a grayness function

g(T ) = 1 − 1

2
tanh

(
T

T0

)6

. (13)

This functional form of g(T ), with T −6
0 = 1.9 × 10−15 K−6,

takes into account the infrared emission due to the Earth’s sur-
face which is assumed to increase with the surface temperature
T and which implies a relaxation of the blackbody radiation
hypothesis [11].

By following the standard equilibrium point analysis,
we linearized Eqs. (10)–(12) and studied the sign of the
eigenvalues of the associated Jacobian matrix. We thus write
down the variables as the sum of mean quantities (uc,vc,Tc)
and small amplitude perturbations (u′,v′,T ′)

u = uc + u′, (14)

v = vc + v′, (15)

T = Tc + T ′, (16)

with (u′,v′,T ′) � (uc,vc,Tc) and Pc = (uc,vc,Tc) is the equi-
librium point associated with the coexistence solution. After
linearizing Eqs. (10)–(12), the Jacobian matrix (J ) at the
equilibrium point Pc

J (Pc)

=

⎡
⎢⎣

φ(Pc) + ucφu(Pc) ucφv(Pc) ucφT (Pc)

vcψu(Pc) ψ(Pc) + vcψv(Pc) vcψT (Pc)

hu(Pc) hv(Pc) hT (Pc)

⎤
⎥⎦

(17)

has been evaluated. In the Jacobian calculation we use the
condition φ(Pc) = ψ(Pc) = 0, satisfied by the coexistence
solution [7,8]. The stability of the system is defined by the
properties of the J eigenvalues obtained from the solutions of
the equation E(λ) = 0, where E(λ) is defined as

E(λ) =
∣∣∣∣∣∣
ucφu − λ ucφv ucφT

vcψu vcψv − λ vcψT

hu hv hT − λ

∣∣∣∣∣∣, (18)

in which the dependence of φ, ψ , and h on Pc has been omitted.
The zeros of E(λ) are obtained by expanding with respect

to the third column:

E(λ) = (hT − λ)

∣∣∣∣ucφu − λ ucφv

vcψu vcψv − λ

∣∣∣∣
− vcψT

∣∣∣∣ucφu − λ ucφv

hu hv

∣∣∣∣
+ucφT

∣∣∣∣vcψu vcψv − λ

hu hv

∣∣∣∣. (19)

Since the derivatives of the functions φ and ψ are of order δ

and δ � 1 [see Eq. (3)], the eigenvalues can be written as

λ1 = hT + O(δ), (20)

λ2 = −b + O(δ), (21)

λ3 = cδ + O(δ2), (22)

where b and c are two constants with b > 0 and c < 0 [8]. The
system has two negative eigenvalues (λ2 and λ3); therefore,
the stability only depends on the sign of λ1 which is related to
the sign of hT . A calculation shows that

hT = 1

ρcp

{
−σT 3

[
dg

dT
T + 4g(T )

]
+ R

5

}
. (23)

By defining h̃T = (ρcphT )/(σT0
3), ζ = R/(5σT0

3) and set-
ting x = (T/T0)3, we obtain

h̃T = −x[−3x2 cosh−2(x2) + 4 − 2 tanh(x2)] + ζ, (24)

and, as a consequence,

h̃T < 0 ⇒ x > x0 = 0.149. (25)

This condition sets a critical value of temperature below which
the coexistence solution becomes unstable. According to our
choice T0 = 284.15 K, the coexistence solution is stable if
T > 150.65 K, but considering that the coexistence solution
exists if 292.13 K < T < 298.87 K, the grayness function
does not destabilize it.

C. Greenhouse effect [g(T ) �= 1] and constant diffusion
[κ(θ ) = const]

The coexistence solution can be destabilized only in the
presence of a mechanism, such as the diffusion process, which
is able to set one of the three eigenvalues greater than zero.
The role of the diffusivity can be evaluated through the stability
analysis on Eqs. (10)–(12), in which we consider a simplified
diffusion term [8]

∂u

∂t
= uφ(u,v,T ), (26)

∂v

∂t
= vψ(u,v,T ), (27)

∂T

∂t
= h(u,v,T ) + D

∂2T

∂θ2
, (28)

where we set κ(θ )/r2
E = D = const and where we neglect

the term of the Laplace operator which is proportional to the
temperature gradient [7,8]. By linearizing the system and by
choosing a temperature perturbation in the form δT ∝ eikθ θ ,
the eigenvalues of the Jacobian matrix can be obtained as the
zeros of the function E(λ,Dkθ ), whose functional form is the
same as that of Eq. (18) with hT − Dkθ

2 − λ replacing hT − λ.
In this particular case, the eigenvalues become

λ1 = hT − Dkθ
2 + O(δ), (29)

λ2 = −b − k2
θ + O(δ), (30)

λ3 = c(Dkθ )δ + O(δ2), (31)
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where c(Dkθ ) is a function of Dkθ [7,8]. It is possible to note
that the eigenvalues λ1 and λ2 are negative, while the sign of
the third eigenvalue λ3 can change. Following [7,8], it can be
shown that the sign of λ3 depends on Dkθ and the first unstable
mode is given by Dkθ = 8. This critical parameter, higher than
the corresponding parameter evaluated in Ref. [7] where no
greenhouse term was included, is a measure of the effect of
the diffusion and the grayness function on the stability of the
coexistence solution. In the Daisyworld model we developed,
the destabilization process is modified by the concurrent effect
of both the greenhouse effect, modeled through the grayness
function, and the latitudinal diffusion process.

IV. NUMERICAL RESULTS

Equations (7)–(9), with the condition (4), have been solved
numerically by using a second order Runge-Kutta scheme
for time integration and spectral methods for integration on
latitude θ . The poles (θ = ±90◦) are singular points for the
Laplace operator in spherical coordinates. At the poles we
assume a free-flux boundary condition, corresponding to zero
derivatives for all the variables. In this way the continuity of
the Laplacian in these points is ensured, providing that suitable
parity boundary conditions are imposed.

In order to recover the classical results, a first set of solutions
was calculated by imposing a constant normalized grayness
function g(T ) = 1 and normalized heat conductivity κ(θ ) = 1
for each θ . In this case, the initial condition for T is set to
T (θ,0) = −20 + 40L cos2(θ ), and the initial coverages are
constant αw(θ,0) = αb(θ,0) = 0.5 over θ . Figure 1 shows
the equilibrium values of temperature and daisy coverage,
as functions of the variable θ , for three different values
of L. The equilibrium temperature profile is the expected
one, namely a bell shaped curve peaked at the equator
(θ = 0◦). The increase or decrease of L corresponds to a
global enhancement or decrease of temperature [1,8]. When
L assumes the lowest value L = 0.5, corresponding to half
the present solar luminosity, the planet becomes completely
frozen, the highest temperature being T (θ = 0◦) � −120 ◦C.
Conversely, when the value of L is the highest, L = 1.5,
the planet is extremely hot, the lowest temperature being
T (θ = ±90◦) � 100 ◦C. The behavior of daisies coverage is
shown in the middle and lower panels of Fig. 1. An increase
of luminosity L produces an increase of the planetary surface
covered by black daisies and a decrease of the area covered
by white daisies. This behavior indicates that black daisies
withstand high temperatures, while the growth of white flowers
is favored by low temperatures. By changing L in a continuous
way the contour plots of equilibrium temperature and daisy
coverages as functions of latitude and luminosity L can be
built (Fig. 2). Numerical results show that, after some time
steps, the system settles down to an equilibrium state where
the various quantities do not change anymore in time. Figure 2
shows that global temperature increases with luminosity and
the planet is almost completely frozen for L � 1. The daisy
coverage is also related to L with an enhancement of black
daisies for high values of luminosity.

In the classical Daisyworld model the heat conductivity
is assumed to be constant, while actually it depends on
temperature. In our model we use a heat conductivity peaked at
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FIG. 1. (Color online) Stationary solutions for (a) temperature
T (θ ), (b) white daisy population αw(θ ), and (c) black daisy population
αb(θ ), as a function of latitude, from the numerical solution of
Eq. (9), using κ(θ ) = 1, g(T ) = 1, and three different values of the
parameter L.
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FIG. 2. (Color online) Contour plots of the stationary solutions
for (a) T (θ ), (b) white daisy population αw(θ ), and (c) black daisy
population αb(θ ), in the plane (L,θ ) using κ(θ ) = 1 and g(T ) = 1.

the equator and decreasing toward the poles, where it vanishes.
This is modeled by using the following functional form:

κ(θ ) = 1 + cos(2θ )

2
, (32)

which is symmetrical around θ = 0◦. Results obtained by
using Eq. (32) in Eq. (9) and with the same initial conditions as
in previous case are shown in Figs. 3 and 4. First of all, we note
that the temperature variations with L are smaller with respect
to the previous case in which the thermal diffusivity was not
included. Moreover, as shown by middle and lower panels of
Fig. 4, heat diffusion produces, for extreme values of L, larger
differences in daisy fraction between polar and equatorial
regions. Indeed, for low L values, the black daisy coverage
in the region 0◦ < θ � 40◦ is higher than in the previous
case and for all L values the polar areas (|θ | � 60◦) are
mainly populated by white daisies. A particular characteristic
is the presence of an asymmetry in daisy coverage profiles
not observed in the previous case. This behavior is due to the
Laplace operator which consists in two different terms: the
first one is symmetric, while the second one is not, since it is
proportional to the derivative of κ(θ ) with respect to θ .

A crucial point that we want to study is the effect of
the atmospheric greenhouse gases on the planetary energy
budget. This is done by using the grayness function given in
Eq. (13) into the heat equation. The results obtained with
the greenhouse effect are shown in Figs. 5 and 6. When
both greenhouse and diffusion terms are considered, the
global equilibrium temperature is changed again. A general
increase of the temperature is found with respect to the
previous case, where only the heat diffusion was added to the
original Daisyworld model. The greenhouse effect acts as a
self-regulating process for the planet climate. The temperature
variations show a typical range between −30 ◦C (at the poles,
for L = 0.5) and 110 ◦C (at the equator, for L = 1.5). Figure 6
(middle and lower panel) show that there is an increase
of black daisy coverage in the region |θ | � 40◦ for L > 1.
With the inclusion of the greenhouse effect the symmetry is
recovered because, when the grayness function is considered,
the diffusion and the Stefan-Boltzmann terms are of the same
order of magnitude; the symmetry with respect to θ is thus
restored because these two terms are opposite in sign.

The equilibrium vegetation profiles depend also, to some
extent, on the initial conditions of daisy coverage. In particular,
by changing the initial conditions, the temperature profile
remains unchanged, while the surface coverage gives rise to
different dynamics. This can be seen in Figs. 7 and 8, which
show the results obtained by leaving the initial temperature
profile unchanged and choosing the initial daisy coverage in
the form

αw(θ,0) =
{∣∣ θ

π

∣∣ if |θ | < 85◦,
0.5 otherwise,

(33)
αb(θ,0) = 0.5 − αw(θ,0).

We note that, due to the chosen symmetry conditions, the
time evolution of the fraction coverage for both species is
symmetric but shows different shapes and values with respect
to the previous case.

Another issue which is worth investigating is the occurrence
of multiple steady states and the stability of the system with re-
spect to the presence of perturbations in the initial temperature
profile. To this aim, we numerically solved Eqs. (7)–(9) for a
set of initial conditions such as T (θ,0) = 295.5 + cos(kθθ ),
αw(θ,0) = T (θ,0)−292.13

10 , and αb(θ,0) = 298.87−T (θ,0)
10 , where

052717-5



ALBERTI, PRIMAVERA, VECCHIO, LEPRETI, AND CARBONE PHYSICAL REVIEW E 92, 052717 (2015)

Temperature  (oC)

−90 −60 −30 0 30 60 90
θ

−100

−50

0

50

100

T
(θ

)

L=0.5
L=1.0
L=1.5(a)

White Daisy Fraction Coverage

−90 −60 −30 0 30 60 90
θ

0.0

0.1

0.2

0.3

0.4

0.5

α w
(θ

)

L=0.5
L=1.0
L=1.5

(b)

Black Daisy Fraction Coverage

−90 −60 −30 0 30 60 90
θ

0.0

0.1

0.2

0.3

0.4

0.5

α b
(θ

)

L=0.5
L=1.0
L=1.5

(c)

FIG. 3. (Color online) Stationary solutions for (a) temperature
T (θ ), (b) white daisy population αw(θ ), and (c) black daisy population
αb(θ ), as a function of latitude, by numerical solution of Eq. (9), using
the profile (32) for κ(θ ) and g(T ) = 1, and three different values of
the parameter L.
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FIG. 4. (Color online) Contour plots of the stationary solutions
for (a) T (θ ), (b) white daisy population αw(θ ), and (c) black daisy
population αb(θ ), in the plane (L,θ ) using the profile (32) for κ(θ )
and g(T ) = 1.

0 < kθ < 25. These peculiar initial conditions are chosen in
a way that the initial coverages correspond to the equilibrium
coexistence solution and the temperature is kept in the range
where the coexistence solution is stable. The function cos(kθθ )
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FIG. 5. (Color online) Stationary solutions for (a) T (θ ), (b) white
daisy population αw(θ ), and (c) black daisy population αb(θ ), as
a function of latitude, by numerical solution of Eq. (9), using the
profile (32) for κ(θ ) and (13) for g(T ), and three different values of
the parameter L.
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FIG. 6. (Color online) Contour plots of the stationary solutions
for (a) T (θ ), (b) white daisy population αw(θ ), and (c) black daisy
population αb(θ ), in the plane (L,θ ) using the profile (32) for κ(θ )
and (13) for g(T ).

is introduced to study how initial temperature profile changes
can affect the solutions and allows one to build up diagrams
showing when multiple solutions take place. Figures 9, 10,
and 11 show the temperature and daisy coverage solutions
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FIG. 7. (Color online) Same as Fig. 5, but with different initial
values for vegetal coverages.

as functions of latitude and kθ for three different values of
L (L = 0.5 Fig. 9, L = 1.0 Fig. 10, and L = 1.5 Fig. 11).
We remark that the temperature profile shape is almost not
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FIG. 8. (Color online) Same as Fig. 6, but with different initial
values for vegetal coverages.

affected by the initial perturbation, since it does not vary
substantially with kθ and only an increase of temperature with
L is found, as expected, without changes in the profile shape.
On the other hand, the perturbations clearly affect the daisy
coverages, which are found to significantly depend on kθ . For
L = 0.5 (Fig. 9), a striped pattern appears when kθ � 8. This
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FIG. 9. (Color online) Contour plots of the stationary solutions
for (a) T (θ ), (b) white daisy population αw(θ ), and (c) black daisy
population αb(θ ), in the plane (k,θ ) for different initial conditions
according to the value of k and fixing L = 0.5.

value of kθ is in agreement with the value found through
the stability analysis. The striped pattern is simultaneously
observed in both the white and black daisy coverages, with
the two populations covering almost the same area even
for this low luminosity value. This effect is probably related
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FIG. 10. (Color online) Contour plots of the stationary solutions
for (a) T (θ ), (b) white daisy population αw(θ ), and (c) black daisy
population αb(θ ), in the plane (k,θ ) for different initial conditions
according to the value of k and fixing L = 1.0.

to the grayness function which regulates the temperature in a
way that black daisies increase their growth rate. For L = 1.0,
the same kθ critical value is found and a large scale pattern
is observed in addition to the stripes. More precisely, a clear
separation between polar and equatorial regions is evident,
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FIG. 11. (Color online) Contour plots of the stationary solutions
for (a) T (θ ), (b) white daisy population αw(θ ), and (c) black daisy
population αb(θ ), in the plane (k,θ ) for different initial conditions
according to the value of k and fixing L = 1.5.

with white daisy stripes being dominant in the polar regions
and black stripes at |θ | � 40◦. For L = 1.5, the equilibrium
solutions for the daisy coverages change again; only the large
scale pattern survives, while no striped pattern occurs. The
different behaviors observed for different L values are mainly
attributable to the grayness function, whose effects are more
pronounced for higher values of the temperature. On the other
hand, the diffusion process produces a striped or continuous
pattern for both white and black daisies according to the
different values of the L parameter and to the different initial
conditions when a small perturbation is introduced.

V. CONCLUSIONS

We investigated a modified Daisyworld model, where
spatial dependency, variable heat diffusivity, and greenhouse
effect are explicitly taken into account. The greenhouse effect
has been modeled through a grayness function which modifies
the blackbody radiative coefficient. We found that, at variance
with previous results, the system is able to self-regulate even
in the presence of values of the incident luminosity which
are far from the current Sun-Earth conditions. In particular,
the mutual exclusion of the two vegetation types is observed
for particular initial conditions. Our investigation leads to the
following conclusions.

(i) The diffusion process is able to destabilize the system
and plays an important role in setting the symmetry with
respect to the equator. The greenhouse effect, modeled through
a grayness function, affects the temperature evolution and
contributes to self-regulating the planet climate. Moreover,
although it is seen that the grayness function does not
destabilize the system, it modifies its stability properties.

(ii) The final equilibrium state is significantly dependent
on the initial conditions. The initial conditions of daisy
coverage influence the vegetation profiles although they do
not significantly modify the temperature behavior. It was also
found that, when small perturbations are present in the initial
conditions of both temperature and daisy coverages, this gives
rise to striped patterns for low-to-intermediate luminosity
values when the perturbation wave number exceeds a threshold
value. For high luminosities, the greenhouse effect leads to the
disappearance of the striped patterns.

Of course the model can be further enriched by considering,
for example, asymmetric initial conditions with respect to the
equator. Moreover, extensions of the model to more realistic
conditions, as for example the dependence of cp and κ on
temperature and more realistic greenhouse effects can also be
introduced.
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