
PHYSICAL REVIEW E 92, 052712 (2015)

Limits to anaerobic energy and cytosolic concentration in the living cell
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For many physical systems at any given temperature, the set of all states where the system’s free energy reaches
its largest value can be determined from the system’s constitutive equations of internal energy and entropy, once
a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because
the cell’s cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination
of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store
and release, detailed information on cytosol composition is redundant. Compatibility with cell’s life requires that
a single variable that represents the overall concentration of cytosol solutes must fall between defined limits,
which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits
are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic
processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions
this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular
mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results
apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of
single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease
produced cell damage, drug absorption capacity, to mention the most obvious ones.
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I. INTRODUCTION

The cytosol—the aqueous solution within the living cell—is
the medium where most of the chemical reactions essential to
a cell’s life take place. It is a complex solution that contains
several tens of thousands of different solutes, ranging over
a multitude of ions, a host of small organic and inorganic
molecules, and a great number of large organic compounds
such as proteins [1–5]. A fundamental function of the cytosol
is to store and release energy. In this respect, its role is not
dissimilar to that of the electrolyte solution of a rechargeable
electric battery. In the cytosol case, however, this function
is performed by a myriad of chemical reactions between
the cytosol solutes and by exchanges of materials with the
environment. In spite of such complexity, we show here that the
free energy of the cytosol, i.e., the available energy contained
in a living cell, is determined by the overall concentration of
cytosol solutes.

Essential to the present analysis is the observation that, at
a finite temperature, the internal energy that can be stored in a
finite volume system is finite. This fact is a direct consequence
of the first law of thermodynamics. When considered in the
light of the second law of thermodynamics, it implies that
the specific free energy of a system (i.e., the energy that at
a given temperature a system can store and spend per unit
volume) cannot exceed a definite limit, which depends on the
system [6]. The analysis that leads to this result is reviewed in
Appendix A. When applied to the cytosol of a living cell, the
same result requires that the overall concentration of solutes
in the cytosol must fall within a definite interval, which is the
admissible range of overall concentration of cytosol solutes,
or the cell’s admissible range for short. Outside that range,
the cytosol’s free energy becomes greater than the maximum
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amount of free energy that the cytosol can contain, which is
bound to produce irreversible changes in the cell or even the
cell’s death.

Each cell has its own admissible range. The ends of
this range are the lowest and the largest overall cytosolic
concentrations that are compatible with the cell. As shown
in Sec. V, a way to determine the limit concentrations of a
cell is to measure the water content of its cytosol in simple
experiments in which the cell is dehydrated and overhydrated
to its maximum capacity. The same experiments can also be
used to determine the effective concentration or activity of the
equivalent solute.

The limits to overall cytosolic concentration established
in this paper bear important consequences in cell biology.
Because the cytosol contains such a large number of solutes,
a limit to the maximum content of solutes implies even a
tighter limit to the concentration of each solute. Adding any
amount of any solute beyond that limit, therefore, must be
accompanied by a reduction in the concentrations of the other
solutes in order to keep the overall cytosolic concentration
below the admissible limit. In particular, any solute intake
or any chemical reaction that produces an increase in the
cytosolic solutes may require some output of solutes from the
cell or the formation of solute aggregates to keep the overall
cytosolic concentration within the admissible values. For this
reason, the concentration limit in question may be of relevance
when studying the drug absorption capacity of the cell, or the
effects of the accumulation of spurious material in the cytosol
resulting from aging or disease.

A further consequence concerns cell energetics. A limit
to cytosolic concentration entails a limit to the energy that
a cell can store. This means, in particular, that for any state
of the cell there is a limit to the energy that the cell can
spend in fast anaerobic processes, i.e., when no nutrient can
be taken from the surroundings. Clearly, the amount of energy
stored in the cytosol is related to the capacity of a cell to
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spend energy and, thus, to the cell’s vitality. This capacity
depends on the state of the cell. The paper shows how to
calculate it once the cytosol composition is given and the cell’s
dehydration and overhydration limits are known (Sec. VI).
When applied to skeletal muscle cells, this result can be used
to determine the work that a given mass of skeletal muscle can
do in fast anaerobic excises, such as weight lifting, jumping,
sprint running, etc. A practical example is presented in detail in
Sec. VI. The implications for sport science and cell physiology
are evident.

II. CYTOSOL FREE ENERGY

As in every physical system, the state of the cytosol is
defined by its state variables. In the cytosol case, these are the
state variables of any solution, namely pressure (p), absolute
temperature (T), moles of solvent or water in the cytosol’s
case (nH2O), and moles of solutes (nj , with j = 1, 2, . . . s,
where s is the number of solutes). Even the simplest cell
contains thousands of different solutes in its cytosol, which
makes s in the order of 104. A practical way to take account of
such a large number of variables—many of which may not even
be known accurately—is presented in the following sections.

Volume, energy, entropy, etc., of cytosol depend on the state
variables according to the well-known constitutive equations
of any liquid mixture. In particular, the constitutive equation
of the cytosol’s Gibbs free energy G can be expressed in the
form (see Appendix B)

G = nH2Oμo
H2O(po,T ) +

s∑
j=1

njμ
o
j (po,T ) + V �p

+RT

⎡
⎢⎣nH2O ln

γH2OnH2O

nH2O +
s∑

j=1
nj

+
s∑

j=1

nj ln
γjnj

mH2O

⎤
⎥⎦ + C.

(2.1)

In this equation, μo
H2O and μo

j denote the chemical potentials
of solvent and solutes in a reference state at temperature T and
pressure p°. The quantity �p = p − p◦ represents the excess
of p over the reference pressure, while V is the cytosol volume
and mH2O is the mass of solvent. The dimensionless factors
γH2O and γj are the activity coefficients of solvent and solutes,
respectively. Finally, R is the universal gas constant and C is an
arbitrary constant that depends on the reference value assumed
for the internal energy of the solution. The above notation is
almost standard and is the same as that adopted in [6]. The
nondimensionless ratio nj/mH2O appearing in the arguments
of the logarithms under summation in the above equation
originates from expressing the concentration of the solutes
in molalities (moles per kg of solvent). Thus, in Eq. (2.1) and
the ones that follow from it, mH2O must be understood to be
measured in kg. According to the usual convention, the same
logarithm arguments are understood to be divided by 1 mol/kg
to make them dimensionless.

Water makes up more than 70% of the total weight of the
cytosol. The remaining 30% weight is shared by a myriad of

solutes. Therefore, the concentration of each solute is quite
low. Most of the solutes are organic compounds of molecular
weight that easily exceeds ten times the molecular weight
of water. This makes the mole number of each solute quite
small, so that the quantities nj are mostly in the range 10−3

or less. Given that γH2O is not far from unity, the value of the
argument of the first logarithm in the brackets of Eq. (2.1)
is approximately equal to 1 as a result. Moreover, the same
argument is not subjected to undergo significant changes,
since the overall amount of solutes does not vary much
during the cell’s life. As a result, the logarithm in question
is quite small and almost constant. At constant temperature,
therefore, no sensible error is made if the contribution to G
from the said logarithm is ignored or considered as included
in C. Accordingly, we shall henceforth refer to the following
approximate expression of the cytosol’s Gibbs free energy:

G = nH2Oμo
H2O(po,T ) +

s∑
j=1

njμ
o
j (po,T )

+ RT

s∑
j=1

nj ln
γjnj

mH2O
+ V �p + C. (2.2)

The cytosol’s Helmholtz free energy � can accordingly be
expressed as

� = nH2Oμo
H2O(po,T ) +

s∑
j=1

njμ
o
j (po,T )

+ RT

s∑
j=1

nj ln
γjnj

mH2O
− poV + C (2.3)

as readily follows from Eq. (2.1) and the definition of � :

� = G − pV. (2.4)

Not all the free energy (2.3) is subjected to a thermodynamic
limit. As discussed in Appendix B, the part of � that
determines the admissible range of the cell is given by

� ′′ = RT

s∑
j=1

nj ln
γjnj

mH2O
− poV, (2.5)

which may well represent a tiny, though important, part of the
total free energy of the cytosol.

In seeking the cell’s admissible range, it is convenient to
refer to the quantity �̄ ′′ representing the specific value of � ′′
per mole of solvent. By dividing both sides of Eq. (2.5) by
nH2O we obtain

�̄ ′′ = RT

s∑
j=1

nj

nH2O
ln

γjnj

nH2OMH2O
− poV̄ , (2.6)

where MH2O = 18.015 × 10−3 Kg/mol is the molar mass of
water, while V̄ is the cytosol volume per mole of solvent, i.e.,

V̄ = V

nH2O
. (2.7)
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If �̄ ′′
max denotes the maximum value that �̄ ′′ can attain at a

given temperature T, we have that, at the same temperature,

�̄ ′′ � �̄ ′′
max. (2.8)

This relation defines the cell’s admissible range in space of
variables nH2O and nj , because �̄ ′′ = �̄ ′′(nH2O,nj ,T ). From
Eqs. (2.6) and (2.7), the same range can be expressed more
explicitly as

RT

s∑
j=1

nj

nH2O
ln

γjnj

nH2OMH2O
− poV̄ � �̄ ′′

max. (2.9)

The cell’s limit surface is the boundary of this range. That
is,

RT

s∑
j=1

nj

nH2O
ln

γjnj

nH2OMH2O
− poV̄ = �̄ ′′

max. (2.10)

III. EQUIVALENT SOLUTE

As they stand, relations (2.6), (2.9), and (2.10) are hardly
practical due to the large number of terms implied by the
summation appearing in them (remember that s is in the order
of 104). It is fortunate that, for processes that occur at constant
temperature and pressure, that summation can be reduced to
just one single term according to the formula,

s∑
j=1

nj

nH2O
ln

γjnj

nH2OMH2O
= neq

nH2O
ln

γeqneq

nH2OMH2O
. (3.1)

In this formula, neq indicates the overall moles of solutes
contained in volume V of cytosol, i.e.,

neq =
s∑

j=1

nj , (3.2)

while nH2O are the moles of solvent contained in the same
volume and γeq is defined by

γeq = MH2O

neq

⎡
⎣ s∏

j=1

(
γjnj

MH2O

)nj

⎤
⎦

1
/
neq

. (3.3)

The symbol � appearing in this equation indicates the product
of a sequence, i.e.,

k∏
i=1

yi = y1y2 . . . yk. (3.4)

To prove Eq. (3.1), it is convenient to adopt the following
notation:

a = neq =
s∑
j

nj , ai = ni, b = γeqneq

MH2O
,

(3.5)

bi = γini

MH2O
, and x = nH2O.

Thus, Eq. (3.1) can be written in the formally simpler form
s∑

j=1

aj

x
ln

bj

x
= a

x
ln

b

x
. (3.6)

It can then be observed that the following equations hold true
for any value of x:

s∑
j=1

aj

x
ln

bj

x
= a1

x
ln

b1

x
+ a2

x
ln

b2

x
+ · · · + as

x
ln

bs

x

= a1

x
ln b1 − a1

x
ln x + a2

x
ln b2 − a2

x
ln x

+ · · · + as

x
ln bs − as

x
ln x

= 1

x
ln

(
b1

a1b2
a2 . . . bs

as
)

− 1

x
(a1 + a2 + · · · + as) ln x. (3.7)

The validity of Eq. (3.6) follows from the last of these
equations once we set

a = a1 + a2 + · · · + as (3.8)

and

ba = b1
a1b2

a2 . . . bs
as =

s∏
j=1

bj
aj , (3.9)

respectively. As Eqs. (3.5), (3.8), and (3.9) should make it
apparent, Eq. (3.6) is nothing but Eq. (3.1) in a different
notation. The proof is thus completed.

IV. A SIMPLER EXPRESSION FOR THE LIVING CELL’S
LIMIT SURFACE

Thanks to Eq. (3.1), much of the information contained in
relation (2.9) can be obtained from the simpler relation

RT
neq

nH2O
ln

γeqneq

nH2OMH2O
− poV̄ � �̄ ′′

max, (4.1)

which follows from relations (2.9) and (3.1). Relation (4.1)
shows that the quantity neq plays the role of one single solute
that, as far as the cell’s admissible range is concerned, is
equivalent to all the solutes which are actually contained in
the cytosol. The index “eq” is appended to n to remind us of
this fact. The quantity γeq is an appropriate function of neq and
nH2O, which may be interpreted as the activity coefficient of
such an equivalent solute.

Relation (4.1) holds true, in particular, when hydration and
dehydration processes at constant temperature and pressure
are considered. In these processes, the variable nH2O changes
while most of the variables nj remain constant. In the living
cell, the values of neq and γeq may generally change with nH2O.
However, for hydration and dehydration processes that involve
comparatively small changes in the cytosol’s water content—
which generally is the case of the processes considered in this
paper—the dependence of neq and γeq on nH2O may be ignored.
In this case, the values of neq and γeq can be taken as coinciding
with those that the same variables assume at the beginning of
the process.

Strictly speaking, also V̄ depends on nH2O, as apparent from
Eq. (2.7) and from the fact that V varies with nH2O. In practice,
however, the water content of the cytosol is so high with respect
to that of the solutes that the dependence of V̄ from nH2O can
be ignored. In these conditions, during the above hydration or
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dehydration process V̄ is almost constant and very near to the
molar volume of water.

By taking the equality sign in relation (4.1), we obtain the
cell’s limit surface:

RT
neq

nH2O
ln

γeqneq

nH2OMH2O
− poV̄ = �̄ ′′

max. (4.2)

In plane (neq, nH2O), the cell’s admissible range is repre-
sented by the region of points [neq, nH2O] that satisfy relation
(4.1). In the same plane, the cell’s limit surface reduces to
curve (4.2) that delimits this region. For processes where neq

is a function of nH2O, the pairs neq and nH2O describe a line in
the above region, while Eq. (4.2) defines the end points of that
line.

V. EXPERIMENTAL DETERMINATION OF THE CELL’S
ADMISSIBLE RANGE

At constant temperature and pressure, a living cell can
progressively be dehydrated by immersing it into a hypertonic
solution. As the cell loses water by osmosis, it shrinks and
eventually dies. Starting from any given state of the cell, let
wd be the smallest value of nH2O that the cell can tolerate
without suffering permanent changes. If not dehydrated below
the value wd , the cell is capable of recovering its original
state and functions when subsequently rehydrated, which
indicates that the dehydration process took place entirely
within the admissible range of the cell. On the contrary, if the
cell is dehydrated beyond limit wd , it will suffer permanent
damage. In this case, subsequent rehydration to the original
water content will not bring the cell back to its original
state, because dehydration beyond the cell’s admissible range
produces permanent changes in the cell’s response and hence
its constitutive equations.

Because it is a state at the boundary of the cell’s admissible
range, the state of the cell at the limit of dehydration belongs
to cell’s limit surface. Thus, �̄ ′′ = �̄ ′′

max if nH2O = wd .
Therefore, from Eq. (4.1) we have

�̄ ′′(wd ) = RT
neq

wd

ln
γeqneq

wdMH2O
− poV̄ |d = �̄ ′′

max. (5.1)

An analogous situation occurs when the cell is overhy-
drated. This can be done by immersing the cell into a hypotonic
solution, rather than a hypertonic one as in the previous case.
The cell absorbs water from its surroundings by osmosis and
it swells. Again if the process lasts long enough, the cell
may die as a result. Let wh be the largest value of nH2O

that the cell can maintain under isothermal, constant pressure
conditions without suffering permanent changes. Similarly
to what applies to the dehydration limit, the limit state of
hydration must belong to the cell’s limit surface. Thus, �̄ ′′ =
�̄ ′′

max also for nH2O = wh. From Eq. (4.1) we have, therefore,

�̄ ′′(wh) = RT
neq

wh

ln
γeqneq

whMH2O
− poV̄ |h = �̄ ′′

max. (5.2)

About 99% of cytosol molecules are water [1–5], which
makes nH2O much greater than neq and, a fortiori, much
greater than the moles nj of any of the cytosol solutes. As
a consequence, the cytosol volume per mole of solvent, V̄ ,
approximates the molar volume of water and it does not

change appreciably unless the changes in nH2O are quite large.
Because living cells can only withstand modest changes in
their water content, it is reasonable to assume that in the
above hydration and dehydration processes V̄ |h ≈ V̄ |d . Then,
from Eqs. (5.1) and (5.2) it is not difficult to conclude that, to
a good approximation,

γeq = MH2O

neq

(
wd

wh

wh
wd

)1/wh−wd

(5.3)

Based on this result, the activity γeq can be determined
experimentally as follows. Starting from any given initial state
of the cell, the values of wh and wd relevant to that initial
state are determined experimentally through a sequence of
processes in which the cell is hydrated and dehydrated as
appropriate. The value of neq is calculated from Eq. (3.2) once
the quantities ni are obtained from a chemical analysis of the
cell’s cytosol in the considered initial state. The factor γeq

can then be calculated from Eq. (5.3), since all the variables
entering this equation are now known. Strictly speaking, the
value of γeq depends on the initial state of the cell, because so
do the quantities wh, wd , and neq. However, in the range of
states that are accessible to a living cell, these quantities do
not suffer much change. This implies even smaller changes in
γeq, according to Eq. (5.3). For this reason, in the absence of
more precise data, γeq will be treated as a constant.

As apparent from Eq. (4.1), the variables γeq and neq

determine the function �̄ ′′ = �̄ ′′(nH2O) completely. The same
variables also determine �̄ ′′

max through Eqs. (2.10) or (4.2),
once wh and wd are known. The cell’s admissible range (5.1)
and limit surface (5.2) are thus determined by wh, wd , and neq,
thanks to Eq. (5.3).

To exemplify, let us refer to a typical skeletal muscle cell of
a generic living being. Let the cell be in a given relaxed state
at normal body temperature T = 310, K = 37 ◦C, which we
take as the cell’s initial state. In this state, the cell’s water
content is assumed to be 70% of the cell wet weight. As
recalled above, water molecules account for about 99% of
all molecules in the cell. Thus, if no

H2O is the number of water
moles in the cytosol in the initial state, the value of neq in that
state is, to a good approximation, no

eq = 0.01no
H2O. Of course,

no
eq can be determined more precisely from a quantitative

chemical analysis of the cytosol. Suppose then that the cell’s
dehydration and overhydration limits are wd = 0.8no

H2O and
wh = 1.1no

H2O, respectively. These limits correspond to water
content of 56% and 82% of the total cell weight, respectively,
and are consistent with the values reported in the literature for
a skeletal muscle cell (see, e.g., [7–9]). Inserted into Eq. (5.3),
these values of wd and wh yield γeq = 0.6165. The initial
amount of cytosol can be taken arbitrarily. Thus, no restriction
arises if we take no

H2O = 1 mol, which we shall henceforth
assume. A plot of �̄ ′′ = �̄ ′′(nH2O) for γeq = 0.6165 and
neq = no

eq = 0.01 mol is presented in Fig. 1. For the considered
cell, the limit value �̄ ′′

max as calculated from Eqs. (5.1) or (5.2)
is �̄ ′′

max = − 29.08 J/mol. (Remember that �̄ ′′ represents an
energy per mole of solvent, water in the present case.) The
minimum of �̄ ′′ is reached for nH2O = wm = 0.93 mol and
is �̄ ′′

min = − 29.51 J/mol. This minimum, however, plays no
role in what follows. It is unrelated to the minimum of the
cytosol free energy �, because � ′′ and thus its specific value
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2H O( )′′ n

′′

2H On

2

24

26

max′′

0.5 1.0 1.5 2.0  [mol]

[J/mol]

min′′

• ••

28

30

0

neq = 0.01 mol

FIG. 1. Plot of �̄ ′′ = �̄ ′′(nH2O) as obtained from Eq. (4.1) for
γeq = 0.6165 and neq = 0.01 mol. All values of nH2O within the
interval [wd , wh] are admissible for the cell, according to Eq. (4.1). At
the ends of that interval, �̄ ′′ equals �̄ ′′

max. Normal body temperature
T = 310 K = 37 ◦C is assumed.

�̄ ′′ are only a small part of � [cf. definitions (2.5) and (2.6)
and Appendix B]. The reader is referred to [6] for a complete
treatment of this point.

Relation (4.1) sets limits to neq, that is to overall concen-
tration of cytosol solutes. As observed, these limits cannot be
exceeded without producing irreversible changes in the cell.
Figure 2 represents the diagram of �̄ ′′ vs neq/nH2O as obtained
from Eq. (4.1) for the skeletal muscle cell considered in the
present example. The quantity V̄ is assumed to be equal to
the molar volume of water. The admissible range of overall
cytosolic concentrations (neq/nH2O) correspond to the part of
the diagram that lies below the line �̄ ′′ = �̄ ′′

max. The maximum
and minimum values of neq per mole of cytosolic water are
reached at the ends of this range. In the considered example,
these values turn out to be neq|max = 12.70 × 10−3 mol and
neq|min = 8.92 × 10−3 mol, per mole of H2O.

VI. MAXIMUM CAPACITY OF ANAEROBIC ENERGY
PRODUCTION

Muscle and nervous cells must often release comparatively
large amounts of energy in such a short time that there is no

( J/mol )  
max

−

′′
29.08

8−28.5 10 12

−29.0

−29.5

′′[J/mol]

  admissible range 

9 11 13 [10−3 ]7

max≤′′ ′′

2H Oeq max( / )n n
2H Oeq min( / )n n

(8.92 10−3 ) (12.70 10−3 )
2H Oeq /n n

A B  2.70 10−3

( J/mol)
min

−

′′
29.51

−30.0

FIG. 2. Admissible range of overall solute concentration per mole
of cytosolic water as obtained from limitation (2.8) for the cell
considered in the diagram in Fig. 1. At the considered temperature
and pressure, the admissible values of the ratio neq/nH2O range from
8.92 × 10−3 to 12.70 × 10−3.

time for them to exchange material with the surroundings.
In this case the energy is taken directly by hydrolysis of the
adenosine triphosphate (ATP) contained of the cell’s cytosol.
The reaction is best written as [10]

ATP4−(aq) + H2O → ADP3−(aq) + Pi
2−(aq) + H3O+(aq),

(6.1)

and it produces adenosine diphosphate (ADP), some inorganic
phosphate group (P 2−

i ), and hydronium ions (H3O+). In
normal physiological conditions of concentration and temper-
ature, this reaction liberates some 50 kJ per mole of ATP [11].

To produce enough energy from its limited volume, the cell
keeps replacing the ATP molecules of the cytosol as soon as
they are consumed. It does so through a chain of very fast
reactions which produces ATP from the cytosol’s reserves of
phosphocreatine and glycogen [12,13]. When any exchange
of material with the surroundings is prevented, these ATP
producing reactions are anaerobic and they do not result in
a net change in the overall number of molecules dissolved in
the cytosol. By contrast, the hydrolysis of ATP adds two new
moles of solutes to the cytosol for each mole of ATP that is
transformed into ADP, as Eq. (6.1) makes it apparent. Thus,
when the cell cannot exchange material with the surroundings,
anaerobic energy production results in an increase in the
overall concentration of cytosol solutes. This entails a limit
to the maximum amount of energy that a cell can produce
in fast anaerobic processes, due to the limit to the maximum
value neq/nH2O that the cell can bear.

Starting from a given initial state, let �neq|max be the
maximum amount of solutes that can be added to the cytosol
without producing permanent changes in the cell. Since the
ratio neq/nH2O cannot exceed the value (neq/nH2O)max, we have
that

�neq|max =
(

neq

nH2O

)
max

nH2O − no
eq

no
H2O

no
H2O, (6.2)

where nH2O is the water content of the cytosol in the final state.
If the cell does not exchange materials with its surroundings,
the cytosol water content barely changes, because water is by
far the largest component of the cytosol. In these conditions, by
referring to one mole of cytosolic water, we have that nH2O =
no

H2O = 1 mol. The above equation can then be written as

�neq|max = neq|max − no
eq. (6.3)

All quantities in this equation are understood to be per mole
of cytosolic water.

The maximum number of moles of ATP that the cell can
hydrolyze in fast anaerobic processes is one–half �neq|max,
since two molecules of solute are added to the cytosol per ATP
molecule that is hydrolyzed. Therefore, the maximum amount
of energy that the cell can produce per mole of cytosolic water
in a fast anaerobic process is

ψ̄max = 1
2�rG�neq|max (kJ/mol), (6.4)

where �rG is the appropriate reaction energy, i.e., the energy
liberated by reaction (6.1) per mole of ATP. In normal
physiological conditions, �rG � 50 kJ/mol, as mentioned
above. (This may actually be a conservative estimate, as
suggested in a recent review by Barclay [14].)
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FIG. 3. Typical bell-shaped curve representing muscle efficiency
as a function of σ/σmax, as obtained from the semiempirical formula
by Hill [18].

When contracting fast, a muscle does work at the expenses
of the chemical energy of the ATP that it contains. The
ratio of work done to the free energy liberated from ATP
hydrolysis is variously referred to as thermodynamic efficiency
[15], chemiomechanical efficiency [16], contraction coupling
efficiency [17], to mention just some of the terms in use. We
shall denote this ratio by the symbol φ and refer to it simply
as efficiency. Denoting by 	 the mechanical work done by the
muscle per mole of ATP consumed, we have that

φ = 	

�rG
. (6.5)

A vast literature starting from the pioneering work by Hill
[18] indicates that efficiency of muscle contraction depends on
the ratio σ/σmax of the applied stress σ (force per unit area of
muscle fiber cross section) over the maximum isometric stress
σmax. The latter stress is a characteristic constant of the cell and
its value depends on the kind of muscle under consideration.
The relation between φ and σ/σmax is a bell-shaped curve
such as the one represented in Fig. 3 (cf., e.g., [16,19,20]).
Efficiency goes to zero for σ/σmax = 0 (no stress is applied to
the muscle) and σ/σmax = 1 (isometric condition, no muscle
contraction). In the vast majority of cases, maximum efficiency
is reached for σ/σmax

∼= 0.5. The value of maximum efficiency
ranges from around 0.2 to around 0.6, depending on animal
species, muscle kind, and whether reference to in vivo or in
vitro values is made. A comparatively large in vivo value of
φ = 0.68 was found by Jubrias and co-workers for the first
dorsal intraosseus muscle of the human hand [17,21]. In what
follows we shall generally refer to mammal, bird, and frog
muscles and we shall assume φmax = 0.4. This is somehow
larger than the value of 0.25–0.3 which may be regarded as
more realistic (cf., e.g., [14,22]). However, the present larger
value of φmax is adopted here both in view of our conservative
estimate of �rG, and because the velocity of the anaerobic
contractions we are considering is bound to limit the extent
of ion pumping across the sarcolemma, thus increasing the
efficiency of muscle contraction.

By multiplying Eq. (6.4) by φmax, we obtain the maximum
amount of mechanical work that a muscle cell can release per

mole of cytosolic water in a fast anaerobic process:

w̄max = 1
2φmax�rG�neq

∣∣
max (kJ/mol). (6.6)

In skeletal muscles, intracellular or cytosolic water accounts
for about 0.64 of the wet weight of the muscle tissue, cf., e.g.,
[23]. Therefore, the number of moles of cytosolic water per
kilogram of muscle tissue can be expressed as

n̄cw = 0.64
1

MH2O
= 35.52 (mol/kg), (6.7)

where MH2O is the molar mass of water already introduced in
Eq. (2.6). In view of Eq. (6.6), the maximum work that can be
released per kg of muscle tissue in a fast anaerobic process is
thus given by

wmax = 35.52w̄max (kJ/kg). (6.8)

Let us apply Eqs. (6.6) and (6.8) to find the maximum
work that can be supplied by a muscular tissue undergoing
a fast anaerobic contraction starting from an initial condition
in which neq/nH2O = 0.01. From eq. (6.3) and from the data
obtained in the previous section, we calculate �neq|max =
2.7 × 10−3 mol per mole of cytosolic water (segment AB of
Fig. 2). Therefore, by assuming �rG = 50 kJ/mol and φmax =
0.4 and by applying Eq. (6.6), we obtain w̄max = 27 J/mol.
Thus, from Eq. (6.8) the maximum work that the muscle
can produce in a fast anaerobic contraction turns out to be
wmax = 959 J/kg, per kilogram of wet tissue. If used in weight
lifting, 1 kg of this muscle could lift, say, a 95.9-kg weight
to 1 m or a 191.8-kg weight to 0.5 m, to mention just two
possibilities.

It may help to compare this result it with a rough estimate
made in more traditional and simpler ways. Assume, for
instance, that anaerobic work is derived from just ATP
and phosphocreatine (PCr). This amounts to neglecting any
contribution from anaerobic glycogenolysis—automatically
included in the present approach—and it is bound to un-
derestimate the maximum anaerobic work. Let the initial
cytosolic concentrations of ATP and PCr be 10 and 40 mM,
respectively, which are quite reasonable values. By taking
�rG = 50 kJ/mol, the maximum amount of free energy
that the cytosol can liberate through reaction (6.1) is then
calculated to be �GMax = 50 × 103 J/mol × (10 + 40) ×
10−3 mol/kg = 2500 J/kg per kilogram of cytosolic water.
If efficiency is 0.4, the maximum anaerobic work would be
1000 J/kg per kilogram of cytosolic water, which would mean
wmax = 0.68 × 1000 = 680 J/kg per kg of wet muscle tissue.

One could also estimate the anaerobic energy capacity of
human muscle in the following way (accepting the inherent
uncertainties of such determination). We know from exper-
iments that the power output per kilogram of body mass
during a maximal 30-s effort on a cycle ergometer averages
to about 8 W/kg or a total 240 J/kg [24]. For a 80-kg man
this means a total of 19.2 kJ. Assuming a weight 16 kg for the
muscles producing this work, the maximum anaerobic work
per kilogram of muscle tissue turns out to be given by wmax =
19.2 kJ/16 kg = 1200 J/kg. In this case, the excess of work
over the prediction of the present theory (wmax = 959 J/kg) is
likely to be due to the aerobic energy production taking place
after the first 10–15 s of the experiment.
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APPENDIX A: ADMISSIBLE RANGE AND ADMISSIBLE
SURFACE

A finite system can only store a finite amount of internal en-
ergy. This is a consequence of the first law of thermodynamics,
stating that in any process

�u = �w + �q, (A1)

where u,w, and q, in this order, are the specific values (per
unit volume) of internal energy, work done on the system, and
heat absorbed by the system. A usual, the operator � indicates
difference between final and initial values of the variable to
which it is attached. In particular,

�u = u1 − uo, (A2)

where uo and u1 are the initial and the final values of u,
respectively. If the specific internal energy of the system was
infinite, no finite input/output of energy (i.e., no amount of
�w + �q) could change the value of u. This would mean that
�u = 0 while �w + �q �= 0, in contradiction with the first
law (A1). Thus, u must be finite, and such must be �u as
evident from Eq. (A2).

On the other hand, the 2nd law of thermodynamics requires
that a finite system can only absorb a finite amount of heat in
a process at a finite temperature. This limitation is expressed
by the so-called entropy inequality:

dq � T ds, (A3)

which refers to any infinitesimal time interval of any process.
In this relation, T is the absolute temperature of the system,
while s is the system’s specific entropy (per unit volume)—a
finite-valued function of the state variables of the system.
Entropy characterizes the system’s capacity of absorbing heat
and, therefore, its expression depends on the system. By
integrating relation (A3) along a finite time interval of any
isothermal process we obtain

�q � T �s. (A4)

That is, the amount of heat that a system can absorb at a
constant temperature cannot exceed the upper limit T �s.

A process is called loading, or unloading, or neutral, if
throughout the process the system absorbs work (�w > 0),
or releases work (�w < 0), or does not exchange work at all
(�w = 0), respectively. From Eq. (A1) we infer that the
following relation applies to every unloading process:

�u < �q, (A5)

since in such a process �w < 0. If ψ = u − T s denotes the
system’s specific Helmholtz free energy (per unit volume), we
have that the relation

�ψ = �u − T �s < 0 (A6)

applies to every isothermal unloading process, as a conse-
quence of relations (A5) and (A4). In particular, by applying
relation (A6) to an infinitesimal interval, we infer that the
relation

dψ = d(u − T s) < 0 (A7)

holds true at any time of every isothermal unloading process.
Finally, by integrating inequality (A7) along any isothermal

unloading process we obtain

u − T s < uo − T so, (A8)

where uo and so denote the initial values of internal energy
and entropy, while u and s are the final values of the same
quantities.

Because at finite temperature u and s are finite, there
will always be one or more states at which ψ attains its
largest value, ψmax = max(u − T s), and one or more states at
which ψ reaches its smallest value, ψmin = min(u − T s). For
a given temperature, the quantities ψmax and ψmin represent
a fundamental, though seldom acknowledged, constitutive
property of the system. From relation (A8) we infer that the
following limitation applies to all the states of the system that
can belong to an isothermal unloading process at temperature
T:

ψ = u − T s � ψmax. (A9)

The equality sign in the last inequality applies to states
where the system’s free energy reaches its largest value.
Observe that internal energy depends on an arbitrary additive
constant or, equivalently, on the reference value assumed for u.
However, the same additive constant also enters the definition
of ψ and, thus, the value of ψmax. For this reason, relation (A9)
holds true irrespective of the choice of the reference value of
internal energy.

Let us assume, for simplicity, that at a constant temperature
the system enjoys the following two properties:

(i) The system has only one single state in which ψ = ψmin

(exhaustion state).
(ii) Starting from any state in which ψ > ψmin, there is at

least one isothermal unloading process that brings the system
to the exhaustion state.

These properties apply to the vast majority of natural
systems, including solutions. Let {ξ , T} be the set of the state
variables of the system that enter the constitutive equations
for internal energy, entropy and, thus, Helmholtz free energy.
This means u = u(ξ ,T ), s = s(ξ ,T ), and ψ = ψ(ξ ,T ). (The
quantity ξ is an abridged notation to denote the set of
all the state variables of the system besides T. For instance, if
the system is a solution, ξ will include—but need not be limited
to—concentrations of solutes, solute amounts, volume of
solvent, etc.) Relation (A9) implies that, at a given temperature
T, all the admissible states of a system that meets properties
(i) and (ii) above must satisfy the following relation:

ψ(ξ ,T ) � ψmax. (A10)

This relation defines the admissible range of the system at
temperature T in space of variables ξ . The boundary to this
range is the system’s limit surface. It is given by

ψ(ξ ,T ) = ψmax. (A11)

Thus, the limit surface is equipotential for ψ .
Function ψ = ψ(ξ ,T ) is determined by the constitutive

equations for internal energy and entropy. Therefore, if a state
(or point) on the limit surface is known, the value of ψmax can
be determined from Eq. (A11). Beyond the limit surface the
system cannot respond according to the original constitutive
equations, because this would make it store more energy than
it actually can. Thus, the system’s response must change as the
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limit surface is crossed. For instance, the system may break
or yield plastically if it is a solid, or it may start to produce
precipitates if it is a solution. The appearance of a deviation
from the original response is an indication that the limit surface
has been crossed. It can be exploited to determine the state of
the system at the crossing point of the limit surface.

Any point on the limit surface determines ψmax from
Eq. (A11) and thus the whole admissible range and the whole
limit surface from relations (A10) and (A11). This provides
complete information on the whole set of states that can
be covered by a system of given constitutive equations for
internal energy and entropy. We are assuming, of course, that
the system is free of external constraints that prevent it from
reaching the states on the limit surface.

APPENDIX B: BOUNDED PART OF THE FREE ENERGY
OF A SOLUTION

The free energy of a solution is the sum of the free energy of
its components. Thus, denoting by nH2O and nj (j = 1,2, . . . s)
the moles of solvent and solutes, the Gibbs free energy of any
aqueous solution can be expressed in the classical form:

G = nH2OμH2O +
s∑

j=1

njμj + C. (B1)

Here μj and μH2O are the chemical potentials or partial molar
Gibbs free energies of solutes and solvent, respectively, while
C is an arbitrary constant.

The chemical potentials can be expressed in the form [6]

μj = μo
j (po,T ) + V̄j�p + RT ln aj (B2)

and

μH2O = μo
H2O(po,T ) + V̄H2O�p + RT ln aH2O, (B3)

where aj and aH2O are the effective concentrations (or
activities) of solutes and solvent, while μo

j , μo
H2O, p°, �p, and

R are defined in Sec. II. The quantities V̄j and V̄H2O appearing
in the above equations are the partial molar volumes of solutes
and solvent, respectively. In these equations it is assumed that
V̄j and V̄H2O do not depend on pressure, which is true to a
good approximation in solids and liquids. Of course, the same
equations also apply when V̄j and V̄H2O are pressure dependent,
if �p is appropriately small.

By measuring solute concentrations in molalities (moles of
solute per kg of solvent) the quantities aj can be expressed as

aj = γjnj

mH2O
= γjnj

nH2OMH2O
, (B4)

the notation being the same as that adopted in Sec. II. On the
other hand, by measuring solvent concentration in moles of

solvent over total moles of solution components, we have that
the activity aH2O is given by

aH2O = γH2OnH2O

nH2O + ∑s
j=1 nj

. (B5)

Because the solution’s volume can be expressed as

V = nH2OV̄H2O +
s∑

j=1

nj V̄j , (B6)

by introducing Eqs. (B2)–(B6) into Eq. (B1), the Gibbs free
energy of an aqueous solution can readily be expressed in the
form (2.1). From that equation, the solution’s Helmholtz free
energy (2.3) is obtained, as discussed in Sec. II. We observe
that Eq. (2.3) can be decomposed as

� = � ′ + � ′′, (B7)

where

� ′ = nH2Oμo
H2O(po,T ) +

s∑
j=1

njμ
o
j (po,T ) + C, (B8)

while � ′′ is given by Eq. (2.5).
For isothermal processes, the quantities μo

j and μo
H2O are

constant and finite, since they are the free energy of a finite
amount (one mole) of material in a standard state of pressure
and concentration at a finite temperature T. Thus the terms
nH2Oμo

H2O and njμ
o
j entering Eq. (B8) are the contributions to

the solution’s free energy coming from the mere presence of
the solution components, irrespective of how and whether the
said components are mixed to each other, dissolved, or simply
put together without even contacting with each other. Because
the amount of every component of any system can be chosen
arbitrarily, part � ′ of � is not bounded by thermodynamics. In
a finite system, � ′ is bounded simply because in a finite system
nH2O and nj are finite (which is clearly not a thermodynamic
restriction!). On the contrary, as apparent from Eq. (2.5), which
for better convenience we rewrite here as

� ′′ = RT

s∑
j=1

nj ln
γjnj

nH2OMH2O
− poV . (B9)

� ′′ diverges as nH2O → 0 for nj finite and different than
zero. Therefore, because thermodynamics requires that the
free energy of any finite system should be finite, � ′′ must be
bounded from above. That is

� ′′ � � ′′
max. (B10)

By referring this relation to one mole of solvent, inequality
(2.8) is finally obtained. For a general treatment of the topic
of this section, the reader is referred to [6].
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