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We propose an elastic theory of epithelial monolayers based on a two-dimensional discrete model of dropletlike
cells characterized by differential surface tensions of their apical, basal, and lateral sides. We show that the effective
tissue bending modulus depends on the apicobasal differential tension and changes sign at the transition from
the flat to the fold morphology. We discuss three mechanisms that stabilize the finite-wavelength fold structures:
Physical constraint on cell geometry, hard-core interaction between non-neighboring cells, and bending elasticity
of the basement membrane. We show that the thickness of the monolayer changes along the waveform and thus
needs to be considered as a variable rather than a parameter. Next we show that the coupling between the curvature
and the thickness is governed by the apicobasal polarity and that the amplitude of thickness modulation along
the waveform is proportional to the apicobasal differential tension. This suggests that intracellular stresses can
be measured indirectly by observing easily measurable morphometric parameters. We also study the mechanics
of three-dimensional structures with cylindrical symmetry.

DOI: 10.1103/PhysRevE.92.052713 PACS number(s): 87.17.Pq, 87.17.Rt, 87.19.rd

I. INTRODUCTION

A flexible rod buckles when the lengthwise compressive
force exceeds a certain threshold [1]. This fundamental
principle is known as the buckling instability and is very
common in everyday life. The shape of the bent rod obeys
the solution of Euler’s elastica problem, studied around 300
years ago by James Bernoulli and Leonhard Euler [2]. Similar
behavior is seen in many other physical systems. For example,
a thin compressed elastic sheet either floating on the liquid
surface or attached to the elastic substrate forms a single fold
or various types of wrinkles [3–7]. In plants, the edge of a leaf
is often wavy due to the differential growth between the edge
itself and the bulk of the leaf [8,9]; wrinkles can be induced by
bunching up the skin on the back of a hand [10]; cerebral cortex
in human brain forms a very complex morphology [11,12]; and
a variety of different morphological structures can be found in
other types of animal tissues such as epithelia.

The mechanics of modulated epithelial structures has
been theoretically studied using two different hypotheses: (i)
buckling due to area mismatch between the tissue and the
underlying substrate [13–15] and (ii) folding due to intraep-
ithelium stresses generated by the actomyosin cortex [16–19].
The former scenario has been explored within the classical
theory of elasticity of homogeneous solid plates [1]. Here
epithelial folding is induced by the growth of the tissue and
a variety of complex three-dimensional (3D) morphologies
have been obtained. Within the second scenario, cells are
treated as incompressible droplets characterized by differential
surface tensions of the functionally distinct cell sides [20]. By
now, mostly solutions describing epithelial folds have been
studied [16–18] and therefore many questions regarding the 3D
generalization and the effective elasticity of the model tissue
remain unanswered. The thusly obtained shapes of folds are
very smooth, which suggests that an effective elastic theory for
this kind of mechanics could be derived, allowing one to deal
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with some of the open issues. Recently, a similar approach has
been used to derive a continuum model of the out-of-plane
deformations in a 2D tiling formed by the apical faces of cells
in the epithelium [21].

A continuum theory based on the discrete model of epithe-
lial cells seems the most straightforward way to quantitatively
describe how the mechanics on the subcellular level affects
the features of the tissue; for example, to quantify cell
height modulation along the waveform and the groove-crest
asymmetry as well as to explain what type of elasticity is
associated with stresses due to apicobasal differential tension
and how the spontaneous folding is driven. Moreover, from the
perspective of numerical methods a continuum theory may be
technically easier to solve, especially in 3D, where it disposes
of the problem of the tissue in-plane topology [22,23] which
is expected to have a subdominant effect on the equilibrium
tissue shape.

In this paper, we derive the effective energy functional
that describes a 2D cross section of the epithelium. We find
that the tissue bending modulus depends on the apicobasal
differential tension and can be either positive or negative. Next,
we analytically study the coupling between tissue thickness
and curvature and we show how thickness modulation along
the waveform depends on apicobasal differential tension.
Furthermore, we show that a finite-wavelength structures of
the tissue with negative bending modulus can be stabilized by
the local geometry of cells or their impenetrability or by the
elasticity of the basement membrane. Apart from the simplified
2D version of the model, we also study 3D structures with
cylindrical symmetry where certain effects not present in the
2D model are included.

II. THE MODEL

Our theoretical model is based on the differential adhesion
hypothesis [20] and describes a single layer of incompressible
epithelial cells. Their energy is associated with the surface
tension in actomyosin cortical network, the differential sur-
face tension due to apicobasal polarity, and the negative surface
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FIG. 1. (Color online) Schematic of the model epithelial cell
characterized by different surface tensions on apical, basal, and lateral
sides [(a), left]. The right panel shows a bent segment of tissue
parametrized by midline curvature C, epithelial thickness L, and
depth r . In the discrete representation this body can be treated as
the model cell. Schematic cross section of three epithelial waveforms
in the discrete representation (b), parametrized by cell side lengths
(La , Lb, and Ll) and the continuous waveform, parametrized by the
midline local curvature C and local tissue thickness L. Gray shading
denotes the transition from the discrete to the continuum description.

tension due to cell-cell adhesion [24]. The effective surface
tensions of apical, basal, and lateral cell sides �a , �b, and �l ,
respectively, are introduced [Fig. 1(a)] such that the total cell
energy reads

W = �aAa + �bAb + �l

2
Al, (1)

where Aa , Ab, and Al are surface areas of apical, basal, and
lateral cell sides, respectively.

In the special case of epithelial structures with cylindrical
symmetry the model can be simplified; here “cylindrical” is
used in the broad sense, describing a ruled surface defined
by a single-parameter family of parallel lines. Additionally,
if cells are very elongated in the direction of zero curvature
the energy contribution of the front and the back lateral
sides [Fig. 1(a)] may be neglected since their surface area
is negligible in comparison to other cell sides. In this case the
total cell energy is proportional to the cell depth (the dimension
in the zero-curvature direction) r and can be rescaled as
W/r → W = �aLa + �bLb + (�l/2)Ll , where La , Lb, and
Ll are lengths of apical, basal, and lateral sides of cell cross
section, respectively. This yields a simplified 2D model of
epithelial cells with fixed cross section area (Ac = const).

Since cells’ apical and basal sides are usually isometric,
the above simplification might not be completely justified.
Yet it turns out most features, especially those related to the

differential apicobasal mechanics leading to epithelial bend-
ing, are captured within the reduced-dimensionality model. We
show this in Sec. III and for completeness we then consider
certain 3D effects in Sec. IV.

III. 2D CONTINUUM THEORY

Given the smoothness of the solutions obtained within the
discrete model [16–18] we now derive the continuum version
of the model, a theory that describes an epithelium with a
given cross-section area using only tissue-scale variables: The
midline curvature C and the monolayer thickness L [Fig. 1(b)].

The effective elastic energy functional is obtained by
parametrizing the tissue by C and L and calculating the total
energy. The contribution of apical and basal sides to the total
energy is �aLa + �bLb, whereas evaluation of energy of the
lateral sides is more demanding. Their total length depends on
local curvature, local thickness, and effective area of cell cross
section Ac [17], which we take into account by introducing
the lateral tension density d�l/dA such that the energy of
the tissue with cross-section area �A reads �W = �aLa +
�bLb + (d�l/dA)�AL. Here La = (1 + CL/2)�A/L and
Lb = (1 − CL/2)�A/L are the lengths of the apical and
the basal sides, respectively. The lateral tension density then
can be derived from the comparison between the discrete
and the continuum version of energy and reads d�l/dA =
(�l/Ac)

√
1 + (CAc/2L)2 (Appendix A). In a flat tissue where

C = 0, the length of the lateral cell side is L so the lateral
tension density reduces to �l/Ac and does not depend on
the position along a waveform, whereas in a bent tissue
where C �= 0, the lateral tension density increases with local
curvature and is larger than in the flat tissue.

The continuum version of the energy is obtained in the
limit �A → 0 (Appendix A). It has been previously shown
that in our surface tension model, folds are stable only if
the magnitude of the differential apicobasal tension |�a − �b|
is large enough compared to �l [18]. A large differential
apicobasal tension necessitates that either �a or �b must be
large itself because within our model, cell shape is well defined
only if all three surface tensions are positive [25]. In turn,
this means that �a + �b � �l , too, which implies that folded
epithelia are possible only in columnar epithelia where cells are
tall rather than flattened. We therefore restrict the discussion
to this regime where α + β � 1 and (CAc/2L)2 � 1. In
this case, the nondimensional energy per unit length in the
first-order approximation reads

dw

ds
= α + β + α − β

2
cl + l2 + 1

8
c2, (2)

where α = �a/�l and β = �b/�l are the reduced apical and
basal tension, respectively; c is the reduced midline curvature
measured in units of 1/

√
Ac and l is the reduced epithelial

thickness measured in units of
√

Ac. The energy w is measured
in units of �l

√
Ac.

The effective tissue elasticity [Eq. (2)] is based on the
geometry of 2D cell cross sections with fixed area and can
be interpreted by examining the four energy terms: (i) α + β

corresponds to the apicobasal surface energy of the flat tissue;
correction due to the curvature is taken into account by
(ii) the coupling term (α − β)lc/2; (iii) the stretching energy
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FIG. 2. (Color online) Parametrization of tissue cross-section by the angle ψ(s) and tissue thickness l(s) (a). In a single waveform of
wavelength λ, the arc length s goes from s = 0 to s = S. A comparison between minimal-energy shapes obtained by the discrete model [17] and
minimal-energy shapes computed by minimizing the elastic functional [Eq. (2)] at β = 2.6 for α = 4.2, 5.0, 5.8, and 6.6 (b). Continuum-theory
waveforms are computed at the same wavelength and number of cells per waveform as in the discrete model. Minimal-energy shapes of a
segment of epithelium at α = β = 1.5 for different values of compressive force γ = −0.036, − 0.041, − 0.048, and − 0.052; γ is defined
in Sec. III A (c). Equilibrium shapes of a piece of paper attached to a flat surface, the opposite ends being fixed at the distances shorter than
the length of the paper (d). Thick cyan (light gray) line is added to highlight the contour. The equilibrium states of the folds correspond to the
same family of curves as that of the tissue midline in panel (c).

l2 is the energy of lateral cell sides as if the tissue were flat;
and correction due to the curvature is taken into account by
(iv) the bending term c2/8.

Viewed as a Taylor series in c and l, the elastic theory of the
model epithelium is similar to that of solid plates or thin lipid
bilayers for deformations with zero Gaussian curvature [26].
The lengthening of lateral cell sides due to bending is penalized
by the bending elasticity term c2. This is similar to a lipid
bilayer where bending affects the distance between the polar
heads which is also penalized by the bending energy c2 [or
(c − c0)2 if the bilayer has a spontaneous curvature c0]. In
epithelia the linear term in c is multiplied by l, which here
is a variable. This shows that the apicobasal polarity does
not result in a spontaneous curvature as one may anticipate
but instead results in the simplest possible coupling between
curvature and epithelial thickness [cl term in Eq. (2)]. This term
is expected to be crucial for the spontaneous epithelial folding
since it introduces an asymmetry between the positively curved
section and the negatively curved section of a waveform. There
is no such asymmetry if the thickness is constant along the
tissue which happens if the differential tension α − β = 0. In
this case the cl coupling vanishes and the energy simplifies
to the pure bending energy dw/ds = const + c2/8. Such an
epithelium cannot buckle unless an external compression is
applied [2,27]. Finally, in the flat epithelium (c = 0) dw/ds =
α + β + l2, which yields the equilibrium epithelial thickness

l0 =
√

α + β . (3)

This result can be viewed as the zero-order approximation in
the differential tension α − β.

A. Longitudinal folds: The Lagrangian

Here we study the morphology of longitudinal epithelial
folds. Such shapes have a cylindrical symmetry [26] and their
shape can be described by studying tissue cross section in
the plane perpendicular to the folds. The shape of the tissue
cross-section midline can be parametrized by the angle ψ(s)
between the local tangent to the midline and the horizontal axis
[Fig. 2(a)]. The transformation from the Cartesian coordinates
(x,y) to the ψ(s) parametrization is given by ẋ = cos ψ(s)
and ẏ = − sin ψ(s). In this parametrization the Lagrangian L
reads

L = α + β + α − β

2
ψ̇l + l2 + 1

8
ψ̇2

+μl + γ (s)(ẋ − cos ψ) + η(s)(ẏ + sin ψ), (4)

where μ, γ (s), and η(s) are Lagrange multipliers; μ is
measured in units of �l/

√
Ac, whereas γ and η are measured

in units of �l .
We look for equilibrium states by minimizing the action

S = ∫ S

0 L(ψ,l,ψ̇,ẋ,ẏ)ds subject to the incompressibility con-

straint
∫ S

0 lds = A, where A is the cross-section area of a single
waveform. In nondimensional units A is equivalent to the
number of cells per waveform N in the discrete representation.
The Euler-Lagrange equation for curvature ψ̇ reduces to the
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well-known Euler’s elastica equation [2,27,28]

ψ̈ + 8γ

(α − β)2 − 2
sin ψ = 0. (5)

The boundary conditions at one end of integration interval are
ψ(0) = 0, x(0) = x0, and y(0) = y0, whereas the Lagrange
multiplier γ needs to be varied together with ψ̇(0) to satisfy
boundary conditions at the other end, which read ψ(S) = 0
and x(S) = x0 + λ. Thus γ has the role of the force acting on
a piece of tissue in the x direction to keep boundaries fixed
at the distance λ [4]. Since the Lagrangian does not depend
explicitly on x and y, the choice of x0 and y0 is arbitrary; we
set x0 = y0 = 0 [Fig. 2(a)]. The integration interval S has to
be varied as well to satisfy the additional boundary condition
ψ̇(S) = ±8

√
α + β − (A/S)2 − γ /

√
2 − (α − β)2, which is

derived from the minimization of the Hamiltonian introduced
in Appendix B with respect to S and is the special case of
transversality condition (Appendix B and Refs. [29,30]).

B. Thickness modulation

Once the solution ψ(s) is found, tissue thickness l(s) can
be calculated straightforwardly (Appendix B):

l(s) = l0 − α − β

4
ψ̇(s), (6)

where l0 = A/S ≈ √
α + β [Eq. (3)]. The thickness modula-

tion (α − β)ψ̇/4 is proportional to the curvature modulation
along the waveform as well as to the differential tension
α − β. This result confirms that intraepithelial forces resulting
from apicobasal cell polarity can be measured indirectly by
measuring thickness modulation and curvature profile along
the fold [18]. Note that the fixed cross-section area constraint∫ S

0 lds = A is satisfied automatically, since ψ̇ averaged over
one waveform is zero [31].

Equation (6) is not too surprising because the energy term
that describes coupling between c and l is simply their product
[Eq. (2)]. Furthermore, the elastic modulus corresponding to
the coupling term is proportional to |α − β|, which suggests
that in the absence of apicobasal differential tension the thick-
ness modulation vanishes. This is true only in the first-order
approximation in (c/2l)2 [Eq. (2)], whereas the higher-order
terms including the second-order term c4/(128l2) describe a
much less trivial c − l coupling even at vanishing differential
tension α − β = 0. By treating this term perturbatively, we
find that for α − β = 0 the thickness profile reads l(s) =
l0 + ψ̇(s)4/(128l3

0) (Appendix C). However, for values of
model parameters considered here the magnitude of thickness
modulation |ψ̇(s)4/(128l3

0)| is negligible and is thus not further
explored.

Figure 2(b) shows the results of our continuum theory for a
fixed β = 2.6 and different values of α. Apart from the shape
itself, each epithelial structure is characterized by an optimal
wavelength λ and an optimal number of cells per waveform
N . As neither of them is known a priori, λ and N must be be
computed by minimizing the energy with respect to both. Here
we use the optimal values obtained within the discrete model
(see Fig. 4 in Ref. [17]) as inputs and optimize only the tissue
contour and thickness profiles. Figure 2(b) shows an almost
perfect agreement of the discrete model and the continuum

theory. This confirms that the mechanics of minimal-energy
epithelial structures can indeed be described by the effective
elasticity theory proposed here.

In absence of apicobasal differential tension (α − β = 0)
the fold morphology is not preferred. In fact, due to vanishing
coupling term, Eq. (2) reduces to the pure 2D bending
energy dw/ds = const + c2/8. Such a tissue buckles under
external compressive force γ [Fig. 2(c)] and the midline shape
corresponds to the shape of a piece of paper lying on a flat
surface with opposite ends being kept at a distance smaller
than the paper length [Fig. 2(d)]. This result suggests that the
mechanics of our model epithelium is rather standard except
for the cl coupling due to differential apicobasal tension which
distinguishes the epithelial elasticity from Euler’s elastica.
This implies that it is precisely the cl coupling that induces
spontaneous buckling of the epithelial sheet via thickness
modulation as elaborated in Sec. III C.

C. Spontaneous folding: Flat-to-fold transition

Each waveform consists of a positive-curvature section (the
crest) and of a negative-curvature section (the groove). If α −
β > 0, then the groove is energetically favorable because it
consists of cells with the apical side being shorter than the basal
side. If α − β < 0, then it is exactly the opposite: The crest is
energetically favorable. Tissue thickness is always increased
in the energetically favorable section and decreased in the
energetically unfavorable section [Eq. (6)]. Thus, due to their
incompressibility the local number density of cells is also
affected by the thickness modulation so the cells in favorable
bend are packed more densely than in unfavorable bend. The
resulting asymmetry between the groove and the crest prefers
the fold morphology over the flat morphology. Despite this
nontrivial mechanism, according to Eq. (5), the mechanics
of our model system is formally equivalent to the folding of
uniaxially compressed flexible rod [27] or a piece of paper
[Fig. 2(d)]. This is surprising since the Euler’s elastica does
not possess this asymmetry and cannot spontaneously fold.
The equivalence holds generally even if α − β �= 0.

The reason for spontaneous folding of epithelial monolayer
lies in its effective bending modulus which can be obtained
by comparing Eq. (5) with Euler’s elastica equation [27] and
reads

ke = − (α − β)2 − 2

8
. (7)

where ke can be either positive or negative, depending on
the value of differential tension α − β: A negative bending
modulus prefers the fold morphology and a positive bending
modulus prefers the flat morphology. Thus the effective elastic
functional of the system is simply dw/ds = const + (ke/2)c2

and the energy difference between flat and folded tissue reads

w − wflat = ke

2

∫ S

0
c2ds. (8)

The critical differential tension for the flat-fold transition
(α − β)c = √

2 [Eq. (7) and Fig. 3], which has already been
predicted by the discrete model [16–18].

Figure 3 shows the force γ exerted on the piece of tissue
by keeping the distance between ends fixed and varying the
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FIG. 3. (Color online) Force exerted on a segment of tissue with
cross-section area A = 25 and α + β = 6.8, fixed at λ = 6, as a
function of apicobasal differential tension α − β [red (dark gray)
curve]. Also included are the bending modulus ke [green (light gray)
curve] and the amplitude of tissue thickness modulation δl/ l0 (black
line). At |α − β| = √

2 both γ and ke change sign and for |α − β| >√
2 (shaded region) fold morphologies are energetically favorable

over the flat state. Insets are equilibrium shapes at fixed λ = 6 and
α + β = 6.8 for α − β = −2.8, −√

2, 0,
√

2, and 2.8 (left to right).

differential tension α − β (red curve). The force is negative
for −√

2 < α − β <
√

2 where the bending modulus ke is
positive (green curve), meaning that for these values of
parameter α − β the tissue is compressed. On the other hand, if
|α − β| >

√
2 the tissue spontaneously buckles due to internal

stresses produced by apicobasal polarity. Here the force is
positive and the bending modulus is negative (Fig. 3). Tissue
thickness modulation is a linear function of α − β as predicted
by Eq. (6) (black line in Fig. 3).

D. Stabilization of finite-wavelength folds

Even though the continuum theory predicts a spontaneous
folding of the flat epithelium at |α − β| >

√
2, the discrete

model shows that both equilibrium wavelength and optimal
number of cells per waveform are well-defined quantities
(Fig. 4 in Ref. [17]). The reason for this is in two mechanisms
not included in the continuum theory but accounted for
by the discrete model: (i) The physical constraint of local
geometry of cells and (ii) the hard-core repulsion between
non-neighbouring cells.

First, in the discrete representation each cell is subject to
the physical constraint of non-negative cell edge lengths. At
fixed wavelength the total energy of the structure in which
at least a few cells hit this constraint and have to be spatially
rearranged [Figs. 4(a) and 4(b)] is larger than the total energy of
the optimally shaped continuous model epithelium without cell
rearrangement [Eq. (2), Fig. 2(b), and Figs. 4(a) and 4(b)]. The
epithelial structure is therefore stabilized at a finite wavelength
and number of cells per waveform. This constraint is not
implemented in the continuum version of the model and
therefore in some solutions the apical or the basal surface

0
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-2

cl

10 0.2 0.4 0.6 0.8
s S/

triangles

trapezoids

(b)(a)

(c) (d)
steric repulsion

FIG. 4. (Color online) Minimal-energy shape of the tissue cross
section for α = 4.2 and β = 2.6 obtained by the discrete model (a).
In this case the groove is energetically favorable over the crest and
contains tall triangular cells, whereas the crest consists of trapezoidal
cells. The product of curvature and thickness cl along the waveform
shown in panel (b) is bounded between −2 and 2 which are the values
corresponding to basally constricted cell and apically constricted cell,
respectively. Minimal-energy shape of the tissue cross section for α =
6.6 and β = 2.6 obtained by the continuum version of our model (c).
The apical side of the groove makes self-intersection loops in absence
of the physical constraint of positive cell side lengths. Minimal-energy
shape of the tissue cross section for α = 5 and β = 2.6 obtained by
the discrete model (d). Steric repulsion acts at points where non-
neighboring cells touch [red (dark gray) arrows].

self-intersect [Fig. 4(c)]. This happens as soon as locally
|cl| > 2. We discuss this in more detail in Sec. III E. Second,
tissue collapse is also prevented by steric repulsion between
non-neighboring cells [Fig. 4(d)].

E. Basement membrane

Understanding the tissue mechanics based exclusively on
intracellular tensions is important, one reason being that during
early embryonic development of an animal the elastic substrate
to which cells could be attached is not developed yet and thus
cannot be involved in the morphogenetic transformations of
the epithelium. Theories based solely on elastic interactions
between epithelium and underlying layers therefore fall short
of explaining all morphogenetic processes. However, in fully
developed animals epithelial cells are attached to the basement
membrane which needs to be taken into account here to extend
the biological relevance of our model. This has already been
done within the discrete model [18] showing that the basement
membrane affects the transition from flat to fold tissue and that
the wavelength of epithelial folds increases with the rigidity
of the basement membrane.

The basement membrane can be modelled as a thin
elastic plate with bending modulus Kbm [1] attached to
the epithelial monolayer. In 2D the bending energy of the
basement membrane reads wbm = (κ/2)

∫
basal c

2
bmds, where
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κ = Kbm/(�lAc) is its nondimensional bending modulus and
cbm = c/(1 − cl/2) is its local curvature which differs from the
midline curvature c due to finite thickness of the epithelium
(Appendix D). The integral of basement membrane bending
energy per unit length over the basal surface can be recast as
an integral over the epithelial midline:

wbm = κ

2

∫ S

0

c2

1 − lc/2
ds (9)

and describes the interaction energy between the sponta-
neously folded epithelium and the membrane which prefers
a flat state. The energy wbm diverges at lc = 2, which happens
when the tissue is folded so much that some cells become
basally constricted. This indicates that the bending rigidity of
the membrane could provide another mechanism stabilizing
the folds at a finite wavelength.

Now we examine how the basement membrane affects the
flat-to-fold transition. The stability of the flat tissue can be stud-
ied in the limit of small curvatures (c ≈ 0), where the total
energy reduces to the bending energy and the effective bending
modulus of the system reads keff = ke + κ . The flat tissue
is stable if keff > 0 and unstable if keff < 0 [Eq. (8)]. This
gives the condition for minimal apicobasal differential tension
needed for epithelium to form folds:

α − β >
√

2(1 + 4κ). (10)

This result agrees very well with the line of flat-to-fold tran-
sition, qualitatively determined using the discrete model [18]
where, on approaching the transition, the computation turned
out to be very demanding due to an increasing number of cells
per waveform and therefore the transition itself was estimated
only roughly.

However, epithelial folds are stabilized at radia of curvature
comparable to the typical cell length scale and therefore the
limit of small curvatures does not apply near the equilibrium
wavelength. To study the mechanics close to equilibrium we
approximate the waveform by a combination of a positively
curved semicircle and a negatively curved semicircle, both
having the same magnitude of curvature [Fig. 5(a)]. The energy
difference between this model fold state and the flat state is
given by

w − wflat = we + wbm, (11)

where we = kec
2(π/c) is the bending energy of ep-

ithelial monolayer and wbm = κc2{1/[2 − l(c)c] + 1/[2 +
l(−c)c]}(π/c) is the bending energy of the basement mem-
brane. Assuming that κ is small enough so as to not affect
the thickness modulation, we can take l(c) ≈ l0 − (α − β)c/4
[Eq. (6)]. This result is valid at deformations where the radius
of curvature of the membrane is large enough compared to its
thickness so the membrane bending energy can be described
by Eq. (9). At very large curvatures, e.g., close to cl = 2 where
wbm diverges, this model of membrane elasticity is no longer
physically plausible. Nonetheless, in the limit κ → 0 it can still
be used as a mathematical device accounting for the constraint
on cell geometry discussed in Sec. III D without penalizing
a small or moderate bending of the basal surface. The same
can be done for apical cell sides by adding the energy penalty
wa = κ ′c2{1/[2 + l(c)c] + 1/[2 − l(−c)c]}(π/c) to the total
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FIG. 5. (Color online) Schematic of the model waveform (a). The
groove is characterized by a negative curvature −c and tall triangular
cells, whereas the crest has opposite curvature c and consists of
trapezoidal cells. Curvature of the basement membrane is larger in
the crest, where cells’ basal sides are shorter than their apical sides.
Energy terms we, wbm, and their sum we + wbm at α + β = 6, α −
β = −3, and κ = 0.1 (b). Equilibrium wavelength as a function of
κ at α + β = 4 for different values of differential tension |α − β| =
1.5, 2, and 2.5 (c). Red (dark gray) curves correspond to the α < β

case, whereas green (light gray) curves correspond to the α > β case.

energy [Eq. (11)], where κ ′ → 0 corresponds to the virtual
bending rigidity of the apical side of the tissue.

The monolayer bending energy we is a linear function of
c with the slope proportional to the bending modulus ke and
thus prefers infinite c if ke is negative [red line in Fig. 5(b)].
On the other hand, the basement membrane energy cbm is an
increasing function of c in the region of physically possible
states and diverges at a finite c [green curve in Fig. 5(b)]. The
sum of both energies is the total energy which has a negative
value of the local minimum at finite c as long as the parameters
satisfy Eq. (10) [black curve in Fig. 5(b)].

Figure 5(c) shows the equilibrium wavelength λ = 4/c

of the tissue as a function of κ for different values of
α − β. First, we notice the asymmetry between α − β > 0
and α − β < 0 case which increases with |α − β|. This is
of course expected since the basement membrane breaks the
symmetry by affecting the shape of a basally constricted cell
more than the shape of an apically constricted cell. Second, the
wavelength in the limit κ → 0 is finite and seems to depend
very little on α − β [Fig. 5(c)]. In this regime, the basement
membrane curvature is very large and therefore modeling the
membrane elasticity using the linear theory is not justified.
As discussed above, the κ → 0 limit can be interpreted as the
absence of the membrane where the optimal wavelength is
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determined by the constraint that the lengths of cell sides be
positive and is of the order of 2l0 ≈ 2

√
α + β.

IV. DISCUSSION

Usually, the cell base is an isometric polygon, its size being
of the same order of magnitude as the cell height [Fig. 1(a)].
Thus, none of the surface energy contributions can be neglected
and certain 3D effects left out in the simplified 2D model
should be accounted for in our continuum theory. Following
the same steps as in the reduced-dimensionality case, we derive
the full 3D Lagrangian for longitudinal folds which reads

L3D = (α + β)r + α − β

2
rψ̇l + l + r2l2 + 1

8
ψ̇2

+μrl + γ (s)(ẋ − cos ψ) + η(s)(ẏ + sin ψ) + ξ ṙ.

(12)

Here r , 1/c, and l are measured in units of 3
√

Vc, where
Vc is the effective cell volume. The Lagrange multiplier
ξ has been introduced to enforce the cylindrical symmetry
(r = const) [26]. If this result is viewed as a function of c

and l alone, the moduli of the different terms depend on r as
opposed to the 2D case where the whole energy functional is
simply rescaled by r . Additionally, the surface energy of cell
sides which are perpendicular to the folds [the front and the
rear cell sides in Fig. 1(a)] is here expressed as a linear term
in tissue thickness. However, this is not expected to lead to a
qualitative difference compared to the 2D mechanics since the
linear term in l only adds to the Lagrange multiplier for the
fixed volume constraint

∫ S

0 lr ds = V .
It can be shown that ψ(s) obeys the same differential

equation as in the 2D case [Eq. (5)]. Yet 3D effects do appear
in thickness modulation which is here inversely proportional
to the equilibrium cell depth r = √

V/[(α + β)S],

l3D(s) = l3D
0 − α − β

4r
ψ̇(s), (13)

where l3D
0 = V/(rS) [in zero-order approximation in the

differential tension l3D
0 ≈ (α + β)2/3 and r ≈ (α + β)−1/3].

They also enter the boundary condition for ψ̇(S), which reads
ψ̇(S) = ±8

√
(α + β)r − (V/S)2 − γ /

√
2 − (α − β)2.

Taking into account the expression for tissue thickness
[Eq. (13)], a simplified energy functional for the shape of
the tissue cross-section midline that includes 3D effects
is obtained: dw3D/ds = const + (ke/2)(c − c0)2, where c0 =
2(α − β)/{[2 − (α − β)2]r} is the tissue spontaneous curva-
ture. Here, however, the spontaneous curvature does not affect
the equilibrium shape, since the integral of curvature over
periodic curve in 2D plane is 0 [31], and thus the energy
difference between the flat and the fold state again reads
w3D − w3D

flat = (ke/2)
∫ S

0 c2ds.
In the case of cylindrical epithelium studied here [26], the

deformation in the plane perpendicular to the folds could
induce stresses in the third dimension, i.e., along the folds.
In particular, the deviation of r = √

V/[(α + β)S], which is
optimal on the scale of the whole waveform and is constant
along it, from the locally optimal value r0 = √

c2 + 8l/(2
√

2l)
at fixed c and l can be viewed as a measure for the local stress

in the zero-curvature direction:

σloc = σ0

(
r

r0
− 1

)
, (14)

where σ0 is the magnitude of the stress. We can distinguish
three regimes: (i) If σloc = 0, then there are no local stresses;
(ii) if σloc > 0, then there is a tendency for compression; and
(iii) if σloc < 0, then there is a tendency for expansion in the
direction perpendicular to the cross section. These stresses
could further induce deformations in the third dimension. For
such processes a full 3D generalization of the theory is needed.
Due to geometric reasons the mechanics described by such a
theory is expected to differ considerably and could give rise
to various epithelial morphologies such as villi, crypts, and
zig-zag folds.

V. CONCLUSIONS

We derived a continuum theory explaining the elasticity
of an epithelium built from dropletlike cells characterized by
differential surface tensions of cell sides. We introduced tissue
thickness, i.e., cell height, as a variable which together with
the curvature describes the tissue shape. Thickness modulation
resulting from the thickness-curvature coupling is not only
the signature of the mechanics presented here but also is
an essential mechanism needed for folded epithelia to be
energetically preferred over flat epithelia. As shown here,
spontaneous folding can be described simply by the bending
elasticity with a negative bending modulus.

The thickness modulation has been until recently an
overlooked feature of epithelial shapes [18]. In elastic models,
it is usually associated with large deformations and is locally
induced by a large curvature. For example, various elastic
models of highly deformed tissues give results which show
a considerable curvature dependence of the thickness along
waveforms [11,12,15]. Similarly, within the Kirchoff-Love
plate theory where the thickness is considered constant, a
simple argument addressing the bending of an incompressible
plate can be used to show that, to lowest order, the change
in thickness due to the curvature �L = L2C/4. However, the
curvature dependence of the thickness may not be related only
to ordinary elastic materials. In our model the local thickness
modulation depends on the local curvature as well, but it is
additionally governed by the apicobasal differential tension.
Interestingly, in the case of vanishing differential tension
the thickness no longer depends on the curvature, at least
not within the first-order approximation in (c/2l)2 [Eq. (2)].
The next order gives a negligible thickness modulation �l ≈
c4/(128l3

0). Thus, the thickness modulation here indeed results
from the apicobasal polarity as an intrinsic property of the
tissue.

An advantage of the approach presented here is that it allows
one to understand and compare the mechanics of different
models just by analyzing effective elasticity functionals before
minimizing them. In Ref. [16] the epithelial cross section with
a fixed enclosed area has been studied as a model of gastru-
lation in Drosophila. It has been shown that the nonconfined
epithelium can form very simple shapes reminiscent of the
shapes of 2D lipid vesicles [29] as long as |α − β| <

√
2 as

well as more complex shapes with multiple constrictions either
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on the apical side or on the basal side of the tissue for α > β

and α < β, respectively (Fig. 3(a) in Ref. [16]). The continuum
theory presented here helps us to understand this sensitivity
to |α − β| since it shows that the conceptually different
behavior is a consequence of epithelial bending modulus’
dependence on apicobasal differential tension which can either
promote or suppress spontaneous folding. We formally derive
this in Appendix E. A similar model of 3D incompressible
epithelial cells, where instead of surface tension apical cell
sides are characterized by the apical belt line tension, has been
studied in Ref. [19]. The continuum theory seems the most
appropriate tool for the comparison of both models in terms
of elasticity. We show in Appendix E that the elasticities of
both model epithelia are qualitatively very similar. For the case
of cylindrical symmetry they can be both reduced to Euler’s
elastica problem and the main signature of both is the thickness
modulation that results from the apicobasal asymmetry.

Studying coarse-grained discrete models of epithelia in the
continuum limit has several advantages. It contributes to the
understanding of the underlying mechanics and it distinguishes
between mechanisms for the formation of modulated epithelial
morphologies. In this paper we showed that the elasticity of
epithelia might not differ much from the elasticity of simpler
systems such as flexible rods and plates, yet the internal forces
due to subcellular mechanics can induce spontaneous buckling
which is not the case with ordinary elastic materials.

ACKNOWLEDGMENTS
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APPENDIX A: LATERAL TENSION DENSITY

The energy of an infinitesimally small segment of tissue
reads

dW = (�a + �b)
dA

L
+ �a − �b

2
CdA + d�l

dA
LdA. (A1)

The energy of a tissue with a reference cross-section area Ac, a
constant curvature C, and a thickness L can be then calculated
by integrating Eq. (A1) and has to be equal to the energy of a
single cell with the same cross-section area Ac:∫

Ac

∂W

∂A
dA = W1. (A2)

Here W1 is the energy of a discrete cell

W1 = (�a + �b)
Ac

L
+ �a − �b

2
CAc + �lL

√
1 +

(
CAc

2L

)2

.

(A3)

The lateral tension density can be expressed from Eq. (A2)
and is given by

d�l

dA
= �l

Ac

√
1 +

(
CAc

2L

)2

. (A4)

The energy per unit length in nondimensional form then reads

dw

ds
= α + β + α − β

2
lc + l2

√
1 +

(
c

2l

)2

, (A5)

where the length scale is
√

Ac and the energy scale is �l

√
Ac.

In the columnar epithelium cells are tall, and thus (c/2l)2 � 1
so the energy functional can be expanded as

dw

ds
≈ α + β + α − β

2
lc + l2 + 1

8
c2. (A6)

APPENDIX B: EULER-LAGRANGE EQUATIONS

It is convenient to write the Lagrangian L in [ψ(s), l(s)]
parametrization, where ψ(s) is an angle between the tangent
to the tissue midline and the horizontal axis. As before ẋ =
cos ψ(s), ẏ = − sin ψ(s), so the Lagrangian reads

L = α + β + α − β

2
ψ̇l + l2 + 1

8
ψ̇2

+μl + γ (s)(ẋ − cos ψ) + η(s)(ẏ + sin ψ), (B1)

where μ, γ (s), and η(s) are Lagrange multipliers. This yields
the Euler-Lagrange equations for ψ and l:

ψ̇ = − 2

α − β
(μ + 2l), (B2a)

l̇ = 2(α − β)

(α − β)2 − 2
(γ sin ψ + η cos ψ). (B2b)

Additionally, it turns out that all Lagrange multipliers are
constant (γ̇ = 0, η̇ = 0, μ̇ = 0) and that the constraint of fixed
area of tissue cross section Ae can be taken into account by
adding another differential equation Ȧe = l. The boundary
conditions read ψ(0) = 0, x(0) = 0, y(0) = 0, Ae(0) = 0,
ψ(S) = 0, x(S) = λ, y(S) = 0, and Ae(S) = A.

The boundary-value problem can be further simplified
by considering two boundary conditions. First, the periodic
boundary condition l(0) = l(S) can be recast as l(S) − l(0) =∫ S

0 l̇ds = 0. It follows η[x(S) − x(0)] − γ [y(S) − y(0)] = 0.
Thus

η = 0 . (B3)

Similarly, the periodic boundary condition ψ(0) = ψ(S)
can be recast as ψ(S) − ψ(0) = ∫ S

0 ψ̇ds = 0. It follows that
μS + 2Ae(S) = 0. Thus

μ = −2A

S
. (B4)

The Euler-Lagrange equation for ψ can now be decoupled
from the Euler-Lagrange equation for l and the simplified
system reads

ψ̈ + 8γ

(α − β)2 − 2
sin ψ = 0, (B5a)

l = A

S
− α − β

4
ψ̇. (B5b)

Note that in the case of α = β the system reduces to ψ̈ −
4γ sin ψ = 0, l = A/S.
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The length of the integration interval S is derived by the
minimization of the Hamiltonian H with respect to S:

d

dS

∫ S

0
H(ψ,ψ̇,l)ds = H(ψ,ψ̇,l)|s=S = 0, (B6)

where H = −L + pψψ̇ + pxẋ + pyẏ; pqi
= ∂L/∂q̇i are the

conjugate momenta. The Hamiltonian reads

H = 1
8 ψ̇2 − (α + β) − l2 − μl + γ cos ψ, (B7)

and an additional boundary condition for the curvature at s = S

is obtained:

ψ̇(S) = ± 8

2 − (α − β)2

√
α + β −

(
A

S

)2

− γ . (B8)

APPENDIX C: THICKNESS MODULATION AT α − β = 0

In order to study the tissue thickness modulation in the case
of vanishing differential tension where the thickness-curvature
coupling term (α − β)cl/2 in Eq. (2) is zero, we need to go
beyond the harmonic expansion of the surface tension model
[Eq. (1)]. The lowest anharmonic term is c4/(128l2) and in
this approximation the Euler-Lagrange equation for thickness
reads

l4 = l3

(
l0 − α − β

4
ψ̇

)
+ 1

128
ψ̇4. (C1)

An approximate analytical expression for thickness modula-
tion can be obtained perturbatively. We write l ≈ [l0 − (α −
β)ψ̇/4] + δl, where |δl| � l0 − (α − β)ψ̇/4, and we insert
this ansatz into Eq. (C1) which then gives

l ≈ l0 − α − β

4
ψ̇ + ψ̇4

128[l0 − (α − β)ψ̇/4]3
. (C2)

In the case of zero differential tension (α − β = 0), Eq. (C2)
simplifies to

l(s) = l0 + ψ̇(s)4

128l3
0

. (C3)

APPENDIX D: BASEMENT MEMBRANE

In the discrete representation the basement membrane
energy can be written as Wbm = (Kbm/2)C2

bmLb, where Lb =
(1 − CL/2)�A/L is the length of the basal cell side and the
relationship between the midline curvature C and the curvature
of the basement membrane Cbm reads 1/Cbm = 1/C − L/2.
Thus, in the continuum limit (�A → 0) the dimensionless
energy of the basement membrane reads

wbm = κ

2

∫ S

0

c2

1 − lc/2
ds, (D1)

where the nondimensional basement membrane bending mod-
ulus κ is measured in units of �lAc.

APPENDIX E: COMPARISON TO OTHER MODELS

First, we study an epithelial tube with fixed enclosed
cross-section area. This system has been used as a model

for the developing Drosophila embryo in Ref. [16]. During
the gastrulation the tissue is invaginated on embryo’s ventral
side and forms the ventral furrow. In this model the interior
of the embryo is filled with an incompressible fluid (yolk)
which we model by an additional term in the Langragian
νx sin ψ , since Ay = ∫ S

0 xẏds = ∫ S

0 x sin ψds = const. Thus

L = α + β + α − β

2
ψ̇l + l2 + 1

8
ψ̇2

+μl + νx sin ψ + γ (s)(ẋ − cos ψ). (E1)

The Euler-Lagrange equations for this case read ψ̇ = −2(2l +
μ)/(α − β), l̇ = 2(α − β)(νx cos ψ + γ sin ψ)/[(α − β)2 −
2], ẋ = cos ψ , γ̇ = ν sin ψ , Ȧy = x sin ψ , Ȧe = l, μ̇ = 0,
ν̇ = 0 and have to satisfy the following boundary condi-
tions: ψ(0) = 0, x(0) = 0, Ay(0) = 0, Ae(0) = 0, ψ(S) = π ,
x(S) = 0, Ay(S) = Ay , and Ae(S) = A.

Again, additional boundary conditions can be considered.
First, the boundary condition ψ(S) − ψ(0) = π gives μ =
−2Ae(S)/S − π (α − β)/(2S). In the case of shapes that are
symmetric about both x and y axis also the condition l(S) =
l(0) holds true and gives γ (0) = γ (S). The simplified Euler-
Lagrange equations for ψ and l then read

ψ̈ + 8

(α − β)2 − 2
(νx cos ψ + γ sin ψ) = 0, (E2a)

l(s) = A

S
− α − β

4

[
ψ̇(s) − π

S

]
. (E2b)

The integration interval S has to be varied here as well. This
is done in the same way as in the case of longitudinal folds
[Eq. (B6)] by minimizing the Hamiltonian

H = 1
8 ψ̇2 − (α + β) − l2 − μl − νx sin ψ + γ cos ψ. (E3)

In Ref. [19] a 3D model of cells with a linear apical belt
tension has been introduced. In this model the energy of a
single cell reads

W = �apa + γbAb − αlAl, (E4)

where pa is perimeter of the apical belt, �a is the apical belt
tension, γb is the basal surface tension, and αl is the lateral
surface tension. Following a similar derivation as in our model
(Appendix A) we obtain the effective elastic energy per unit
length in the limit of columnar cells [(c/2lr)2 � 1]:

dw

ds
= α + βr + α − βr

2
cl + (αr2 − 2)l − 2r2l2 − 1

4
c2.

(E5)

Here α = 2�a/(αl
3
√

Vr ) and β = γb/αl ; s, l, r , and 1/c are
measured in units of 3

√
Vr and w is measured in units of αlV

1/3
r .

The result is qualitatively the same as in the model presented
in the main text [Eq. (12)].

The authors of Ref. [19] have also included two additional
energy terms accounting for the deformation of the nucleus,
which were not considered when deriving Eq. (E5).
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[18] N. Štorgel, M. Krajnc, P. Mrak, J. Štrus, and P. Ziherl
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[23] A. Hočevar and P. Ziherl, Phys. Rev. E 80, 011904 (2009).
[24] J. Derganc, S. Svetina, and B. Žekš, J. Theor. Biol. 260, 333

(2009).
[25] Generally, any of the three surface tensions could also be

negative. The effective surface tension includes a positive term
due to cortex tension and a negative term due to adhesion, and
if the magnitude of the latter is large enough the surface tension
may be negative. Within our model, this would lead to unstable
cells which would be either infinitely tall (if �l < 0) or infinitely
short (if �a < 0 or �b < 0). The instability has been considered
in Ref. [19] where it was curbed by two additional energy terms
accounting for deformation energy of the nucleus.

[26] Here “cylindrical” is used in the broad sense, describing a ruled
surface defined by a single-parameter family of parallel lines. In
this case, Gaussian curvature is zero and the shape is described
by a single principal curvature.

[27] The equilibrium shape of flexible rod with bending rigidity Kb

uniaxially compressed by the force Fx is the solution of Euler’s
Elastica equation ψ̈ − (Fx/Kb) sin ψ = 0.

[28] T. J. W. Wagner and D. Vella, Soft Matter 9, 1025 (2013).
[29] U. Seifert, Phys. Rev. A 43, 6803 (1991).
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