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Method for simultaneous localization and parameter estimation in particle tracking experiments
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We present a numerical method for the simultaneous localization and parameter estimation of a fluorescent
particle undergoing a discrete-time continuous-state Markov process. In particular, implementation of the method
proposed in this work yields an approximation to the posterior density of the particle positions over time in
addition to maximum likelihood estimates of fixed, unknown parameters. The method employs sequential Monte
Carlo methods and can take into account complex, potentially nonlinear noise models, including shot noise and
camera-specific readout noise, as well as a wide variety of motion models and observation models, including
those representing recent engineered point spread functions. We demonstrate the technique by applying it to four
scenarios, including a particle undergoing free, confined, and tethered diffusions.
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I. INTRODUCTION

The tracking of fluorescent particles, commonly referred
to as single-particle tracking (SPT), has become a widely
used tool since its initial development in the late 1980s
[1,2]. Since then, various improvements, including brighter
fluorophores (e.g., quantum dots) and sensitive photodetectors
(e.g., electron multiplying charge-coupled devices), have
significantly improved the conclusions that may be drawn
from SPT experiments; some examples include the elucidation
of clathrin-mediated endocytosis of influenza [3] and the
traversal of myosin VI along actin filaments [4] (see also recent
survey articles such as Refs. [5–7]). Within this paradigm,
the feature of interest, often smaller than that which can
be resolved by an optical microscope, is labeled with a
nanometer-scale fluorescent particle and observed during a
time period of interest. Typically, one postprocesses the data
to localize the particle within each image frame and then
analyzes the resulting trajectory to infer various statistics
regarding its motion. The most commonly estimated statistic
is the diffusion coefficient, as this parameter characterizes a
large range of physical properties, including size, shape, and
viscosity. Although the estimation of diffusion coefficients
has come to maturity over the past several years [8–10],
the diffusion coefficient is only one of many parameters
that may be of interest. It is well known in practice that
particle motion is not limited to pure diffusion or any other
single model. Motion may be confined, tethered, directed,
or anomalous and may even switch between different modes
[11,12]. To the best of our knowledge, there is no body of work
that simultaneously considers the localization problem jointly
with optimal estimation of parameters describing arbitrary
stochastic motion and observation models; leveraging from
the field of nonlinear system identification [13], we describe
and demonstrate such a method in this work.

After images of the fluorescent particle have been acquired,
the analyst usually estimates the position of the center of
the particle within each frame. This process, known as

*tashley@bu.edu
†sanderss@bu.edu

localization, produces a sequence of estimated positions over
time; as was shown in Ref. [14], the key feature here is
that, given a sufficient number of photons, the position of
the particle can be estimated with subnanometer resolution. A
vast number of localization algorithms have been proposed,
ranging in complexity, speed, and performance [15–18]. A
commonality among the majority of these algorithms is that
they rely solely on intraframe information; in other words,
they assume the position of the particle in one image yields no
information regarding the preceding or succeeding estimates.
In contrast, one approach, proposed in Ref. [19], incorporated
model-based sequential Monte Carlo methods (i.e., “particle
filtering”) that utilized the interframe information to estimate
an approximate probability density function of the particle’s
location given the images. The applicability of this method in
an experimental setting is limited, however, due to the fact that
its implementation requires prior knowledge of the true motion
parameters (e.g., diffusion coefficients) while in practice such
values are typically estimated from the data.

Once the particle has been localized, parameters describing
its motion may be inferred. In the case of diffusion coefficients,
the most common method of estimation is via least-squares
fit to the mean-square displacement (MSD). The relationship
among the MSD, the diffusion coefficient, and the localization
uncertainty is now common knowledge within the particle
tracking community. Previously considered an art [20], the
optimal estimation of these parameters has been extensively
studied [8] and a computationally efficient algorithm for the
maximum likelihood estimation of the diffusion coefficient de-
veloped. The algorithm begins with the estimated trajectory of
the particle and makes the somewhat limiting assumption that
the localization uncertainty can be modeled by independent
and identically distributed Gaussian noise. While a common
assumption, uncertainty in the localization arises from a variety
of sources, including shot noise in the photon generation
process, background noise, read-out noise in the detectors,
and algorithmic error, and the Gaussian assumption is hard
to justify theoretically. Further, its use precludes multimodal
distributions for the position of the particle; such distributions
(i.e., ones that exhibit multiple peaks) can be useful for
detection schemes (such as wide-field imaging) that have an
inherent symmetry (such as reflection through the focal plane).
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Although the aforementioned localization and parameter
estimation methods have been widely used with success in
practice, their applicability is limited to a subset of potential
situations. To see the limitation, consider a “corral-like”
confinement of proteins on a plasma membrane [21] where
the analyst is not only interested in the optimal diffusion
coefficient estimate of a protein on the surface but an optimal
estimate for the area of confinement. By assuming free
diffusion, as the methods mentioned above do, the analyst has
already biased the resulting diffusion coefficient estimate since
the model is inaccurate; moreover, those methods provide no
estimate for the size of confinement. While MSD methods can
be used on more general models, this approach relies on ad
hoc fitting choices and is sensitive to measurement noise.

In this work, we present an inference method which allows
for the optimal estimation of parameters describing reasonably
arbitrary motion and observation models. In addition, the
method couples both the localization and parameter estimation
steps, thereby taking into account both interframe and in-
traframe information. The method, taken from recent work de-
veloped in the field of nonlinear system identification, employs
the widely known expectation maximization (EM) algorithm
in conjunction with sequential Monte Carlo methods. In Sec. II
we present background theory for this method, connecting
the general theory to the specifics of the single-particle
tracking problem, and in Sec. III we describe a framework
that can be used for tracking individual fluorescent particles
from a sequence of fluorescence microscopy images. To
demonstrate its applicability, we present four demonstrations
in Sec. IV; these demonstrations include the simultaneous
localization and parameter estimation of freely diffusing,
confined, and tethered fluorescent particles observed by a
wide-field fluorescence microscope.

II. THEORETICAL BACKGROUND

In this section, we review a numerical technique that,
given a sequence of discrete-time observations, simultaneously
infers a hidden state driven by a fixed-structure discrete-time
motion model in addition to fixed parameters that characterize
that model. This technique is based on the EM algorithm
and was originally proposed by Schön, Wills, and Ninness
in the context of nonlinear system identification [13]. While
the technique and the description given here is quite general,
throughout the section we will connect it to the SPT setting.
A detailed description of the application of the method to the
tracking problem is given in Sec. III.

A. The EM algorithm for parameter identification

Consider the problem of identifying an unknown fixed
parameter θ ∈ Rnθ for the state and observation models

x1 ∼ pInit
θ (x1), (1)

xk+1 ∼ pMot
θ (xk+1|xk), (2)

yk ∼ pObs
θ (yk|xk), (3)

with xk ∈ Rnx , yk ∈ Rny , and the distributions pθ (·|·) of known
form. (Here Rn denotes the vector space of real numbers in

n dimensions.) We assume only N values YN � {y1, . . . ,yN }
are available to derive an estimate of θ , namely θ̂ .

In the context of SPT, the state xk denotes the location of
the particle in either two or three dimensions at a discrete
time index k. The distribution pInit

θ describes the probability
distribution of the particle location at the start of the exper-
iment. The motion model pMot

θ is a probability distribution
describing how the particle evolves in time and may be given
by a diffusion, directed motion, or other dynamic process. The
observation model describes the fluorescent measurement. For
example, assuming a wide-field imaging modality, yk signifies
a pixilated image acquired at discrete time k. The observation
model pObs

θ (·) is a probability distribution capturing the
statistics of the measurement process itself and may involve,
for example, Poisson-distributed shot noise, Gaussian read-out
noise, or other features specific to the experimental setting. The
parameter θ may describe properties of the motion (such as
diffusion coefficients) as well as of the observation process
(such as peak intensity). Section III, as well as the examples
in Sec. IV, describe this context in greater detail.

The primary goal is to estimate the parameter θ . While
many different techniques could be used, we focus on the
maximum likelihood estimator due to its well-characterized
properties, including asymptotic consistency, efficiency, and
normality [22]. Deriving the maximum likelihood estimate
involves maximizing the joint density (i.e., the likelihood) of
the observations conditioned on the parameter θ ,

θ̂ = arg max
θ

log pθ (YN ). (4)

It is most often the case that this density is unknown or
intractable, and, consequently, an ML estimate cannot be
derived analytically. For example, in the SPT application, (4)
corresponds to attempting to estimate motion and observation
parameters directly from the image data, without knowledge
of the particle trajectory. When the density in (4) is unknown
or intractable, the EM algorithm provides an alternative for
finding the ML estimate.

EM, originally proposed in Ref. [23], is a numerical,
iterative method for calculating ML estimates that is typically
used when the joint density pθ (XN,YN ) is known, where XN �
{x1, . . . ,xN } is denoted as the latent set of random variables.
Instead of calculating the full likelihood by integrating the joint
density over the full domain of the N -dimensional latent state,
the EM algorithm approximates the likelihood by conditionally
averaging over the latent state; mathematically, this is given
by

Q(θ,θ̂e) �
∫

log [pθ (XN,YN )]pθ̂e
(XN |YN )dXN. (5)

For the SPT problem, the latent state XN is the trajectory of the
particle, and thus EM takes advantage of the coupling between
the trajectory and the image data as encapsulated by the motion
(2) and observation models (3).

Note that the expectation in (5) is with respect to the
conditional density pθ̂e

(XN |YN ) with θ̂e defined to be some
estimate for θ at iteration e. It was shown in Ref. [23] that
for each choice of θ̂e+1 such that Q(θ̂e+1,θ̂e) > Q(θ̂e,θ̂e), the
likelihood pθ̂e+1

(YN ) subsequently increases. One method to
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guarantee an increase is to update the new value so

θ̂e+1 = arg max
θ

Q(θ,θ̂e). (6)

By alternating between the expectation and maximization
steps, Q as defined in (5) will converge to a (local) maximum
as e becomes large, and, consequently, θ̂e will converge to a
(local) ML estimate of θ .

Implementation of the EM algorithm requires evaluation
of Q(θ,θ̂e). A tedious but straightforward calculation (see
Ref. [13]) allows (5) to be rewritten as

Q(θ,θ̂e) = I1 + I2 + I3, (7)

where

I1 �
∫

log
[
pInit

θ (x1)
]
pθ̂e

(x1|YN )dx1, (8a)

I2 �
N−1∑
k=1

∫∫
log

[
pMot

θ (xk+1|xk)
]

×pθ̂e
(xk+1,xk|YN )dxkdxk+1, (8b)

I3 �
N∑

k=1

∫
log

[
pObs

θ (yk|xk)
]
pθ̂e

(xk|YN )dxk. (8c)

Here (8a) corresponds to the initial distribution (1), (8b)
corresponds to the motion model (2), and (8c) corresponds to
the observation model (3). The calculation of these expressions
require evaluation of the posterior density pθ̂e

(xk|YN ) and the
sequential-pairwise joint posterior density pθ̂e

(xk,xk+1|YN );
these are, unfortunately, challenging to compute in most
cases. For the case where both the motion and observation
models constitute a linear, time-invariant system, the posterior
densities are Gaussian with sufficient statistics calculated by
optimal estimation methods such as the Kalman filter and
smoother [24]. In general, however, the underlying models
are nonlinear and non-Gaussian in nature, such as when
the particle motion follows a confined diffusion or when
the presence of Poisson-distributed shot noise is accounted
for explicitly in the observation model. In this work, these
difficulties are overcome by using sequential Monte Carlo
methods to simplify (7) by approximating the posterior
densities as discrete, weighted sums of δ functions.

B. A sequential Monte Carlo approximation

Sequential Monte Carlo (SMC) methods approximate the
conditional posterior densities in (8b) and (8c) at each EM
iteration e by assuming they may be approximated by a
weighted sum of M randomly drawn point estimates such that

pθ̂e
(xk|YN ) ≈

M∑
i=1

wi
k|N,eδ

(
xk − xi

k|N,e

)
, (9a)

pθ̂e
(xk,xk+1|YN ) ≈

M∑
i=1

M∑
j=1

w
ij

k|N,e

× δ
(
xk − xi

k|N,e,xk+1 − x
j

k+1|N,e

)
, (9b)

where xi
k|N,e is the ith estimate at time step k and EM iteration

e, δ(·) is a Dirac δ function, and wi
k|N,e and w

ij

k|N are weights

determined by how well the point estimates approximate the
posterior distribution. The value of these weights are driven
in part by determining how likely the ith measurement was
given the point estimate xi

k|N,e. In the context of SPT, this
translates to setting the weight by how likely it was to acquire
the actual image data assuming that the particle was at the
position of the point estimate. A discussion of the calculation
of these weights for the demonstration examples in Sec. IV
is given in the Appendix. A general treatment for how these
estimates and weights are calculated is beyond the scope of
this work; the interested reader is referred to Refs. [25–27] for
more information.

Upon application of the SMC approximation (9) to the
calculation of Q(θ,θ̂e) in (7), one obtains the approximation

Q(θ,θ̂e) ≈ Q̂(θ,θ̂e) = Î1 + Î2 + Î3, (10)

where

Î1 �
M∑
i=1

wi
1|N,e log

[
pInit

θ

(
xi

1|N,e

)]
, (11a)

Î2 �
N−1∑
k=1

M∑
i=1

M∑
j=1

w
ij

k|N,e log
[
pMot

θ

(
x

j

k+1|N,e|xi
k|N,e

)]
, (11b)

Î3 �
N∑

k=1

M∑
i=1

wi
k|N,e log

[
pObs

θ

(
yk|xi

k|N,e

)]
. (11c)

Note the similarities between (8) and (11); the SMC ap-
proximation of the posterior densities transforms potentially
intractable integrals into straightforward summations. The
SMC-based EM algorithm proceeds by calculating Q̂(θ,θ̂e)
for some θ̂e and then by updating the estimate according to

θ̂e+1 = arg max
θ

Q̂(θ,θ̂e). (12)

These two steps, namely the calculation of Q̂(θ,θ̂e) via SMC
and its subsequent maximization over θ , are repeated until
some convergence criterion is satisfied. For the remainder of
this work, we denote this process as the SMC-EM algorithm.

It is to be noted that the SMC-EM algorithm, unlike the
original EM algorithm, provides no guarantee of convergence
to a (local) maximum. However, as the number of estimates
M becomes large, Q̂ approaches Q, thereby implying greater
likelihood of converging to an extremum. Analysis of this
behavior is further detailed in Ref. [13].

III. AN APPLICATION: SINGLE-PARTICLE TRACKING

In the application of SPT for the study of dynamic biological
phenomena, the goal is to infer the location of the particle as
well as any relevant parameters characterizing its motion from
a collection of image sequences of one or more fluorescent
particles acquired over some time period. The data may be
from a variety of imaging modalities, including wide-field,
total internal reflection (TIRF), structured illumination (SIM),
and laser-scanning confocal microscopy (LSCM). As was
mentioned in Sec. I, the standard method for analyzing these
image sequences involves first inferring the trajectory of the
particle by estimating the position of the particle in each image

052707-3



TREVOR T. ASHLEY AND SEAN B. ANDERSSON PHYSICAL REVIEW E 92, 052707 (2015)

(via, e.g., a nonlinear fit). From these trajectories, model
parameters, such as diffusion coefficients, are inferred by
fitting a curve to the empirical MSD of the estimated positions.

In contrast to the standard method, which is noniterative
and produces only point estimates of the particle position,
the SMC-EM technique developed in Sec. II takes into
account the coupling between both parameter estimation and
localization and iterates between the two to refine their values
over each iteration. Specifically, at the eth iteration, the
probability density describing the particle is first estimated
in all the images via SMC methods with respect to known
θ̂e-parametrized motion and observation models. An improved
value for θ̂e, namely, θ̂e+1, is calculated from the maximization
of Q̂(θ,θ̂e) in (10). The method then uses this refined estimate
to re-estimate the probability distributions of the particle
position, again with SMC methods. This procedure repeats
until some convergence criterion is satisfied.

To apply the SMC-EM technique to a specific experimental
setting, one must define the parametrized observation and
motion models. As an illustration, in the remainder of this
section we show this process by developing these models for
the general case of tracking a single moving particle imaged
with a wide-field fluorescence microscope. The use of the
models in the SMC-EM algorithm is detailed in Sec. IV and
the Appendix.

A. A wide-field fluorescence observation model

We first describe how the observation model (3) may be for-
mulated to represent the scenario where a subdiffraction-sized
particle is imaged with a wide-field fluorescence microscope.

We assume a camera takes images of the particle at discrete,
regularly spaced periods of length �t and that the position
of the particle at these instances k is (xk,yk,zk). Since the
particle is smaller than the diffraction limit of the optical
system, the intensity pattern measured by the camera can be
approximated by the point spread function [PSF (FPS in the
equations)] of the optical system. We note that the PSF may
take any spatial shape; this includes the popular Gibson-Lanni
wide-field model [28] as well as the double-helix [29] or other
engineered PSFs [30,31]. In the model considered here, the
detector consists of P rectangular pixels of known length �x

and width �y. Let (x̄p,k,ȳp,k) denote the center of pixel p at
time step k; the expected intensity measured by this pixel is

λp,k =
∫ xmax

p,k

xmin
p,k

∫ ymax
p,k

ymin
p,k

GFPS(xk − ξ ′,yk − ξ ′′,zk)dξ ′dξ ′′, (13)

where the integration limits are defined by

xmin
p,k = x̄p,k − �x

2
, (14a)

xmax
p,k = x̄p,k + �x

2
, (14b)

ymin
p,k = ȳp,k − �y

2
, (14c)

ymax
p,k = ȳp,k + �y

2
. (14d)

Note that the pixel center may depend on the discrete time
index k thereby allowing the center of the image to be adjusted

during the experiment. For the remainder of this work, we
assume the PSF is normalized so FPS(0,0,0) = (�x�y)−1 and
that the multiplicative gain G separately scales the intensity of
the whole image.

Given the quantized nature of light, shot noise is a prevalent
noise source in most situations involving CCD cameras.
In addition, light from surrounding objects, usually due to
autofluorescence, may contribute as noise during the imaging
process; here we consider such a background that is distributed
uniformly in space and that contributes additively to the light
emitted by the fluorophore. The measured number of counts
at pixel p at time-instance k is therefore the Poisson random
variable

Ip,k ∼ XPoi(λp,k+Nbgd), (15)

where Nbgd is the number of background counts per pixel
per update period. We note that there are many factors that
contribute to the overall noise floor of these imaging devices,
including readout noise, pixel nonuniformity, and dark current.
It has been shown, for example, that electron-multiplying
CCDs exhibit non-Poissonian noise [32]; Ref. [33] presents
one potential probabilistic model that could be incorporated.
All of these factors could be taken into account by the
SMC-EM algorithm; for simplicity of presentation we focus
on the model in (15).

B. Relevant motion models

Like the observation model, which is specific to the imaging
modality (e.g., wide field, confocal, etc.), the motion model
(2) is also specific to the experimental setting (e.g., diffusion,
directed, etc.). In general, the motion model represents the
probability that the particle, given its current location xk ,
transitions to the next potential location xk+1 over the time
period �t . An important assumption here is that the next
location depends only on the current location; in other
words, the particle moves according to a Markov process.
Although the position of the particle realistically fluctuates
continuously in both time and space, it is often the case that its
position can be sampled at discrete time instances k without
affecting its Markovian nature. This is true for, for example, a
particle undergoing isotropic diffusion since the solution to its
Fokker-Planck equation is known to be a normal distribution
with mean xk and variance 2D�t . It is also true for more
complicated motion, such as tethered or confined diffusions.
We now develop three particular motion models for use in the
demonstrations.

1. Diffusion in two dimensions

The first motion model considered is two-dimensional
isotropic diffusion with negligible axial motion. This model
is applicable to several situations related to biology, including
those involving membrane dynamics and viral trafficking. The
transition density for this motion model is given by the solution
to the diffusion equation [34] and takes the form of a normal
distribution; when discretized with a time period of �t ′, the
motion model in the form of (2) for the x axis is

p(xk+1|xk) = 1√
4πD�t ′

exp

[
− (xk+1 − xk)2

4D�t ′

]
, (16)
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where D is the diffusion coefficient. The transition density
for yk is identical to that of (16). Under the assumption that
both axes are independent, the motion model for the joint
position (xk,yk) is simply the product of the individual normal
distributions for each axis. The position of the particle in z,
however, is assumed zero for all time and does not have a
transition density; to extend this model to three dimensions
one simply includes another term of the form (16) for the z

direction.

2. Three-dimensional diffusion with axial confinement

Although the diffusive model (16) is often used in practice,
it makes the assumption that the particle is unconstrained in all
directions. There are, however, many situations where this does
not hold. As an example, we next consider a three-dimensional
isotropic diffusion with non-negligible axial motion confined
within the interval [−L/2,L/2] with L defining the length
of the confinement channel. Since the motion in the x and
y axes are independent diffusions, this model reuses the
transition densities (16) for these directions. The transition
density for the z position, however, is given by the solution to
the diffusion equation with reflecting boundaries at z = −L/2
and z = +L/2, given by

p(zk+1|zk) = 1

L
+ 2

L

∞∑
n=1

exp

[
− D�t ′

(nπ

L

)2
]

× cos

[
nπ

L

(
zk+1+L

2

)]
cos

[
nπ

L

(
zk+L

2

)]
;

(17)

see Ref. [35] for a derivation. Since the motion in each axis is
independent, the joint transition density in the form of (2) is
given by the product of the z transition density (17) with the x

and y transition densities (16).

3. Elastic tethering in three dimensions

Last, we consider the case where a particle is elastically
tethered to a fixed anchor. This model is common in the case
of tethered particle microscopy where one end of a biopolymer
is fixed to a coverslip and a fluorescent particle is attached the
other (free) end; the position of the bead over time yields
information regarding the structure of the biopolymer (see,
e.g., Ref. [36]). We assume the location of the tethering point
is known and fixed to the origin and that the tether is sufficiently
stiff and isotropically obeys Hook’s law. Inspired by the model
presented in Ref. [37], the position of the particle can be
modeled by the Ornstein-Uhlenbeck process with transition
density

p(xk+1|xk) =
√

A

2πD
(
1 − e−2A�t ′

)
× exp

{
− A

2D

[
(xk+1 − xke

−A�t ′ )2

1 − e−2A�t ′

]}
, (18)

in the x axis; the densities for y and z are identical in form.
The stiffness coefficient A > 0 and the diffusion coefficient D

both determine the behavior of the motion about the tethered
point. Due to independence among axes, the joint transition

density in the form of (2) is once again given by the product
of the individual densities (18) for each axis.

IV. DEMONSTRATION OF METHOD

In this section, we discuss four numerical demonstrations
that showcase the capabilities of the SMC-EM algorithm. The
four demonstrations rely on three sets of data, each consisting
of multiple trials with each trial an image sequence of a single
particle undergoing motion according to one of the models
introduced in Sec. III B. The first data set is a two-dimensional
isotropic diffusion, the second is a three-dimensional isotropic
diffusion with axial confinement, and the third is a three-
dimensional tether. The simulated experimental setup is a
wide-field imaging scenario using a Debye diffraction integral
satisfying the sine condition in all three data sets.

The three data sets are used throughout four distinct demon-
strations. The first data set considers the two-dimensional
diffusion and attempts to estimate, under the assumption of
anisotropicity, the two diffusion coefficients. To ground the
results from the SMC-EM algorithm, we compare them to a
conventional localize-then-estimate approach using Gaussian
fit and the ML estimator developed in Ref. [8]. The second data
set considers the three-dimensional axially confined isotropic
diffusion and estimates each diffusion coefficient in addition
to the confinement length. The third data set considers the
three-dimensional isotropic tether and estimates the stiffness
coefficient in addition to the diffusion coefficient. The three
aforementioned demonstrations assume precise knowledge of
the PSF. This is, however, often not the case in most settings
and thus in the fourth demonstration we show that the SMC-
EM algorithm is capable of estimating PSF parameters as well.
We revisit the three-dimensional tether and estimate the peak
intensity of the PSF in addition to the same parameters as
before. The specific parameter values for each of these demon-
strations, such as diffusion coefficients, are defined in Table I.

TABLE I. Parameter values used in the generation of ground-truth
data and for each of the four demonstrations.

Symbol Parameter Value

A Stiffness coefficient 1.0 s−1

D Diffusion coefficient 0.01 μm2/s
E Number of SMC-EM iterations 10 iterations
G Peak intensity 100 counts
K Number of sequences 40 sequences
L Length of channel 500 nm
M Number of SMC point estimates 125
n Refraction index 1.33
N Sequence length 100 images
Nbgd Background noise 10 counts
Nsub Subsamples per image 100 subsamples
NA Numerical aperture 1.2
P Number of pixels 25 pixels
�x,�y Effective pixel length 100 nm
δt Shutter period 10 ms
�t Imaging period 100 ms
λ Emission wavelength 540 nm
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A. Generation of ground-truth data

For each of the three models, we generated 40 data sets, each
composed of 100 images. Specifically, the first set of images
was generated from the two-dimensional isotropic diffusion
model described in Sec. III B 1, the second set of images was
generated from the axially confined diffusion model described
in Sec. III B 2, and the third set of images was generated
from the elastic tether model described in Sec. III B 3. The
observation models were identical for all image sequences. The
number of images N was chosen with regard to the imaging
time �t = 100 ms (i.e., 10 frames per second), yielding a
total duration of 10 s for each sequence. In practice, N�t

is selected according to the hardware’s imaging capabilities,
the fluorophore’s emission capacity, and the time scale of the
particle’s motion; the values chosen in this work were inspired
by a recent competition [18] as well as a brief survey of the
literature.

To generate each sequence of images, independent tra-
jectories consisting of N × Nsub positions were generated
from one of the three aforementioned motion models; here
Nsub = 100 represents a subsampling factor with each position
in the trajectory spaced δt = �t/Nsub seconds apart, where
�t = 100 ms is the imaging period. In this work, Nsub was
chosen large enough so the motion between subimages was
negligible; specifically, the value was selected to ensure that
the probability that a particle following an isotropic three-
dimensional diffusion deviated more than 25 nm between each
subimage was less than 0.2%.

From these trajectories, images were generated using
the wide-field fluorescence observation model described in
Sec. III A with

FPS(x,y,z) =
∣∣∣∣C

∫ α

0

√
cos θJ0(κ sin θ

√
x2 + y2)

× exp(−iκz cos θ ) sin θdθ

∣∣∣∣
2

, (19)

where C is a complex constant chosen so
FPS(0,0,0) = (�x�y)−1, J0(·) is a zeroth-order Bessel
function of the first kind, κ � 2πn/λ is the wave number
of the emitted light, and α � sin−1 (NA/n) is the maximum
semiangle of the objective lens. This PSF model, which is
based on the Debye diffraction integral, is well suited for
approximating the near-focus nonparaxial distribution of light
and is valid for high-NA objective lenses [38]. The parameters
describing the PSF were set to NA = 1.2, λ = 540 nm and
n = 1.33, which are common values that one may find in an
experimental setting. In addition, we assumed the effective
pixel width (after magnification) was �x = �y = 100 nm.

Realistically, an image of the particle is formed by accu-
mulating photons during an exposure period. To replicate this
effect, we assumed the camera accumulated photons contin-
uously during the first δt = 10 ms of each imaging period
�t = 100 ms by averaging the first 10 consecutive images in
the period and ignoring the rest. As noted above, δt was chosen
sufficiently small so the motion of particle during photon
accumulation was negligible while remaining large enough
to ensure an adequate number of photons was collected.

The particle was set to have a peak fluorescence of G =
100 counts over the entire exposure time δt . The background
noise was assumed to be uniform throughout the image with a
fixed number of Nbgd = 10 counts counts during the exposure
period. For simplicity we assumed there was no blinking or
bleaching during the accumulation period.

In practice, when one acquires images in real experimental
situations, many particles may be present and segmentation
and linking among frames must be performed. The choice of
method for this step affects the quality of the final localization
and parameter estimation. To use the algorithm presented in
this work, however, any segmentation and linking technique
may be applied to generate a sequence of pixel arrays (see, e.g.,
Ref. [18]). To abstract the impact of segmentation from the
behavior of the SMC-EM algorithm, “perfect segmentation”
was assumed in the trials presented here. Thus, each image was
approximately centered in each frame by an oracle, and only
one particle was present throughout the image generation pro-
cess. As will be discussed later, the computational complexity
of the proposed algorithm increases with the number of pixels
observed per frame; consequently, the user must be judicious
as to how large the image should be to ensure that enough
information regarding the particle is present without including
too many “empty” pixels. For the image sequences described in
this work, each image contained P = 25 pixels arranged into
a square

√
P × √

P array; the effective length of each seg-
mented image was 0.5 μm, which is approximately twice the
full width at half-maximum value when the particle is in focus.

Since the localization resolution depends on the total
number of informative photons acquired during the imaging
process, one possible metric for comparing the three data sets
is the average number of photons acquired per (segmented)
frame. The average number of photons was 756 per frame
for the first data set, 737 per frame for the second data set,
and 721 per frame; recall that each segmented frame consisted
of P = 25 pixels. Thus, the average number of photons per
frame is nearly equivalent for each of the demonstrations and
one may expect similar localization resolution.

B. Algorithm implementation

Recall from Sec. II that the SMC-EM algorithm iterates
between two distinct steps. On the first iteration of the algo-
rithm, the expectation step yields an evaluation of (10) through
application of SMC-based filtering and smoothing techniques
to the acquired data (i.e. images) with respect to the motion (2)
and observation (3) models and an a priori parameter estimate
θ̂0. The maximization step yields an improved estimate θ̂1

through the evaluation of (12). The expectation step is then
executed again with respect to the new estimate θ̂1, and the
maximization step follows afterward yielding θ̂2. This process
continues until a termination criterion is satisfied.

For each of the demonstrations presented in this work,
the SMC-EM algorithm was terminated after a fixed number
E = 10 of iterations. The number of iterations was chosen
large enough so the parameters approximately converged to a
fixed value. Although more sophisticated termination criteria
may be used, such as those employing optimal change point
detection [39], such methods were deemed unnecessary for the
demonstrations in this work.
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The number of Monte Carlo estimates M was chosen
to be 125 for each of the four demonstrations. In general,
proper selection of this parameter requires some degree
of experimentation. Ideally, to minimize the Monte Carlo
variability, the parameter M should be large; however, as
further discussed in the Appendix, the SMC-EM algorithm
implemented in this work has a computational complexity that
scales quadratically with M . Thus, using a large number of
Monte Carlo estimates may significantly impede throughput.
One way of determining an appropriate value for M is to
process the data using an initial value and then process the
data again using double the initial value. If the statistics of
the resulting parameter estimates did not improve between
M0 and M1, then M0 may be deemed sufficient. Otherwise,
process the data again using quadruple the value and repeat
the comparison. In this work, M = 125 was chosen because
M = 250 did not yield an improvement in the variance of the
parameter estimates in any of the demonstrations.

The expectation step, as defined by Q̂ in (10), requires that
the posterior densities be represented in the form of a sum of
weighted estimates of the particle’s position (9). To calculate
these weighted estimates, we employed the sampling impor-
tance resampling (SIR) algorithm [40] in conjunction with
the forward-filtering backward-smoothing (FFBS) algorithm
[41]; implementation details for these algorithms are given in
Appendixes 1a and 1b, respectively.

For all the demonstrations, the initial parameter estimates
were randomly generated within one order of magnitude of
their true value (aside from the confinement length L for
which an upper bound was used instead). It is important to
note that the SMC-EM algorithm may fail to converge if the
initial parameter estimates are too far from their true values.
Since the expectation step relies on a finite number of Monte
Carlo estimates to generate an approximate posterior density,
a severe mismatch between the data and assumed model may
result in most of the Monte Carlo estimates having low (or
even zero) likelihood. In the case that all the estimates have
zero likelihood, the approximate posterior density becomes
degenerate and the algorithm fails. The probability of this
failure occurring can be reduced by using a larger number
of Monte Carlo estimates or by using more efficient SMC
algorithms. Alternatively, if initial parameter estimates are
not known to a degree so the SMC-EM algorithm converges,
methods other than SMC-EM may be used to provide an initial
estimate that can be used in the subsequent application of
SMC-EM.

C. Measures of algorithm performance

Recall from Sec. II that the output of the SMC-EM
algorithm consists of two parts: the parameter estimates and the
joint posterior density estimates on the position of the particle.
Although assessing the quality of the estimated parameters
by comparing them to their true values is straightforward,
determining the performance of localization is not. This is
mostly due to the fact that the SMC-EM algorithm yields a
Monte Carlo approximation of the full joint posterior density
of the particle’s position over time rather than just a point
estimate. This provides significantly more information than a
point estimate. To assess the performance of localization in

this work, we assume the most representative estimate of the
particle’s position at a given time is the weighted arithmetic
mean over all estimates. In other words, the position estimate
(x̂k,e,ŷk,e,ẑk,e) is used as a surrogate for the joint posterior
density at time step k, where

x̂k,e �
M∑
i=1

wi
k|N,ex

i
k|N,e, (20)

with ŷk,e and ẑk,e defined similarly. Given these surrogates, the
root-mean-squared (RMS) localization error can be calculated
for each image sequence.

The variability in the results presented in this section—
specifically, the bias and the standard deviations in both the
parameter estimates and localization errors—are primarily
driven by two sources of random error. The first, experimental
variability, comes from several sources, including randomness
in the motion of the particle, shot and background noise in the
measurement, motion blur in the data, and the finite pixel size
of the detector. This variability is inherent to the experimental
setting itself and is present regardless of the estimation scheme.

The second source of variability arises from the Monte
Carlo nature of the SMC element of the estimation scheme.
This variability scales as

√
M and thus vanishes in the limit of

a large number of point estimates in the discrete representation
of the densities. However, as discussed in Sec. IV B, the
computation time of the algorithm is driven in large part
by the size of M and thus there is a trade-off between error
introduced by small M and the computation time needed for
large M . As noted previously, the value of 125 used in these
demonstrations was selected based on the observation that the
standard deviations of the estimates did not diminish when
doubling M to 250.

An additional source of variability includes experimental
variability. For each of the following demonstrations we report
sample means and sample standard deviations for both the
parameter estimates and the RMS errors. As was mentioned
previously, 40 independent experiments were performed for
each demonstration; this value was experimentally determined
to be large enough so the experimental variability was small
relative to the other sources.

We note that the fundamental limit of estimation variability
for each of the fixed parameters (e.g., A, L, D, and G) is given
by the Cramér-Rao lower bound (CRLB). In other words, the
CRLB defines the absolute minimum variability one could
obtain by estimating a set of fixed parameters using a finite
number of images N , given a choice of motion and observation
models but independent of the estimation algorithm used. For
the case of an isotropic diffusion with diffusion coefficient D

and additive Gaussian localization uncertainty with variance
σ 2, the corresponding CRLB was derived analytically in
Ref. [8]. In general, however, the calculation of CRLB for
models that take the form of (2) and (3) are much more difficult
since the exact likelihood is unknown. One approach is to
condition on a latent state, as was done in the derivation of the
SMC-EM algorithm in Sec. II, but this becomes numerically
intractable for a large number of images. Recognizing this
difficulty, some attempts have been made to estimate the CRLB
via Monte Carlo simulations, e.g., Ref. [42], but there currently
exists no analytical approach for the models we consider in this
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work. Thus, given this difficulty, we leave the discussion of
the SMC-EM algorithm’s performance relative to CRLB for
future work.

Since most conventional approaches assume the localiza-
tion uncertainty is zero-mean, additive, white, and Gaussian, a
common approach is to treat the statistics of this uncertainty as
a fixed parameter and, as with the motion parameters, compare
localization uncertainty to the CRLB. As was indicated in
Sec. II, however, the localized position of the particle is
described in the SMC-EM framework by the time-dependent
posterior probability density function which takes into account
the observed images. Since the CRLB is limited to fixed
parameters, i.e., quantities that are not dependent on time
and do not vary during the experiment, it is not an applicable
measure for localization error in this setting. One approach that
is similar to the CRLB and can handle time-varying parameters
is the posterior Cramér-Rao lower bound (PCRLB). The
PCRLB was first presented in Ref. [43] and later extended
to the context of nonlinear filtering in Ref. [44]. Much like the
CRLB, the calculation of the PCRLB for general models of the
form (2) and (3) is computationally intractable, and, although
approaches have been made to numerically approximate it,
e.g., Ref. [45], there is no currently analytically tractable
method for its calculation. As such, we leave discussion of
the SMC-EM algorithm’s localization performance relative to
PCRLB for future work.

D. Results for demonstration 1: Two-dimensional diffusion

The goal of the first demonstration was to use the SMC-EM
algorithm to estimate the diffusion coefficients and trajectory
for a particle undergoing two-dimensional isotropic diffusion.
For this demonstration, we analyzed the K image sequences
from the first set of data that was described in Sec. IV A. In
addition, we compared the SMC-EM results to a conventional
method of first localizing the particle in each image with a
nonlinear fit to a Gaussian function and then calculating the
ML estimate of the diffusion coefficients using the method
proposed in Ref. [8]; for brevity, we refer to this method by
GF-ML.

The motion model was assumed to be of the form (16) in
both x and y axes; for identification purposes, however, we
assumed the diffusion was anisotropic and that the diffusion
coefficients for each axis, namely Dx and Dy , needed to
be identified. Moreover, the position of the particle in the z

direction was assumed to be zero, its true value.
To initialize the SMC-EM algorithm for each of the image

sequences, the initial diffusion coefficient estimates, D̂x,0 and
D̂y,0, were randomly generated within an order of magnitude
of their true value D = 0.01 μm2/s.

As described in the Appendix, the maximization step
consisted of evaluating the parameter update equation (12)
with respect to the motion model (16) to yield the parameter
update equations (A8) for both x and y axes.

For only this demonstration, we assumed the PSF could be
approximately modeled by the Gaussian function

FPS(x,y,z) = 1

�x�y
exp

(
− x2

2σ 2
x

− y2

2σ 2
y

)
; (21)

it was shown in Ref. [46] that the parameters

σx =
√

2λ

2πNA
, σy =

√
2λ

2πNA
, (22)

yield an optimal approximation of the Debye model (19) in
an appropriate sense. The parameters λ and NA were assumed
known with certainty, as was the background noise Nbgd and
the z axis position of the particle (the latter of which was
assumed to be zero). Note that as described in Sec. IV A, the
true data were generated with the Debye model (19).

The approximation (21) is not a requirement for use of
the SMC-EM algorithm. In fact, it will be shown in the three
subsequent demonstrations that the SMC-EM algorithm is not
restricted to any particular PSF model and may incorporate
those from other imaging modalities. The primary benefit of
using (21) is that it is simple to calculate.

Recall that the true diffusion coefficient for both x and
y axes was 0.01 μm2/s. After 10 iterations of SMC-EM,
the resulting diffusion coefficient estimates were 0.009 ±
0.002 μm2/s in both the x and y axes; the GF-ML algorithm
yielded identical results. Additionally, after 10 iterations
of SMC-EM, the RMS localization errors were 0.013 ±
0.001 μm and 0.012 ± 0.001 μm in x and y, respectively;
the GF-ML algorithm yielded 0.009 ± 0.001 μm in both the
x and y axes. The resulting diffusion coefficient estimates as
a function of EM iteration number are shown in Fig. 1 while
the RMS localization errors are shown in Fig. 2. We note that
convergence for the SMC-EM algorithm was relatively fast in
this case and only needed two to three iterations to converge.

An illustration comparing the performance of the two
algorithms (GF-ML and SMC-EM) on estimating the particle
trajectory is given in Fig. 3. Although the two yielded
similar parameter and localization estimates, the two methods
make very different assumptions on the underlying motion
and observation models. In particular, the GF-ML algorithm
assumes there is no information to be gained by considering
the time history of the location of the particle during the
localization step. In addition, the SMC-EM algorithm is not
necessarily restricted to any motion or imaging modality so
long as it can be represented in the form (2) and (3); the GF-ML
algorithm is only applicable to a diffusing particle with a PSF
that is approximately Gaussian and localization uncertainty
that is normally distributed. Moreover, the SMC-EM algorithm
yields a full, albeit approximate, probability distribution of
the particle position given the acquired images, whereas the
GF-ML provides Gaussian statistics.

It is important to note that blur during the exposure period
may significantly affect the accuracy of both localization and
estimation, especially if there is no attempt to compensate
for it. To demonstrate its effect, we repeated Demonstration
1 with δt = �t = 100 ms (i.e., full exposure during the
imaging period). The SMC-EM method resulted in diffusion
coefficient estimates of 0.007 ± 0.001 μm/s and RMS errors
of 0.026 ± 0.002 μm for both the x and y axes. The GF-ML
method, however, resulted in 0.010 ± 0.002 μm/s and RMS
errors of 0.025 ± 0.002 μm for both the x and y axes. We note
that although the localization errors were nearly equivalent
for both methods, the GF-ML method resulted in a more
accurate diffusion coefficient estimate. This is because the
parameter estimation algorithm used in the GF-ML method
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FIG. 1. (Color online) Box plots of the estimated diffusion coefficients as a function of the number of iterations of the SMC-EM algorithm
for the first demonstration (2D diffusion, Sec. IV D). The edges of the box represent the first and third quartiles, the red line inside the box is
the median, the vertical dashed line indicates the bounds for data within 1.5 times the interquartile range, and the red + symbols are data points
outside this range. The true values of the diffusion parameters, indicated by the solid black lines, were Dx = Dy = 0.01 μm2/s. At the 10th
iteration of the SMC-EM algorithm, the estimated parameters were D̂x = D̂y = 0.009 ± 0.002 μm2/s.

can compensate for the expected blur that occurs during the
imaging process and that corrupts the position estimate (details
on how this is done can be found in Ref. [8]).

Both the GF-ML and SMC-EM algorithms possess unique
features and have their time and place for proper use. For
example, when long exposure times are required (and blur
contributes significantly to the localization uncertainty), the
GF-ML algorithm may yield more accurate estimates. In con-
trast, when the experimentalist observes significant deviation
from a standard diffusion and requires a more complicated
motion and/or observation models, the SMC-EM algorithm
may yield superior results.

E. Results for demonstration 2: Axially confined diffusion

The second demonstration was an extension of the first;
specifically, we considered an isotropic diffusion where the

axial motion was confined to the interval [−L/2,L/2]. For
both the expectation and maximization steps, the motion
models in the x and y axes were assumed to be of the form
of (16), whereas the motion model for the z axis was assumed
to be of the form of (17). For the purposes of estimation, the
diffusion was assumed to be independent and anisotropic in
all three axes. The SMC-EM algorithm was used to estimate
the four motion parameters, namely the confinement length L

and the three diffusion coefficients Dx , Dy , and Dz.
The expectation step for this demonstration was performed

similarly to the first. That is, we used the SIR and FFBS
algorithms (described in the Appendix) to calculate SMC
approximations to the joint posterior density. The observation
model was assumed to be identical to the one presented
in Sec. III A. However, unlike the previous demonstration
which used a Gaussian approximation (21) for its PSF model,
we chose to implement the full Debye model (19) instead.
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FIG. 2. (Color online) Box plots of the root mean square (RMS) localization error as a function of the number of iterations of the SMC-EM
algorithm for the first demonstration (2D diffusion, Sec. IV D). The edges of the box represent the first and third quartiles, the red line inside
the box is the median, the vertical dashed line indicates the bounds for data within 1.5 times the interquartile range, and the red + symbols
are data points outside this range. At the 10th iteration of the SMC-EM algorithm, the RMS errors of the means of the estimated posterior
distributions were 0.013 ± 0.001 μm and 0.012 ± 0.001 μm in x and y, respectively.
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FIG. 3. (Color online) This figure illustrates a typical trajectory from the two-dimensional diffusion in the first demonstration (2D diffusion,
Sec. IV D); only the x axis results are shown as the y axis results were similar in appearance. The random walk shown in gray represents the
true position of the particle over time. The red dots indicate the Gaussian fit (GF) estimates and are positioned at the center of the red error
bars which represent the 3σ uncertainties as determined via maximum likelihood estimation [8]. The shaded regions represent the approximate
posterior probability densities for the particle positions after 10 iterations of the SMC-EM algorithm. Note that both the SMC-EM and GF
estimates occur only every 100 ms while the true trajectory is defined (essentially) continuously. Although the SMC-EM algorithm provides a
discrete Monte Carlo approximation of the posterior density, this figure shows a smoothed, continuous approximation calculated via Gaussian
kernel density estimation.

This choice was made for two reasons; first, because no
accurate Gaussian approximation exists for three-dimensional
wide-field PSFs [46] and, second, to highlight the fact that
complicated PSF models can be incorporated into the SMC-
EM algorithm. We assumed all PSF parameters, as well as
the gain parameter G and the background noise Nbgd, were
known with certainty. We note that SMC-EM is capable of
also estimating parameters describing the observation model;
this is highlighted in the fourth demonstration.

The maximization step was also performed in a similar
manner to the first demonstration. In particular, both the x and
y diffusion coefficient estimates are of the form (A8). In con-
trast, the z-axis diffusion coefficient and confinement length
estimates take a different form; see Appendix A 2 b for details.

Similarly to the first demonstration, the three initial diffu-
sion coefficient estimates were randomly selected from within
an order of magnitude of their true values D = 0.01 μm2/s.
The initial length estimate L̂ was set to 1.0 μm for every image
sequence. The true value was 500 nm.

After 10 iterations of SMC-EM, the resulting diffusion
coefficient estimates were 0.010 ± 0.001 μm2/s, 0.009 ±
0.001μm2/s, and 0.009 ± 0.004 μm2/s in the x, y, and z

axes, respectively, and the confinement length estimate was
0.53 ± 0.05 μm. The RMS localization errors were 0.013 ±
0.001 μm in both in x and y and 0.14 ± 0.05 μm in z. The
resulting parameter estimates and RMS localization errors as
a function of EM iteration number are shown in Fig. 4 and 5.

Note that the error in localization along the z axis was an
order of magnitude worse than in x and y; further, as seen in
Fig. 5, this localization error did not show significant improve-
ment over the initial condition. This reflects the fact that there
is a large amount of localization uncertainty in z since the
two-dimensional image of the symmetric three-dimensional

PSF provides only limited information of the particle’s axial
position. This is due in part to the fact that the implemented
PSF (19) has an effective axial slope that is much smaller than
the longitudinal slope. Perhaps even more important, however,
is that the axial symmetry of the PSF causes “crossing” errors
about the particle center. Due to the symmetry of the PSF, the
measurements cannot distinguish between positions above the
focal plane and positions below the focal plane and as a result,
trajectories that are mirror reflected through the focal plane are
equally likely. In general, in the limit of very large M , the SMC
approximation to the posterior density can maintain a bimodal
distribution reflecting these two possibilities. Given a finite
(and small) M , however, the estimator tends to lock the distri-
bution onto one side of focal plane, chosen essentially at ran-
dom. (This effect is essentially the same as what is known in the
SMC literature as sample impoverishment. See, e.g., Ref. [40].)
Unlike point estimates based on a single frame, however, the
SMC-EM approach uses the entire set of frames in conjunction
with the motion model to produce position estimates. As a re-
sult the expected location of the particle will not hop from one
side of the plane to the other. This is illustrated in Fig. 6, which
shows a typical z trajectory and the posterior density estimates;
the figure shows that the posterior sometimes follows the true
trajectory and sometimes is reflected through the focal plane at
zero. In either case, however, the dynamics are well captured
and as a result the estimates of the z diffusion coefficient
and confinement length were still both quite accurate. The
uncertainty did affect the convergence rate, however. As seen in
Fig. 4, Dz took nearly all 10 iterations of SMC-EM to converge
while Dx and Dy both converged within two iterations.

This localization problem can be remedied in the exper-
imental setting by using an asymmetric PSF, such as those
induced by astigmatism; since the SMC-EM algorithm makes
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FIG. 4. (Color online) Box plots of the estimated parameters as a function of the number of iterations of the SMC-EM algorithm for

the second demonstration (confined diffusion, Sec. IV E). In this case, the z position of the diffusing particle was confined to the interval
[−L/2,L/2]; the diffusion coefficients Dx,Dy,Dz and the confinement length L were assumed unknown. The edges of the box represent the
first and third quartiles, the red line inside the box is the median, the vertical dashed line indicates the bounds for data within 1.5 times the
interquartile range, and the red + symbols are data points outside this range. The true values, indicated by the solid black lines, were Dx = Dy =
Dz = 0.01 μm2/s and L = 0.5 μm. After the 10th iteration, the estimates were D̂x = 0.010 ± 0.001 μm2/s, D̂y = 0.009 ± 0.001 μm2/s,
D̂z = 0.009 ± 0.004 μm2/s, and L̂ = 0.53 ± 0.04 μm.

no assumption on the form of the PSF, such experimental
settings can still be analyzed with the SMC-EM method.
Alternatively, one could recognize that the PSF does not yield
information about the sign of the z position relative to the
focal plane and use an estimator that gives only the distance
from that plane. For example, one could replace the arithmetic

mean (20) with the absolute value of the arithmetic mean.
Doing so yields an RMS error (relative to the absolute value
of the true z position) of 0.048 ± 0.007 μm, a significant
improvement over the 0.14-μm error for the signed case; these
values are indicated in Fig. 5 in the rightmost figure by boxes in
blue.
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FIG. 5. (Color online) Box plots of the root mean square (RMS) localization error as a function of the number of iterations of the EM
algorithm for the second demonstration (confined diffusion, Sec. IV E). The edges of the box represent the first and third quartiles, the red
line inside the box is the median, the vertical dashed line indicates the bounds for data within 1.5 times the interquartile range, and the
red + symbols are data points outside this range. After the 10th iteration, the RMS errors of the means of the estimated posterior distributions
were 0.013 ± 0.001 μm in both x and y. The raw RMS errors for z are indicated in the rightmost figure as gray boxes with outliers denoted by
red diamonds, whereas the RMS errors for the absolute value of z are indicated by blue boxes with outliers denoted by red + symbols. Note
that the RMS errors for the raw z values are significantly larger than those for the absolute value of z. After the 10th iteration, the raw RMS z

errors were 0.14 ± 0.05 μm and the RMS |z| errors were 0.048 ± 0.007 μm.
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FIG. 6. A typical z trajectory from the second demonstration (confined diffusion, Sec. IV E). Here the true trajectory is shown in gray
and the posterior density estimates after 10 iterations of the SMC-EM algorithm are shown with values according to the color bar. Note that
estimates occur only every 100 ms while the true trajectory is defined (essentially) continuously. The dashed lines indicate the focal plane (at
z = 0) and the bounds of the channel (z = ±0.25 μm). From this figure, it is clear that the PSF’s symmetry about the focal point at z = 0 creates
potential localization error in which the trajectory is essentially reflected through the focal plane (for example, from time 0 s to approximately 1
s and again from approximately 4.5 s through the end at 10 s). We note that this phenomenon is solely due to the PSFs symmetry about the focal
point and is exhibited by all localization algorithms; PSFs that are asymmetric will not produce this behavior. Use of the motion model and the
entire set of data prevent the estimates from randomly changing their sign relative to the focal plane and thus the motion model parameters can
still be effectively estimated.

F. Results for demonstration 3: Three-dimensional tether

For the third demonstration, we considered the case where
the fluorescent particle was elastically tethered to a fixed point.
We assumed that, in all three axes, the motion was derived
from the Ornstein-Uhlenbeck model (18). Although the motion
in each axis was assumed independent, each axes’ motion
depended on the two to-be-estimated parameters, A and D.

The implementation of the SMC-EM algorithm for this
demonstration was nearly identical to that of the second
demonstration. Once again, the expectation step implemented
both the SIR and FFBS algorithms (detailed in the Appendix)
to estimate the joint posterior density. The observation model
was identical to the second demonstration; that is, the full

Debye model (19) was used and all parameters were assumed
known with certainty. The maximization step used the for-
mulas (A11) and (A14) to update the parameter estimates A

and D, respectively. The initial parameter estimates Â0 and
D̂0 were randomly generated within an order of magnitude of
their true values, 1.0 s−1 and 0.01 μm2/s, respectively.

After 10 iterations of SMC-EM, the resulting stiffness
coefficient was 1.0 ± 0.3 s−1 and the resulting diffusion
coefficient was 0.009 ± 0.00 μm2/s. The resulting RMS
localization errors were 0.012 ± 0.001 μm in both x and y

and 0.12 ± 0.05 μm in z. The resulting parameter estimates
and RMS localization errors as a function of EM iteration
number are shown in Figs. 7 and 8.
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FIG. 7. (Color online) Box plots of the estimated parameters as a function of the number of iterations of the SMC-EM algorithm for the
third demonstration (3D tether, Sec. IV F). In this case, the particle was assumed to be elastically tethered to a known location; the stiffness
coefficient A and the diffusion coefficient D were assumed unknown. The edges of the box represent the first and third quartiles, the red line
inside the box is the median, the vertical dashed line indicates the bounds for data within 1.5 times the interquartile range, and the red + symbols
are data points outside this range. The true values, indicated by the solid black lines, were A = 1.0 s−1 and D = 0.01 μm2/s. After the 10th
iteration, the estimated parameters were Â = 1.0 ± 0.3 s−1 and D̂ = 0.009 ± 0.001 μm/s.
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FIG. 8. (Color online) Box plots of the root mean square (RMS) localization error as a function of the number of iterations of the SMC-EM
algorithm for the third demonstration (3D tether, Sec. IV F). The edges of the box represent the first and third quartiles, the red line inside the
box is the median, the vertical dashed line indicates the bounds for data within 1.5 times the interquartile range, and the red + symbols are data
points outside this range. After the 10th iteration, the RMS errors of the means of the estimated posterior distributions were 0.012 ± 0.001 μm
in both x and y. The raw RMS errors for z are indicated in the rightmost figure as gray boxes with outliers denoted by red diamonds, whereas
the RMS errors for the absolute value of z are indicated by blue boxes with outliers denoted by red + symbols. Note that the RMS errors for the
raw z values are significantly larger than those for the absolute value of z. After the tenth iteration, the raw RMS z errors were 0.12 ± 0.05 μm
and the RMS |z| errors were 0.046 ± 0.006 μm.

The results from the third demonstration were similar in
character to that of the second. In particular, we once again
see significant axial localization uncertainty due to properties
of the PSF, though using the absolute value as before yielded
a much better error of 0.046 ± 0.006 μm. In addition, the
estimated parameters require four or five iterations to converge
instead of the expected two or three. This slower convergence
rate is due to the parameters’ dependence on the z position; had
we decoupled x and y from z and used four parameters instead,
i.e., Axy,Az,Dxy,Dz, the convergence rates would have been
faster in x and y.

G. Results for demonstration 4: Three-dimensional tether
with unknown G

Last, the fourth demonstration used exactly the same data
as in the third demonstration but estimated one additional
parameter. Unlike the third demonstration, which assumed
complete knowledge of the observation model, the fourth
demonstration assumed that the gain G must be estimated.
Relative to the third demonstration, the only major algorithmic
change this requires is the additional calculation of the estimate
of G during the maximization step; the parameter estimate
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FIG. 9. (Color online) Box plots of the estimated parameters as a function of the number of iterations of the SMC-EM algorithm for the
fourth demonstration (3D tether with unknown G, Sec. IV G). In this case, the particle was assumed to be elastically tethered to a known
location; the stiffness coefficient A, the diffusion coefficient D, and the peak fluorescence intensity G were assumed unknown. The edges
of the box represent the first and third quartiles, the red line inside the box is the median, the vertical dashed line indicates the bounds for
data within 1.5 times the interquartile range, and the red + symbols are data points outside this range. The true values, indicated by the
solid black lines, were A = 1.0 s−1, D = 0.01 μm2/s, and G = 100 counts. The estimates after the 10th iteration were Â = 1.2 ± 0.4 s−1,
D̂ = 0.009 ± 0.001 μm2/s, and Ĝ = 89 ± 1cts.
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FIG. 10. (Color online) Box plots of the root mean square (RMS) localization error as a function of the number of iterations of the SMC-EM
algorithm for the fourth demonstration (3D tether with unknown G, Sec. IV G). The edges of the box represent the first and third quartiles,
the red line inside the box is the median, the vertical dashed line indicates the bounds for data within 1.5 times the interquartile range, and the
red + symbols are data points outside this range. After the 10th iteration, the RMS errors of the means of the estimated posterior distributions
were 0.012 ± 0.001 μm in both x and y. The raw RMS errors for z are indicated in the rightmost figure as gray boxes with outliers denoted by
red diamonds, whereas the RMS errors for the absolute value of z are indicated by blue boxes with outliers denoted by red + symbols. Note
that the RMS errors for the raw z values are significantly larger than those for the absolute value of z. After the 10th iteration, the raw RMS z

errors were 0.10 ± 0.03 μm and the RMS |z| errors were 0.047 ± 0.006 μm.

equation for G is shown in (A17); further details are given
in the Appendix. The initial estimate for G was randomly
generated within 20% of the true value. In practice the initial
estimate would be guided by the peak values in the data.

The true diffusion coefficient was 0.01 μm2/s, the true stiff-
ness coefficient was 1.0 s−1, and the true gain was 100 counts.
After 10 iterations of SMC-EM, the resulting estimated
diffusion coefficient was 0.009 ± 0.001 μm2/s, the resulting
stiffness coefficient was 1.2 ± 0.3 s−1, and the resulting gain
was 89 ± 1 counts. The resulting RMS localization errors were
0.012 ± 0.001 μm in both x and y and 0.10 ± 0.03 μm in z.
The error for the absolute value of z was 0.047 ± 0.006 μm.
The parameter estimates and RMS localization errors as a
function of EM iteration number are shown in Figs. 9 and 10.

Convergence for the fourth demonstration was very similar
to the third. In particular, we see that the A, D, and G

parameters all required four or five iterations to converge.
As in the third demonstration, the estimate of D is very close
to the true value. The estimate of A shows a larger error than
previously and perhaps some bias (though the true parameter
value is within one standard deviation) while there is a clear
bias in the estimate of G. These errors likely arise from two
sources. The first is again the axial uncertainty in the PSF.
Since the intensity gain G is affected by the axial position of
the particle, errors in that localization propagate into the gain
estimate. The second is the fact that the same amount of data is
being used to estimate a larger number of parameters; because
the ML estimators are only asymptotically efficient, a larger
number of images would reduce variance and bias.

V. CONCLUSION

In this work, we describe an inference method that accom-
plishes two tasks: First, given a set of noisy measurements,
it constructs a discrete, Monte Carlo estimate of the posterior

density of an unknown, time-varying state; second, it calculates
maximum likelihood estimates of unknown parameters which
characterize the the unknown state as it transitions over time. In
addition, we develop a novel paradigm for which this method
may be applied to the analysis of single-particle tracking data.
To demonstrate the effectiveness of this method and paradigm,
we applied it to several scenarios involving a fluorescent par-
ticle being observed by a wide-field fluorescence microscope.
In particular, we showed that the method can be applied to a
variety of motions of differing complexity; this includes simple
two-dimensional isotropic diffusion as well as confined and
tethered diffusions in three dimensions. In the 2D case, the
performance of the algorithm was similar to the more standard
approach of fitting the data in each image to a Gaussian point
spread function to localize the particle, followed by the appli-
cation of a maximum likelihood estimator to determine the dif-
fusion coefficients. The three-dimensional examples demon-
strated the ability of the technique to model a variety of motion
and observation models and showed good performance.
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APPENDIX: IMPLEMENTATION OF SMC-EM

The SMC-EM algorithm described in Sec. II alternates
between two distinct steps. The result of the first step, i.e., the
expectation step, is an approximation for the joint posterior
density of the state (i.e., particle location at each time step)
given the observations (i.e., images). The outcome of the
second step, i.e., the maximization step, is an approximation
to the maximum likelihood (ML) estimate of an unknown
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parameter θ describing the motion and observation models (2)
and (3). By alternating between these two steps, the outcomes
from each of them, specifically the approximate posterior
densities and ML estimates, stochastically converge to a local
optima.

In this Appendix, we describe how the SMC-EM algo-
rithm was implemented for each of the four demonstrations
described in Sec. IV.

1. The expectation step

The expectation step requires the evaluation of Q̂(θ,θ̂e) in
(10). Recall from Sec. II that (10) is actually a Monte Carlo
approximation of Q(θ,θ̂e) in (7) given the SMC approximation
(9) of the posterior densities. Thus, the evaluation of the
three quantities Î1,Î2,Î3 in (11) requires M particle location
estimates (xi

k|N,e,y
i
k|N,e,z

i
k|N,e) for each of the N time steps. In

addition, these estimates must be weighted according to their
ability to approximate both the individual and sequentially
pairwise joint posterior densities; the weights wi

k|N and w
ij

k|N
respectively accomplish this.

The notation used throughout this work is commonly used
in the literature for state estimation of dynamical systems.
To be explicit, the object xi

k|m defines the ith Monte Carlo
estimate for the x position at time step k taking into account
all observations (i.e., images) up until the mth. To denote a
value that depends on the eth EM iteration, the subscript e is
appended. In addition, when the Monte Carlo estimates are
coupled across two points in the sequence, such as in the
weight w

ij

k|N , the superscript includes two indices, in this case
i and j . Last, to simplify notation, we use a capital X to denote
the position of the particle in three dimensions, for example,
X̃i

k|N,e � (x̃i
k|N,e,ỹ

i
k|N,e,z̃

i
k|N,e).

In this subsection, we describe how these estimates and
weights were calculated for the demonstrations described
in Sec. IV. Specifically, we use the sampling importance
resampling algorithm in conjunction with the FFBS algorithm
to calculate the position estimates and their weights.

a. Sampling importance resampling

To calculate the Monte Carlo position estimates and their
weights, we first employ the SIR algorithm. SIR is just one
example of an SMC filter and was chosen because it is
relatively easy to implement. For further information on other
algorithms and their relative merits, see, e.g., Ref. [40].

A standard implementation of the SIR algorithm out-
puts a Monte Carlo approximation to the posterior density
pθ̂e

(Xk|I1,1, . . . ,IP,1,I1,2, . . . ,IP,2, . . . ,IP,k). Note that this
density is with respect to all images up until the current time
step k; in the SMC and particle filtering literature, this is also
known as the filtered posterior density. Similarly to the SMC
approximation in (9), the SIR algorithm approximates the
density by a sum of M-weighted δ functions. However, unlike
the posterior density in (9) which weighted the ith estimate at
time step k by wi

k|N , here we denote the ith weight at time step
k by wi

k|k . In other words, the former weight takes into account
all the images at every time step, whereas the latter only takes
into account the images up until its respective time step.

To calculate the aforementioned posterior density, the SIR
algorithm applies both importance sampling and statistical
bootstrapping (i.e., resampling) at each time step. In contrast
with a batch algorithm, SIR is recursive, meaning that the
SMC approximation at time step k need only be calculated
from the image acquired at time step k and the output of
SIR at the (k − 1)-th iteration. This presents a considerable
improvement in computational complexity relative to a batch
implementation; the recursive implementation of SIR has a
computational complexity that scales as NM , that is, as the
product of the number of time steps (images) and the number
of discrete estimates.

At a given time index k, the SIR algorithm first uses
importance sampling to generate a set of weighted position
estimates. For a standard implementation of the SIR algorithm,
this requires a draw of M independent and identically
distributed candidate position estimates according to one of
two probability densities. At the initial time index k = 1, the
candidate positions are drawn according to(

X̃i
1|1

) ∼ pInit
θ̂e

(X1). (A1)

where the probability density is given by the initial distribution
(1). If, instead, k > 1, then the candidates are drawn according
to (

X̃i
k|k

) ∼ pMot
θ̂e

(
X̃k|k

∣∣Xi
k−1|k−1

)
, (A2)

where the probability density is given by the motion model
(2). In both cases, these candidates, denoted by the tilde, are
then weighted according to

wi
k|k ∝ pObs

θ̂e

(
I1,k, . . . ,IP,k

∣∣X̃i
k|k

)
, (A3)

where the probability density is given by the observation model
(3). In the scenario presented in Sec. III, the observation model
is given by a Poisson distribution (due to the presence of shot
noise). In addition, the intensity measured at each pixel is
independent when conditioned on the particle position, so (A3)
simplifies to

wi
k|k ∝

P∏
p=1

pObs
θ̂e

(
Ip,k

∣∣Xi
k|k

)
. (A4)

The weights are normalized so their sum with respect to i is
unity. This completes the importance sampling process at time
step k.

Directly after the importance sampling process at time
step k, the SIR algorithm generates a new collection of
position estimates from the estimates that were formed
during the importance sampling process. Specifically, this
resampling step draws a new collection of M realizations of
pθ̂e

(Xk|I1,1, . . . ,IP,k) via bootstrapping from the previously
generated collection of candidates. There are many methods
for resampling from a discrete collection; again, see Ref. [40].
Due to its simplicity in implementation, we chose multinomial
resampling. Thus, we draw with replacement j = 1, . . . ,M

new samples X
j

k according to

P
(
X

j

k|k = X̃i
k|k

) = wi
k|k. (A5)

The resulting collection of positions forms a set of
independent and identically distributed realizations of
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pθ̂e
(Xk|I1,1, . . . ,IP,k), and, consequently, the weights are set

to 1/M . This completes the resampling step for time step k.
This whole process, namely the generation of candidates in

(A2), the calculation of the weights in (A3), and the resampling
of the candidates in (A5), is repeated for each time step k until
k = N . After the algorithm calculates the k = N time step, the
SIR algorithm terminates.

b. Forward-filtering backward smoothing

The SIR algorithm produces a collection of M position
estimates Xi

k|k each weighted by wi
k|k , a measure that describes

how well they approximate the posterior density that takes into
account the observations up until the kth time step (i.e., the
filtered posterior density). The SMC-EM algorithm, however,
cannot directly use the filtered posterior density in (11) as
it instead requires a Monte Carlo estimate for the posterior
density that takes into account all N observations. In the
state estimation literature, this is also known as the smoothed
posterior density. To calculate the Monte Carlo approximation
to the smoothed posterior density, we leverage the filtered
posterior density from the implementation of the SIR algorithm
and apply the FFBS algorithm.

To calculate the smoothed posterior density, we imple-
mented the FFBS algorithm as described in Ref. [41]. An
implementation of this algorithm uses the results from the
SIR algorithm and operates backward in time to calculate the
smoothed posterior density.

At the initial time step, here k = N , the smoothed posterior
density is equivalent to the filtered posterior density. Thus, the
position estimates and weights at k = N are equivalent.

At the remaining time steps, k = (N − 1), . . . ,1, the for-
mulas

wi
k|N,e = wi

k|k,e

M∑
m=1

wm
k+1|N,e

pMot
θ̂e

(
Xm

k+1|k+1,e

∣∣Xi
k|k,e

)
vm

k

, (A6a)

vm
k �

M∑
j=1

w
j

k|k,ep
Mot
θ̂e

(
Xm

k+1|k+1,e

∣∣Xj

k|k,e

)
, (A6b)

are used to calculate the smoothed weights. Note that the
quantity (A6a) only depends on the motion model and not the
observation model. Resampling was not performed during the
smoothing process; thus, Xi

k|N,e = Xi
k|k,e for all k = 1, . . . ,N

and i = 1, . . . ,M .
In addition, the SMC representation of the sequentially

pairwise joint density was originally presented in Lemma 6.1
in Ref. [13] and is given by the formula

w
ij

k|N =
wi

k|kw
j

k+1|NpMot
θ̂e

(
X

j

k+1|k+1

∣∣Xi
k|k

)
∑M

l=1 wl
k|kp

Mot
θ̂e

(
X

j

k+1|k+1

∣∣Xl
k|k

) . (A7)

for all k = 1, . . . ,N , i = 1, . . . ,M , and j = 1, . . . ,M .
In contrast to the SIR algorithm, the computational com-

plexity of the FFBS algorithm scales as NM2. Since the
complexity grows with the square of the number of estimates
M , the user of the algorithm must choose M so the posterior
density is adequately approximated while also taking into
account the computational load. Note that in the context of the
SMC-EM algorithm, the combination of SIR and FFBS must

be performed for each iteration, and the overall complexity of
the SMC-EM algorithm therefore scales as ENM2, where E

is the maximum number of iterations. In this work, the value
for M was chosen by running the SMC-EM algorithm with
a small initial value for M and increasing it until the output
did not significantly differ. Here M = 250 yielded negligible
benefit over M = 125 in terms of the bias and variance of the
parameter estimates. If a better approximation for the posterior
density were desired, one could implement the SMC-EM
algorithm with a sufficiently small number of estimates and
then rerun the SIR and FFBS algorithms (or any other SMC
method) with a much larger value for M using the (fixed)
values of the motion and observation parameters.

2. The maximization step

The maximization step for the SMC-EM algorithm requires
the evaluation of (12); that is, the updated parameters are
given by the argument θ which maximizes Q̂(θ,θ̂e). In this
subsection, we list the formulas that were used for each of the
four demonstrations describe in Sec. IV.

a. Demonstration 1: Two-dimensional diffusion

In the first demonstration, the motion was assumed to
be derived from an anisotropic two-dimensional diffusion
(16) with unknown diffusion coefficients Dx and Dy . We
also assumed that the observation model did not contain any
parameters that needed to be estimated. Inserting the motion
model (16) into the update equation for Q̂(θ,θ̂e), (12), together
with the SMC approximation to Q(θ,θ̂e) given by (10) and
(11), and then setting the derivative with respect to θ to zero
yields the parameter update equations

D̂x,e+1 = 1

2N�t

(
Da

x,e + Db
x,e

)
, (A8a)

Da
x,e �

M∑
i=1

wi
1|N,e

(
xi

1|N,e

)2
, (A8b)

Db
x,e �

N−1∑
k=1

M∑
i=1

M∑
j=1

w
ij

k|N,e

(
x

j

k+1|N,e − xi
k|N,e

)2
, (A8c)

for the x axis; the equations for the y axis are exactly the same
with y replacing x. We note that the first term, denoted by the
superscript a, represents the initial condition and the second
term, denoted by the superscript b, represents the first-order
difference between sequential estimates. If the diffusion were
assumed to be isotropic, the resulting diffusion coefficient
estimate would be the average of the x and y diffusion
coefficient estimates.

Not surprisingly, the diffusion coefficient estimates essen-
tially take the form of a weighted linear regression to the
mean-square displacement, with the difference here being
that weights and position estimates are formed via the SMC
methods described in the previous subsection. In addition,
the diffusion coefficients, position estimates, and weights are
iteratively improved via the SMC-EM algorithm, unlike the
standard method which does not iterate.
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b. Demonstration 2: Axially confined diffusion

In the second demonstration, we assumed the motion was
derived from a three-dimensional anisotropic diffusion with
reflecting axial confinement zk ∈ [−L/2,L/2]. The transition
densities for the position of the particle in the x and y axes
are given by (16), whereas for the z axis it is (17). Since the
diffusion was assumed anisotropic, the update equations for
the x and y diffusion coefficient estimates are the same as in
the first demonstration (A8).

The update equation for the length of the confinement
channel is found by inserting the motion model (17) into (12),
using the SMC approximation (11), and then maximizing. This
gives

L̂e+1 = max
k,i

2
∣∣zi

k|N,e

∣∣. (A9)

This implies that the best estimate for the length of the channel
is the absolute maximum position estimate in the z axis. We
further note that if, instead, the position were confined within
zk ∈ [L1,L2] with L1 < L2, the same reasoning would hold;
that is, L1 would be the minimum position estimate and L2

would be the maximum.
We note that the initial value for the length parameter

estimate must be greater than its corresponding true value
to guarantee convergence. To see this, consider the length
parameter estimate L̂e. During the expectation step at iteration
e + 1, z position estimates generated according to (17) will
be constrained to the interval [−L̂e/2,L̂e/2]. During the
subsequent maximization step, L̂e+1 is set to be the absolute
maximum of every z position estimate via (A9). From this, it
follows that L̂e+1 � L̂e. As such, in practice, the user must
always set the initial length parameter estimate to a value that
overestimates the true length.

Unfortunately, there is no analytical solution for the z-axis
diffusion coefficient. Thus, (12) must be maximized numeri-
cally with respect to Dz. In this demonstration, however, Dz is
the only parameter for which this is required and can therefore
be calculated by solving a one-dimensional unconstrained
optimization problem via, for example, the bisection method.
For completeness, we describe how the bisection method may
be used to calculate Dz.

The bisection method is a commonly used numerical
algorithm for finding a root of a mathematical expression
contained within a known upper and lower bound. The
method can therefore be used to find local extrema through
its application to the derivative of the expression. To find the
maximizing value Dz at EM iteration e, this expression is

J (Dz) = ∂

∂Dz

N−1∑
k=1

M∑
i=1

M∑
j=1

w
ij

k|N,e log
[
pDz

(
z
ij

k+1|N,e

∣∣zij

k|N,e

)]
,

(A10)

where pDz
is the confined probability density (17) as a

function of the unknown diffusion coefficient Dz evaluated
on the Monte Carlo estimate positions z

ij

k|N,e. Note that (17)
is also a function of the confinement length L; since the
optimal estimate for L may be calculated via (A9) without any
knowledge of Dz, this value should be used in the evaluation of
(A10). The bisection method iteratively calculates an optimal
value for Dz by methodically searching for a candidate

such that the expression (A10) is approximately zero. It
begins by considering the closed interval [Dz,Low,Dz,High]
in which contains the maximizing value; in this work, we
considered the interval [0.1Dz,10Dz] with Dz denoting the
true parameter value. The method evaluates J (Dz) at Dz,Low

and the midpoint, Dz,Mid � (Dz,High + Dz,Low)/2. If the signs
of these evaluations are equivalent, then Dz,Low is replaced
with Dz,Mid; otherwise, Dz,High is replaced with Dz,Mid. This
process is repeated until either J (Dz,Mid) yields zero or until
(Dz,High − Dz,Low)/2 is below some threshold (here, chosen to
be 10−6). The estimated value for Dz is equivalent to Dz,Mid.

c. Demonstration 3: Three-dimensional elastic tethering

In the third demonstration, we assumed the motion was
derived from the three-dimensional Ornstein-Uhlenbeck pro-
cess with the transition density given by (18). This motion
model can represent, for example, a particle of negligible mass
attached to a stiff, elastic tether. The motion was assumed to
be isotropic so only two parameters, A and D, needed to be
estimated.

The update equations for the two parameters A and D can be
derived analytically by solving (12) with respect to the motion
model (18). The parameter update equation for the stiffness
coefficient A is given by

Âe+1 = − 1

�t
log

(
αe

βe

)
(A11)

with αe and βe defined by

αe =
N−1∑
k=1

M∑
i=1

M∑
j=1

w
ij

k|N,e

(
α

ij,a

k,e + α
ij,b

k,e + α
ij,c

k,e

)
, (A12a)

α
ij,a

k,e = x
j

k+1|N,ex
i
k|N,e, (A12b)

α
ij,b

k,e = y
j

k+1|N,ey
i
k|N,e, (A12c)

α
ij,c

k,e = z
j

k+1|N,ez
i
k|N,e, (A12d)

βe =
N−1∑
k=1

M∑
i=1

M∑
j=1

wi
k|N,e

(
β

i,a
k,e + β

i,b
k,e + β

ij,c

k,e

)
, (A13a)

β
i,a
k,e = (

xi
k|N,e

)2
, (A13b)

β
i,b
k,e = (

yi
k|N,e

)2
, (A13c)

β
i,c
k,e = (

zi
k|N,e

)2
. (A13d)

The parameter update equation for the diffusion coefficient D

is given by

D̂e+1 = (γe + δe)Âe+1

3N [1 − exp(−2Âe+1�t)]
(A14)

with γe and δe defined by

γe =
N−1∑
k=1

M∑
i=1

M∑
j=1

w
ij

k|N,e

(
γ

ij,a

k,e + γ
ij,b

k,e + γ
ij,c

k,e

)
, (A15a)

γ
ij,a

k,e = (
x

j

k+1|N,e − xi
k|N,e,e

−2�tÂe
)2

, (A15b)
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γ
ij,b

k,e = (
y

j

k+1|N,e − yi
k|N,e,e

−2�tÂe
)2

, (A15c)

γ
ij,c

k,e = (
z
j
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, (A15d)

δe =
M∑
i=1
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1|N

(
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e + δi,b

e + δi,c
e

)
, (A16a)
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e = (
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, (A16b)
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d. Demonstration 4: Three-dimensional tether with unknown PSF

In the fourth demonstration, we assume once again that
the motion is derived from the three-dimensional Ornstein-
Uhlenbeck process with transition density given by (18).
However, unlike the third demonstration, in this demonstration
we further assume that the gain G in (13) is unknown. Both
the parameter update equations for the stiffness and diffusion
coefficients A and D remain unchanged and are found in (A11)
and (A14); the parameter estimate for the unknown gain G,

however, must be calculated numerically by

Ĝe+1 = arg max
G

εe(G) (A17)

with εe defined by

εe(G) =
N∑

k=1

M∑
i=1

P∑
p=1

wi
k|N,eλ

i
p,k,e(G)

[
Ip,k

λi
p,k,e(G) + Nbgd

− 1

]
.

(A18)

The expected intensity for each pixel p is given by

λi
p,k,e(G)

=
∫ xmax

p,k

xmin
p,k

∫ ymax
p,k

ymin
p,k

GFPS
(
xi

k|N,e − ξ ′,yi
k|N,e − ξ ′′,zi

k|N,e

)
× dξ ′dξ ′′, (A19)

which is analogous to how it was defined in (13) with the only
difference being the dependence on both the EM iteration e

and the particle index i. Since (A17) is twice differentiable, we
used a Newton-like method (the tangent-hyperbolas method;
see Ref. [47]) to find the resulting maximum value at each
iteration.
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