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Totally asymmetric simple exclusion process simulations of molecular motor transport
on random networks with asymmetric exit rates
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Using the totally asymmetric simple-exclusion-process and mean-field transport theory, we investigate the
transport in closed random networks with simple crossing topology—two incoming, two outgoing segments, as
a model for molecular motor motion along biopolymer networks. Inspired by in vitro observation of molecular
motor motion, we model the motor behavior at the intersections by introducing different exit rates for the two
outgoing segments. Our simulations of this simple network reveal surprisingly rich behavior of the transport
current with respect to the global density and exit rate ratio. For asymmetric exit rates, we find a broad current
plateau at intermediate motor densities resulting from the competition of two subnetwork populations. This
current plateau leads to stabilization of transport properties within such networks.
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I. INTRODUCTION

Transport of matter and energy is essential for maintain-
ing complex structures. A constant driving can create and
maintain the order in man-made structures as well as in
living organisms. In fact, efficient transport is crucial for
people living in modern societies: food, building components,
energy, and people themselves are transported daily between
rural and urban areas. Similarly, on the subcellular level,
nutrition and molecular building blocks are transported from
the periphery of the cell to its core [1–3]. Motor proteins
move actively along the filament network, which also acts
as cytoskeleton of the cell [4–8]. In both cases, maintaining
a robust transport is crucial, in particular with respect to
variations in density. In many transport systems, the transport
is carried out by unidirectional movement of carriers (e.g.,
trucks, molecular motors, etc.), along networks consisting of
linelike pathway segments and crossings. Such unidirectional
particle motion has been modeled by the well-known totally
asymmetric simple exclusion process (TASEP) [9–11], which
has recently been applied to transport along cytoskeleton
assemblies [12,13]. Originally formulated for one-dimensional
systems [14], TASEP was extended to networks by defining the
dynamics at crossings. These previous works discuss in detail
the role of network structure in the modeling of complex traffic
problems [12,13].

Yet, recent experimental observation of molecular motor
motion highlights the nontrivial dynamics of molecular motors
at crossings: specific types of motors were found to switch
between segments with specific probabilities [15–19]. This
preference at crossings might crucially determine the transport
properties of the network. Earlier TASEP simulations of large
networks [12,13] used symmetric exit rates, and only recent
simulations of a single crossing show the heterogenous motor
density that can arise from a preference in outflow directions
among the crossing filaments [20,21].

Here, we study the role of asymmetric exit rates on the
transport behavior of large networks using the TASEP model.
Inspired by in vitro experiments, in which typically arrays of
cytoskeleton filaments are created by attachment to a surface,
we focus on a network topology of intersecting lines in a
two-dimensional plane: in this topology intersections consist

of a single crossing of two filaments. We show that interesting
heterogeneous network densities and network transport arises
from the local asymmetric exit rates. These exit rates, together
with the global motor density crucially determine the transport
capacity of the network. We identify four regimes of current-
density behavior: A low-density regime controlled by the rela-
tive exit probabilities and network topology, a jamming regime
with heterogeneous density and resulting complex interplay of
subnetwork currents, a saturation regime, and a high-density
regime with local dynamics and homogenous density. The
extent of each regime and the actual value of the current is
found to strongly depend on the relative exit rates at crossings.

II. MODEL DESCRIPTION

We model cytoskeleton assemblies with a two-dimensional
network of intersecting segments. Inspired by in vitro ex-
periments, where the cytoskeleton is typically grown by
sedimenting filaments on a glass plate [Fig. 1(a)], we create
a network topology by projecting lines with random positions
and directions on a square [Fig. 1(b)]. The part of a line
(filament) between two crossings is defined as a segment.
Every segment has 1D structure consisting of L lattice sites.
Each site can accommodate maximally one motor. The motors
can move from site to site along one direction only, which
is defined randomly, and once defined, is fixed during the
entire simulation run. For simplicity we define a uniform
length L for all segments; we found that this produces more
robust results while not affecting the general transport behavior
through the network [22]. We introduce periodic boundary
conditions by connecting the beginning and end of every
line at the boundaries of the square, thus creating a closed
network. The resulting network is characterized by the number
of crossings Nv , the number of segments Ns = 2Nv , and
the total number of sites Ms = (2L − 1)Nv . The network is
subsequently populated with motors at a density ρ, defined as
the ratio of the total number of motors and the total number of
sites Ms .

Molecular motor motion is modeled with the TASEP,
in which particles perform unidirectional random sequential
hops constrained by the fact that they may not overlap with
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FIG. 1. (Color online) (a) Experimentally obtained microtubule
network. (b) Simulated network. (c) Sketch of crossing with probable
particle paths corresponding to γ = 0.8.

each other. During a single update, a motor advances one
site forward if the target site is unoccupied; otherwise, no
progression occurs. Network sites are updated in random
sequential order and one update cycle corresponds to Ms

single-site updates.
When a motor arrives at the crossing, it continues with

probability γ along one outgoing segment and with probability
1 − γ along the other, independently of the incoming segment.
As shown in Fig. 1(c), this can account for the local topology
of in vitro biopolymer networks, where the preferred filament
(overpass filament 1) is lying “on top” of the other filament
(underpass filament 2). The probability γ thus defined for
every crossing is kept constant during the simulation, and
is hence a fixed property of the network. Our approach is
based on the experimental observation [15] that motors with
cargo bead attached are more likely to stay on the overpass
filament and change direction when traveling on the underpass
filament, making the overpass filament always preferable [23].
For simplicity, we define equal γ for all crossings independent
of the history of motor motion. For completeness, conse-

quences of history-dependant motor motion are discussed in
Appendix C.

Finally, we neglect the possible unbinding of motors, which
is observed in Refs. [15,24], and studied in simulations by
Neri et al. [13]. Such unbinding weakens the correlations in
the traffic flow of the motors. However, it was shown that for
motors with attached cargo bead [15] the unbinding probability
at the crossings is small or negligible. Neglecting unbinding
allows us to focus on the physical effects of jamming and
flow [25] and obtain a simple physical picture in terms of
γ . The control parameters of our simulations are thus the
exit probability γ , which due to the symmetry we choose as
0.5 � γ � 1, and the global motor density 0 < ρ < 1. We
consider relatively large networks with Ns∼500 and uniform
segment length L = 500. All data have been averaged over
10 000 cycles in steady state, after discarding the transient
(initial ∼3000 cycles).

III. RESULTS

The effect of exit probability γ on the network current is
shown in Fig. 2, where we plot the total current versus density
ρ for various values of γ (blue solid curves). For comparison,
we also show the mean-field current through a single segment
Js = ρ(1 − ρ) (black dashed line) [26] that exhibits a
maximum at ρ = 0.5 due to competition of growing density
increasing the current and density-induced jamming reducing
it. The network current behaves similar to that of a single
segment for symmetric exit rates (γ = 0.5, upper blue solid
curve in Fig. 2): it is symmetric around ρ ∼ 0.5 and deviates
from that of the single segment only at densities around
0.5. The situation changes for asymmetric exit probability
(γ �= 0.5), where the network current becomes asymmetric
and progressively reduces and flattens with increasing γ , until
at γ ∼ 0.9 when it becomes largely independent of density.
Thus, the asymmetric exit probability reduces the network
current and stabilizes it at the same time.

How does this emerging current plateau arise from the
interplay of currents in the network? To answer this question
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FIG. 2. (Color online) Transport current J dependence on global
density ρ for different exit probabilities γ obtained from the TASEP
simulations. Dashed black curve is shown for comparison with the
current through single segment. Data is averaged over 10 000 cycles
after waiting for 3000 cycles to reach steady state.
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FIG. 3. (Color online) Local density distribution (shown by
color) in segments (horizontal axis), depending on average global
density ρ (vertical axis). (a) γ = 0.5, homogenous distribution.
(b) γ = 0.8, heterogenous distribution. (c) Histograms of density
distributions for γ = 0.8 for high-preferability segments are shown
by the red (light gray) curve, and for low-preferability segments are
shown by the blue (dark gray) curve. The three panels show different
global densities ρ. Large difference in the distribution occurs for the
intermediate density.

we investigate the distribution of individual segment densities
ρs . We compare density distributions for symmetric and
asymmetric exit probability in Fig. 3. For γ = 0.5, the density
is homogeneous across the entire network: local and global
densities largely coincide with only minor variation across
segments [Fig. 3(a)]. For γ = 0.8, in contrast, we find strong
inhomogeneity at intermediate global density [Fig. 3(b)]: the
asymmetric exit probability leads to redistribution of paths
and resulting redistribution of segment densities. Indeed, the
asymmetric exit probability redistributes the motors into two
subsystems: associated with the vertex exit probabilities, the
network can be considered as consisting of two interconnected
subnetworks, one consisting of segments with entry probabil-
ity γ and the other consisting of segments with probability
1 − γ . The subnetwork with higher entry probability should
populate faster, leading to the heterogeneous distribution of
densities shown in Fig. 3(b). This is indeed confirmed in the
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FIG. 4. (Color online) (a) Transport current J for γ = 0.8 calcu-
lated using TASEP model is shown by the blue (dark gray) curve and
calculated using iteration method is shown by the brown (light gray)
curve. Homogeneses current distrusting Js = ρs(1 − ρs) through a
single segment is shown by dashed black curve. Dashed green
(light gray) lines show approximate solution obtained using two
subnetwork approach. (b) Dependence of mean densities in low-
〈ρl〉 and high-preferability 〈ρh〉 bands on the global density ρ is
shown by the blue (dark gray) and red (light gray) color, respectively.
Shaded blue and red areas show the density distribution within the
bands. Dashed black curve shows the mean density of crossings 〈ρv〉.
(c) Derivatives ∂〈ρh〉/∂ρ and ∂〈ρl〉/∂ρ corresponding to mean growth
rates in high- and low-preferability subnetworks are shown by the red
(light gray) and blue (dark gray) color, respectively. In all figures ρ∗

1 ,
ρ∗

2 , and ρ∗
3 show transitions between different regimes.

subnetwork density distributions as shown in Fig. 3(c): at inter-
mediate ρ, the density of the high-preferability subnetwork has
grown much more, as reflected in the shift of the distribution
to higher density. Due to interplay of the individual seg-
ments, the density within each subnetwork is heterogeneously
distributed.

To link this density evolution to the total current, we plot
average densities of the two subnetworks together with the total
current in Figs. 4(a) and 4(b). Clearly, the high-preferability
subnetwork takes up particles at a faster rate as shown in
Fig. 4(b); this is a direct result of the higher entry probability.
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The initial slopes of the growing densities in high- and low-
preferability subnetworks are 2γ and 2(1 − γ ), respectively,
reflecting the two entry probabilities. When roughly half of
the network sites are occupied (ρ ∼ 0.5), high-preferability
segments become saturated, and particles are increasingly
taken up by the low-preferability segments. This interplay
of the two subnetworks leads to stabilization of the total
network current: as we will see below, jamming effects in
the high-preferability subnetwork lead to an emerging state
in the low-preferability subnetwork with rapidly changing
density but constant current, which ultimately leads to the
current plateau as demonstrated in Fig. 4(a). This change of
contributions is most clearly reflected in the derivatives of
the densities as shown in Fig. 4(c); it qualitatively explains
the stabilization of current in the network. While the current
is reduced, it becomes largely independent of density. At
even higher density, the network becomes homogeneous and
the difference between subnetworks vanishes; see Fig. 4(b).
Hence, our approach to reduce the network into two interfering
subnetworks allows us to understand the network behavior
qualitatively.

Using basic relations for single segments, we can also
model the network transport properties quantitatively. The
mean current is given by J = 1

Ns

∑
Js , where the single-

segment current Js = ρs(1 − ρs). Provided segments are
sufficiently long (L >> 1) to neglect boundary effects, the
segment density ρs is determined solely by the incoming
rate, 0 � α � 1, and outflow rate, 0 � β � 1 [26], which are
themselves determined by the densities at the vertices ρv . For
the inflow rate, α = ρvγ or α = ρv(1 − γ ), while the outflow
rate β = 1 − ρv , controlled solely by the availability of an
empty exit vertex.

For single segments, it is known that if particles come in at a
lower rate than they leave the segment (α < β), then ρs = α <

0.5. If particles flow out at a lower rate than they come in (β <

α), then the segment is jammed, and ρs = 1 − β > 0.5. The
resulting currents are then Js = α(1 − α) and Js = β(1 − β),
respectively. If α = β < 0.5, then two regimes (free flowing
and jammed) coexist in one segment, separated by a moving
domain wall: in the beginning, the segment will be inflow
controlled with density ρs = α, and in the end it will be outflow
controlled with ρs = 1 − α [26]. Since α = β, the current is
constant during this density increase, being Js = α(1 − α). In
the rare case of α > 0.5 and β > 0.5, the current goes to its
maximum J = 0.25.

Using these local relations for segment currents, we can now
compute the average steady-state current of the network. We do
this by using an iterative method to converge density and cur-
rent; see Appendix A. The resulting steady-state current shown
by the brown (light gray) solid line in Fig. 4(a) reproduces all
features of the TASEP simulations. This close correspondence
lends credence to the model. We will show in the following that
a further simplification to average subnetwork densities allows
for a surprisingly good description of the network behavior. We
represent the two subnetworks by their average density 〈ρh〉
and 〈ρl〉 and the corresponding subnetwork currents by J h and
J l . This allows physical insight into the transport behavior
of the network and its dependence on γ . We distinguish
four regimes as a function of increasing density as discussed
below.

1. Linear regime

At low density, currents in the two subnetworks are deter-
mined solely by the entry rates γ and 1 − γ . The average sub-
network densities grow as 〈ρh〉 = 2γρ and 〈ρl〉 = 2(1 − γ )ρ,
from which we can directly compute the subnetwork currents
J h and J l using Js = ρs(1 − ρs). The resulting total current is
J = 1/2(J h + J l) = ρ(1 − ρ) − ρ2(1 − 2γ )2 [dashed green
line in Fig. 4(a)], where the first term indicates the current for
homogeneous density distribution, and the second term reflects
the current reduction due to density redistribution between
the two subnetworks. This term vanishes for γ = 0.5, for
which the density distribution becomes homogeneous. Note
that the real reduction is slightly lower than given by the term
ρ2(1 − 2γ )2 due to the distribution of subnetwork densities
around the mean.

This low-density linear regime holds up to some critical
density ρ∗

1 , at which the most populated high-preferability
segment becomes jammed (α � β) and the density 〈ρh〉 grows
faster than linear as shown by the derivatives in Fig. 4(c). We
can explicitly calculate ρ∗

1 from the structure of the network
with the help of the transition matrix εij , which describes
transition rates between vertices i and j . Since for ρ < ρ∗

1
all segments are inflow controlled, transitions between two
neighboring vertices will occur with rate either γ or 1 − γ ,
allowing us to linearize εij and find exact values of ρv for every
vertex, which are linearly proportional to ρ (see Appendix B).
Knowing ρv we can compute all ρs and consequently the exact
value of current through the whole network. Moreover, for
every particular network we can explicitly solve the condition
α � β (γρ ′

v � 1 − ρ ′′
v ) for every segment to find the exact

ρ = ρ∗
1 when the first segment becomes jammed. Averaging

over many random networks, we find ρ∗
1 ≈ ρ0

1

(Ns/2)|γ−0.5| (with

ρ0
1 (γ ) ∼ 1/3, see Appendix B); using Ns = 500 and γ = 0.8,

we obtain ρ∗
1 ≈ 0.07, which locates the transition well, as

shown in Fig. 4(c). It is interesting to note that for sufficiently
large networks (Ns → ∞) and high anisotropy (γ �= 0.5) this
transition density ρ∗

1 → 0, indicating that jamming effects start
to occur already at infinitely small densities.

2. Jamming regime

Above ρ∗
1 , jamming will spread to neighboring high-

preferability segments in the direction opposite to the local
currents, similar to jam propagation opposite to vehicle
motion in traffic [27,28]. Since for the single segment,
the transition from the unjammed (ρs = α) to the jammed
state (ρs = 1 − β) is quite abrupt for α ≈ β < 0.5, the jam
propagation is accompanied by a nonlinear growth of 〈ρh〉,
which is compensated by a slightly stagnating growth in the
low-preferability subnetwork 〈ρl〉, as shown by the derivatives
in Fig. 4(c).

With the gradual propagation of jams, the density in the
high-preferability subnetwork becomes increasingly hetero-
geneous as demonstrated by the red shaded area in Fig. 4(b).
This heterogeneity reaches a maximum in the middle of the
jamming regime and diminishes again as large fractions of
high-preferability segments become jammed and as a result
their densities equalize. Eventually, at the end of the jamming
regime defined by ρ = ρ∗

2 all high-preferability segments
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become saturated, and their density does not grow any further
[see Figs. 4(b) and 4(c)].

Toward the end of the jamming regime (ρ = ρ∗
2 ) all high-

preferability segments and connected vertices are saturated
with equal particle density, ρh

s = ρv = 1 − β. At the same
time, the low preferability segments are still unjammed. Hence,
at ρ∗

2 , the density difference between the two subnetworks is
maximal.

3. Saturation regime

Above ρ∗
2 , the density in the high-preferability subnetwork

no longer increases, and further increase of ρ takes place in
the low-preferability subnetwork, where consequently jams
start to form. Since high- and low-preferability segments
are connected by the same vertices, vertices with saturated
uniform density ρv control the inflow [α = ρv(1 − γ )] and
outflow (β = 1 − ρv) of low-preferability segments. The only
regime where the segment density ρl

s can rapidly change
while inflow and outflow rates remain constant is during the
shock phase [26], when jammed and free flow coexist within
one segment and α = β. Using this equality for the low-
preferability segments, we obtain ρv = 1/(2 − γ ). This allows
us to calculate the saturating current of high-preferability
segments: using J h = β(1 − β) with β = 1 − ρv , we ob-
tain J h = (1 − γ )/(2 − γ )2. Since in the low-preferability
segments, jam and free flow coexist, 〈ρl〉 changes from
α = (1 − γ )/(2 − γ ) to 1 − β = 1/(2 − γ ) with increasing
ρ, corresponding to 1/6 and 5/6 for γ = 0.8, again in
agreement with the simulations. During this rapid density
change, the low-preferability subnetwork current remains
constant J l = β(1 − β). The resulting total current is thus
J = 1/2(J h + J l) = (1 − γ )/(2 − γ )2 [dashed green line in
Fig. 4(a)], independent of ρ, manifesting the current plateau.

Indeed, the TASEP simulations show plateau-like behavior
with current values only slightly higher than the value (1 −
γ )/(2 − γ )2 [for γ = 0.8 in Fig. 4(a) the TASEP simulations
plateau value is ∼0.141 while (1 − γ )/(2 − γ )2 = 0.139].
Again, this small discrepancy results from the spread in
densities within the subnetworks opposed to the fixed average
densities 〈ρl〉 and 〈ρh〉 assumed here.

The transition density ρ∗
2 at the start of the saturation

regime can be estimated from the requirement that for
ρ � ρ∗

2 , all high-preferability segments are jammed; i.e.,
〈ρh〉 = 1 − β = ρv = 1/(2 − γ ). At the same point all low-
preferability segments are still unjammed, 〈ρl〉 = α = (1 −
γ )ρv = (1 − γ )/(2 − γ ); this leads to the mean density ρ∗

2 =
(〈ρl

s〉 + 〈ρh
s 〉)/2 = 0.5, which is independent of γ .

By the end of the saturation regime at ρ = ρ∗
3 , 〈ρl〉 has

increased due to the jamming until 〈ρl〉 = 〈ρh〉 = 1/(2 − γ )
and the density is homogenous throughout the whole network.
This immediately gives the upper density of the saturation
regime: ρ∗

3 = 1/(2 − γ ).
Interestingly, 〈ρl〉 remains much more homogeneous while

rapidly increasing than 〈ρh〉 in the jamming regime [see blue
and red shades in Fig. 4(b)]. This difference is a direct result of
the vertex densities controlling the segment densities [see black
curve in Fig. 4(b)]. During the jamming regime the crossing
densities ρv evolve rapidly, while in saturation regime the
crossing densities are saturated and fixed at ρv = 1/(2 − γ ),
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FIG. 5. (Color online) Transport current J dependence on exit
probability γ for different densities ρ obtained from the TASEP
simulations. Data is averaged over 10 000 cycles after waiting for
3000 cycles to reach steady state. Blue (dark gray) curves correspond
to ρ � 0.5, green (light gray) ones to ρ > 0.5.

thus creating density heterogeneities within segments rather
than between them.

4. High-density regime

For ρ > ρ∗
3 the density in both high- and low-preferability

segments is given by the outflow rate (β = 1 − ρv) and
becomes independent of the exit probability γ . As a result,
all segments behave identically ρh

s = ρl
s = ρv = ρ, as shown

by the perfect overlap and the linear increase with slope 1 of
the red (light gray) and blue (dark gray) curves in Fig. 4(b).
The current is then simply J = ρ(1 − ρ), fitting perfectly with
both TASEP simulation and iteration method [see dashed green
line in Fig. 4(a)].

We finally show the explicit dependence of the current on
exit probability γ in Fig. 5. Interestingly, a similar plateau
behavior is observed as for the density dependence, indicating
that the current is stabilized also with respect to γ : green
(light gray) curves for ρ > 0.5 evidence the emergence of a
plateau in J with increasing ρ. This plateau corresponds to the
high-density regime; hence, its extension can be derived from
ρ∗

3 , and we obtain 1/ρ − 1 � γ � 2 − 1/ρ. At low densities,
on the other hand (ρ < 0.5), a somewhat narrower plateau
emerges with decreasing ρ and becomes established for ρ <

0.1. This rather low density corresponds to the linear regime,
i.e., for ρ < ρ∗

1 . In this case, we can estimate the plateau
value from J = ρ(1 − ρ) − ρ2(1 − 2γ )2 by neglecting the
second term for γ ∼ 0.5. We thus obtain the plateau value J =
ρ(1 − ρ), which appears in a narrow range of γ close to 0.5;
see blue (dark gray) curve for ρ = 0.1 in Fig. 5.

IV. SUMMARY

Using TASEP simulations and mean-field theory on com-
plex networks, we have studied the transport properties of large
networks with asymmetric exit rates. We find that the transport
current depends strongly on the relative exit probabilities
and the global density that together determine the transport
properties and density distribution of the network. Asymmetric

052714-5



DENISOV, MIEDEMA, NIENHUIS, AND SCHALL PHYSICAL REVIEW E 92, 052714 (2015)

exit rates lead to strong decrease of the transport current, but at
the same time to emergence of a current plateau that stabilizes
the current: this plateau makes the current largely independent
of variations in particle density. Similar current stabilization is
observed with respect to variations in exit probabilities when
the density ρ is rather low or high.

The main mechanism underlying this complex network
behavior is the splitting of the network into two subnetworks
according to the exit probabilities γ and 1 − γ . This splitting
into two subnetworks, together with the (random) topology
of the network sets the complex transport pathways, which,
at intermediate densities, lead to heterogeneous crowding of
the network. The resulting four transport regimes—linear,
jamming, saturation, and high-density—are characterized by
the relative densities of the two subnetworks and the density
distribution within each subnetwork. Former is determined by
γ , latter by the network topology.

The topology and asymmetric exit probabilities used here
mimic that of typical in vitro experiments in which molecular
motors walking along biopolymer networks exhibit specific
preference to proceed along a certain segment at filament
crossings. Our work hence provides insight into how local
motor dynamics affect the collective transport properties of
a biopolymer network. However, important additional effects
arise from the unbinding of real motors that is experimentally
observed. Such detachment of motors can weaken the correla-
tions and jamming effects that we observe in the simulations.

The work presented here complements simulations of
network transport based on random bidirectional [29] and
guided motion between nodes [30,31] that are more suitable
for internet traffic and urban transport description. In these
studies it was shown that jamming can occur at relatively
low densities. In the current work, we have shown that the
unidirectional exclusion process together with asymmetric
exit rates leads to complex jammed states with heterogeneous
steady-state densities and currents that can nevertheless be
understood based on the simple interplay of two subnetworks.
Due to the generality of the exclusion process in modeling
transport and arrest phenomena, our results may provide
generic insights into traffic jams and transport capacities of
highway networks, biological networks, and other systems
with similar unidirectional topology.
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APPENDIX A: ITERATIVE SOLUTION
OF MEAN-FIELD MODEL

Here we provide an iterative solution of the mean-field
model, which—as we will show below—reproduces the net-
work behavior quantitatively and shows excellent agreement
with the TASEP simulations. This iterative method computes
steady-state segment currents from the density at the vertices.

For each segment, the inflow rate α is proportional to the
density ρv of the entry crossing and the exit probability, i.e.,

α = ρvγ or α = ρv(1 − γ ) [26]. On the other hand, the outflow
rate β is controlled solely by the availability of an unoccupied
exit vertex, so that β = 1 − ρv independent of γ . The change
of density of each vertex is given by particle influx due to the
two incoming segments and outflow due to the two outgoing
segments, similar to Ref. [12]

∂ρv

∂t
=

∑

v′
Js(αv′ ,βv) +

∑

v′′
Js(αv,βv′′ ), (A1)

where v′ sums over the two incoming segments and v′′
over the two outgoing segments. Here, the segment current
is Js = α(1 − α) for α < β and Js = β(1 − β) for β < α.
Since α and β are themselves related to the vertex density
as described above, any change of vertex density will in
turn influence the segment currents, which again change
the crossing densities. We hence use an iterative method to
find steady-state currents and vertex densities. By expressing
ρv(t + 1) = ρv(t) + ∂ρv(t)/∂t , we can find steady-state con-
figurations, for which ∂ρv(t)/∂t = 0 for all vertices (t here is
quantized time steps).

The resulting steady-state network current depicted by the
brown (light gray) line in Fig. 4(a) reproduces all features
of the total current: the initial linear and nonlinear increase,
saturation, and the final decrease due to complete jamming
of the network. The remaining slight difference between the
TASEP simulations and the iterative solution is associated with
the approximation Js = ρs(1 − ρs), which is strictly true only
for infinite segment lengths.

APPENDIX B: LINEAR REGIME LIMIT

In this section we compute the transition density ρ = ρ∗
1

that bounds the linear regime. The linear regime ends when the
density of each subnetwork is no longer linearly proportional to
the global density. To pinpoint ρ∗

1 , we determine the transition
matrix ε, whose elements εij denote the transition probabilities
from vertex i to j . We define element εij = 0 when vertex j

is not connected directly to vertex i through one segment,
εij = γ when j is connected to i through a high-preferability
segment, and εij = 1 − γ when j is connected to i through a
low-preferability segment. This matrix specifies the transitions
between vertices, giving the probability a particle continues
from one vertex to the next; the eigenvector corresponding
to eigenvalue 1 of matrix ε holds the relative distribution
of densities ρv among vertices in steady state. Knowing the
densities of all vertices we can calculate the densities of every
segment ρs through incoming rate α = γρ ′

v or α = (1 − γ )ρ ′
v

and outgoing rate β = 1 − ρ ′′
v . Actually, while using the

transition matrix ε we have assumed that all segments are
inflow controlled (α < β) and not jammed, only then the
transition rates between vertices will depend on γ only. Indeed
at low global density ρ � ρ∗

1 , the computed values of ρs are in
excellent agreement with the TASEP simulation results, since
the transition matrix gives an exact solution of the density
distribution among segments as shown in Fig. 6(a). As the first
segment becomes jammed, α > β, the linear-regime ends and
the density distribution is no longer given by the transition
matrix; see Figs. 6(b) and 6(c).
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FIG. 6. (Color online) Comparison of segment densities obtained
by TASEP simulations (horizontal axis) and transition matrix ε

solution (vertical axis) for γ = 0.8. Every point represents the
local segment density. Points lying along the black identity line
“y = x” signify that both solutions are in agreement. Blue (dark
gray) dots correspond to the low-preferability segments, red (light
gray) ones to the high-preferability. (a) ρ = 0.05, excellent agreement
between TASEP and ε solution. (b) ρ = 0.5, clear splitting between
high- and low-preferability bands, only low-preferability segments
are somewhat close to ε solution. (c) ρ = 0.85, low- and high-
preferability segments are in jammed state, very close to each other.

The task to find the end of the linear regime is to find
the lowest global density ρ = ρ∗

1 where α > β for one of
the segments. For γ = 0.5 we can find a simple analytical
solution, since in this isotropic case all segments and vertices
are identical. By solving α > β ⇔ γρv > 1 − ρv we get ρv >

2/3 and find the maximum global density where the linear
regime is still valid ρ∗

1 = γρv = 1/3. For densities ρ > ρ∗
1

jamming starts to occur and spread through the network.
For γ �= 0.5 the network is anisotropic and the distribution

of vertex densities has a finite width, so a simple analytical
solution with all ρv equal is no longer possible. For every
segment within a particular network, however, we can ex-
plicitly solve the condition α > β using matrix ε to find the
global density ρ∗

1 where jamming first occurs. Naturally, this
transition density depends on the size of the network Ns and
the exit probability γ (for L → ∞ the length of the segment
does not play a role). We have averaged the results for ρ∗

1
over 200 randomly created networks for every Ns and γ . We
plot the resulting transition density ρ∗

1 as a function of γ in
Fig. 7(a). For γ = 0.5 (isotropic network) we find ρ∗

1 = 1/3
independent of the network size Ns , as expected. As γ �= 0.5,
ρ∗

1 decreases with both network size Ns and exit probability γ .
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FIG. 7. (Color online) Critical density ρ∗
1 demarcating the tran-

sition from the linear to the nonlinear regime. (a) Dependence of ρ∗
1

on exit probability γ for several network sizes Ns . (b) Dependence of
ρ∗

1 on network size Ns for several exit probability γ . Blue (dark gray)
curves correspond to γ � 0.5, green (light gray) curves to γ > 0.5.
For each γ , the transition density can be described as a power law
ρ∗

1 ≈ ρ0
1 (Ns/2)−|γ−0.5| (red dashed lines).

For intermediate network sizes in the range Ns = 3 ×
101−103, we found that the power-law approximation ρ∗

1 ≈
ρ0

1

(Ns/2)|γ−0.5| works relatively well. The prefactor ρ0
1 = 1/3 for

γ ∼ 0.5 and is changing slightly as γ approaches 1 or 0.
For Ns = 500 and γ = 0.8 we find ρ∗

1 ≈ 0.07, in very good
agreement with Fig. 4(c). In the extreme case γ = 0 or 1, the
transition density becomes simply ρ∗

1 ∼ 1/3√
Nv

.

For large network sizes Ns � 103, ρ∗
1 decays slower with

respect to a power-law behavior. Additionally for different
networks with the same Ns and γ the fluctuations of ρ∗

1 can be
relatively large so any analytical prediction of ρ∗

1 will give only
its approximate value. If one wants to know the precise value
of ρ∗

1 , one has to explicitly calculate it for every particular
network topology using the transition matrix ε.

Interestingly, by analyzing the general behavior of
ρ∗

1 (Ns,γ ) we conclude that for sufficiently large networks
(Ns → ∞) and high anisotropy (γ �= 0.5) the transition
density ρ∗

1 → 0, meaning that local jamming and nonlinear
processes start to occur at infinitely small densities.
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APPENDIX C: HISTORY-DEPENDENT
EXIT PROBABILITIES

In the manuscript, we have concentrated on the case that the
exit probabilities at crossings are independent of the history of
motor motion; i.e., that they are a fixed property of the network.
In this Appendix we show the results for the alternative
crossing rule that the choice of the new segment depends
on the previous motion. In this case, we introduce the exit
probability γ h, with which the motor continues along the same
line at a crossing; see Fig. 1(b). Consequently, with probability
1 − γ h, the motor will change direction to the exit segment
corresponding to another line, so the choice of the exit segment
at the crossing completely depends on where the motor came
from.

From the network topological perspective every crossing
becomes identical and there is no fixed preferability of one
segment over the other. Consequently, for all γ h this situation
is very similar to the isotropic case γ = 0.5 when motors
do not have “history” of its past motion. Indeed for all
investigated γ h, we observe steady-state currents very similar
to the previous case γ = 0.5 as shown in Fig. 8(a). In particular,
all current distributions are symmetric with respect to ρ = 0.5.
In fact, for γ = 0.5 and γ h = 0.5 we get identical transport
behavior in the network with current plateau for densities in
the range 1/3 < ρ < 2/3. Increasing γ h above 0.5 makes
the equilibration time to reach the steady state longer due
to stronger local fluctuations between the segments. We find
that these stronger fluctuations also lead to slight decrease of
the maximum current; see Fig. 8(b). This current reduction is,
however, much weaker (almost negligible, only ∼3%) than

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Global density ρ

C
ur

re
nt

, J

 

 

0.5 0.6 0.7 0.8 0.9
0.224
0.226
0.228
0.23

0.232

γh

J(
ρ=

0.
5)

single
γ=0.5
γh=0.5
γh=0.6
γh=0.7
γh=0.8
γh=0.9

(a)

(b)

FIG. 8. (Color online) (a) Transport current J dependence on
exit probability γ h for different densities ρ. Black dashed curve
corresponds to the single segment behavior, while black solid curve
corresponds to γ = 0.5 when the choice of the new segment is
independent on the past motor motion. Colored curves correspond
to the case γ h = 0.5, 0.6, 0.7, 0.8, and 0.9 when the choice the new
segment depends on the incoming segment (see legend). (b) Decrease
of the optimal current value at ρ = 0.5 with increasing γ h.

the one described in the main manuscript for the case of
history-independent exit probabilities.
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