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Numerical computations of the dynamics of fluidic membranes and vesicles
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Vesicles and many biological membranes are made of two monolayers of lipid molecules and form closed lipid
bilayers. The dynamical behavior of vesicles is very complex and a variety of forms and shapes appear. Lipid
bilayers can be considered as a surface fluid and hence the governing equations for the evolution include the
surface (Navier-)Stokes equations, which in particular take the membrane viscosity into account. The evolution is
driven by forces stemming from the curvature elasticity of the membrane. In addition, the surface fluid equations
are coupled to bulk (Navier-)Stokes equations. We introduce a parametric finite-element method to solve this
complex free boundary problem and present the first three-dimensional numerical computations based on the
full (Navier-)Stokes system for several different scenarios. For example, the effects of the membrane viscosity,
spontaneous curvature, and area difference elasticity (ADE) are studied. In particular, it turns out, that even in
the case of no viscosity contrast between the bulk fluids, the tank treading to tumbling transition can be obtained
by increasing the membrane viscosity. Besides the classical tank treading and tumbling motions, another mode
(called the transition mode in this paper, but originally called the vacillating-breathing mode and subsequently
also called trembling, transition, and swinging mode) separating these classical modes appears and is studied by
us numerically. We also study how features of equilibrium shapes in the ADE and spontaneous curvature models,
like budding behavior or starfish forms, behave in a shear flow.
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I. INTRODUCTION

Lipid membranes consist of a bilayer of molecules, which
have a hydrophilic head and two hydrophobic chains. These
bilayers typically spontaneously form closed bag-like struc-
tures, which are called vesicles. It is observed that vesicles can
attain a huge variety of shapes and some of them are similar
to the biconcave shape of red blood cells. Since membranes
play a fundamental role in many living systems, the study of
vesicles is a very active research field in different scientific
disciplines, see, e.g., Refs. [1–4]. It is the goal of this paper
to present a numerical approach to study the evolution of
lipid membranes. We present several computations showing
quite different shapes, and the influence of fluid flow on the
membrane evolution.

Since the classical papers of Canham [5] and Helfrich [6],
there has been a lot of work with the aim of describing equi-
librium membrane shapes with the help of elastic membrane
energies. Canham [5] and Helfrich [6] introduced a bending
energy for a nonflat membrane, which is formulated with
the help of the curvature of the membrane. In the class of
fixed topologies the relevant energy density, in the simplest
situation, is proportional to the square of the mean curvature �.
The resulting energy functional is called the Willmore energy.
When computing equilibrium membrane shapes one has to
take constraints into account. Lipid membranes have a very
small compressibility and hence can safely be modeled as
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locally incompressible. In addition, the presence of certain
molecules in the surrounding fluid, for which the membrane
is impermeable, leads to an osmotic pressure, which results in
a constraint for the volume enclosed by the membrane. The
minimal energetic model for lipid membranes consists of the
Willmore mean curvature functional together with enclosed
volume and surface area constraints. Already this simple model
leads to quite different shapes, including the biconcave red
blood cell shapes; see Ref. [1].

Helfrich [6] introduced a variant of the Willmore energy,
with the aim of modeling a possible asymmetry of the bilayer
membrane. Helfrich [6] studied the functional

∫
(� − �)2,

where � is a fixed constant, the so-called spontaneous
curvature. It is argued that the origin of the spontaneous
curvature is, e.g., a different chemical environment on both
sides of the membrane. We refer to Refs. [7] and [8] for a
recent discussion, and for experiments in situations that lead
to spontaneous curvature effects due to the chemical structure
of the bilayer.

Typically there is yet another asymmetry in the bilayer
leading to a signature in the membrane architecture. This
results from the fact that the two membrane layers have a dif-
ferent number of molecules. Since the exchange of molecules
between the layers is difficult, an imbalance is conserved
during a possible shape change. The total area difference
between the two layers is proportional to M = ∫

�. Several
models have been proposed, which describe the difference in
the total number of molecules in the two layers with the help
of the integrated mean curvature. The bilayer coupling model,
introduced by Svetina and coworkers [9–11], assumes that the
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area per lipid molecule is fixed and assumes that there is no
exchange of molecules between the two layers. Hence the total
areas of the two layers are fixed, and on assuming that the two
layers are separated by a fixed distance, one obtains, to the
order of this distance, that the area difference can be approxi-
mated by the integrated mean curvature; see Refs. [9–11]. We
note that a spontaneous curvature contribution is irrelevant in
the bilayer coupling model as this would only add a constant to
the energy as the area and integrated mean curvature are fixed.

Miao et al. [12] noted that in the bilayer coupling model
budding always occurs continuously, which is inconsistent
with experiments. They hence studied a model in which the
area of the two layers are not fixed but can expand or compress
under stress. Given a relaxed initial area difference �A0,
the total area difference �A, which is proportional to the
integrated mean curvature, can deviate from �A0. However,
the total energy now has a contribution that is proportional to
(�A − �A0)2. This term describes the elastic area difference
stretching energy; see Refs. [1,12], and hence one has to
pay a price energetically to deviate from the relaxed area
difference.

It is also possible to combine the area difference elasticity
(ADE) model with a spontaneous curvature assumption; see
Miao et al. [12] and Seifert [1]. However, the resulting
energetical model is equivalent to an ADE model with a
modified �A0; see Ref. [1] for a more detailed discussion.

It has been shown that the bilayer coupling (BC) model
and the ADE model lead to a multitude of shapes, which
also have been observed in experiments with vesicles. Beside
others, the familiar discocyte shapes (including the “shape”
of a red blood cell), stomatocyte shapes, prolate shapes, and
pear-like shapes have been observed. In addition, the budding
of membranes can be described, as well as more exotic shapes,
like starfish vesicles. Moreover, higher genus shapes appear as
global or local minima of the energies discussed above. We
refer to Refs. [1,12–15] for more details on the possible shapes
appearing, when minimizing the energies in the ADE and BC
models.

Configurational changes of vesicles and membranes cannot
be described by energetical considerations alone, but have
to be modeled with the help of appropriate evolution laws.
Several authors considered an L2-gradient flow dynamics of
the curvature energies discussed above. Pure Willmore flow
has been studied in Refs. [16–21], where the last two papers
use a phase field formulation of the Willmore problem. Some
authors also took other aspects, such as constraints on volume
and area [19,22,23], as well as a constraint on the integrated
mean curvature [19,20], into account. The effect of different
lipid components in an L2-gradient flow approach of the
curvature energy has been studied in Refs. [24–30].

The above mentioned works considered a global constraint
on the surface area. The membrane, however, is locally
incompressible and hence a local constraint on the evolution
of the membrane molecules should be taken into account.
Several authors included the local inextensibility constraint by
introducing an inhomogeneous Lagrange multiplier for this
constraint on the membrane. This approach has been used
within the context of different modeling and computational
strategies such as the level set approach [31–34], the phase field
approach [35–37], the immersed boundary method [38–40],

the interfacial spectral boundary element method [41], and the
boundary integral method [42].

The physically most natural way to consider the local
incompressibility constraint makes use of the fact that the
membrane itself can be considered as an incompressible
surface fluid. This implies that a surface Navier-Stokes system
has to be solved on the membrane. The resulting set of
equations has to take forces stemming from the surrounding
fluid and from the membrane elasticity into account. In
total, bulk Navier-Stokes equations coupled to surface Navier-
Stokes equations have to be solved. As the involved Reynolds
numbers for vesicles are typically small one can often replace
the full Navier-Stokes equations by the Stokes systems on
the surface and in the bulk. The incompressibility condition
in the bulk (Navier-)Stokes equations naturally leads to
conservation of the volume enclosed by the membrane and the
incompressibility condition on the surface leads a conservation
of the membrane’s surface area. A model involving coupled
bulk-surface (Navier-)Stokes equations has been proposed by
Arroyo and DeSimone [43], and it is this model that we want
to study numerically in this paper.

Introducing forces resulting from membrane energies in
fluid flow models has been studied numerically before by
different authors [31–33,36,37,40]. However, typically these
authors studied simplified models, and either volume or surface
constraints were enforced by Lagrange multipliers. In addition,
either just the bulk or just the surface (Navier-)Stokes equations
have been solved. The only work considering simultaneously
bulk and surface Navier-Stokes equations are Arroyo et al. [44]
and Barrett et al. [45], 46], where the former work is restricted
to axisymmetric situations. In the present paper we are going
to make use of the numerical method introduced in Ref. [46];
see also Ref. [45].

The paper is organized as follows. In the next section
we precisely state the mathematical model, consisting of the
curvature elasticity model together with a coupled bulk-surface
(Navier-)Stokes system. In Sec. III we introduce our numerical
method, which consists of an unfitted parametric finite-element
method for the membrane evolution. The curvature forcing is
discretized and coupled to the Navier-Stokes system in a stable
way using the finite-element method for the fluid unknowns.
Numerical computations in Sec. IV demonstrate that we can
deal with a variety of different membrane shapes and flow
scenarios. In particular, we will study what influence the
membrane viscosity, the ADE, and the spontaneous curvature
have on the evolution of bilayer membranes in shear flow. We
finish with some conclusions.

II. A CONTINUUM MODEL FOR FLUIDIC MEMBRANES

We consider a continuum model for the evolution of
biomembranes and vesicles, which consists of a curvature
elasticity model for the membrane and the Navier-Stokes
equations in the bulk and on the surface. The model is based on
a paper by Arroyo and DeSimone [43], where in addition we
also allow the curvature energy model to be an area difference
elasticity model. We first introduce the curvature elasticity
model and then describe the coupling to the surface and bulk
Navier-Stokes equations.
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The thickness of the lipid bilayer in a vesicle is typically
three to four orders of magnitude smaller than the typical
size of the vesicle. Hence, the membrane can be modeled
as a two-dimensional surface � in R3. Given the principal
curvatures �1 and �2 of �, one can define the mean curvature

� = �1 + �2

and the Gauß curvature

K = �1 �2

(as often in differential geometry we choose to take the sum of
the principal curvatures as the mean curvature, instead of its
mean value). The classical works of Canham [5] and Helfrich
[6] derive a local bending energy, with the help of an expansion
in the curvature, and they obtain∫

�

(α

2
�2 + αG K

)
ds (1)

as the total energy of a symmetric membrane. The parameters
α,αG have the dimension of energy and are called the bending
rigidity α and the Gaussian bending rigidity αG. If we consider
closed membranes with a fixed topology, the term

∫
�

K ds is
constant and hence we will neglect the Gaussian curvature
term in what follows.

As discussed above, the total area difference �A of the two
lipid layers is, to first order, proportional to

M(�) =
∫

�

� ds.

Taking now into account that there is an optimal area difference
�A0, the authors in Refs. [47–49] added a term proportional
to

[M(�) − M0]2

to the curvature energy, where M0 is a fixed constant that is
proportional to the optimal area difference.

For nonsymmetric membranes a certain mean curvature
� can be energetically favorable. Then the elasticity energy
Eq. (1) is modified to∫

�

(α

2
(� − �)2 + αG K

)
ds.

The constant � is called spontaneous curvature. Taking into
account that

∫
�

αG K ds does not change for an evolution
within a fixed topology class, the most general bending energy
that we use in this paper is given by α E(�), with the
dimensionless energy

E(�) = 1

2

∫
�

(� − �)2 ds + β

2
[M(�) − M0]2, (2)

where β has the dimension ( 1
length )2.

We now consider a continuum model for the fluid flow
on the membrane and in the bulk, inside and outside of
the membrane. We assume that the closed, time-dependent
membrane [�(t)]t�0 lies inside a spatial domain � ⊂ R3. For
all times the membrane separates � into an inner domain
�−(t) and an outer domain �+(t). Denoting by �u the fluid
velocity and by p the pressure, the bulk stress tensor is

given by σ = 2 μD(�u) − p Id, with D(�u) = 1
2 [ �∇ �u + ( �∇ �u)T ]

being the bulk rate-of-strain tensor. We assume that the
Navier-Stokes system,

ρ [�ut + (�u · �∇) �u] − �∇ · σ = 0 , �∇ · �u = 0,

holds in �−(t) and �+(t). Here ρ and μ are the density
and dynamic viscosity of the fluid, which can take different
(constant) values ρ±, μ± in �±(t). Arroyo and DeSimone
[43] used the theory of interfacial fluid dynamics, which
goes back to Scriven [50], to introduce a relaxation dynamics
for fluidic membranes. In this model the fluid velocity is
assumed to be continuous across the membrane, the membrane
is moved in the normal direction with the normal velocity
of the bulk fluid and, in addition, the surface Navier-Stokes
equations

ρ� ∂•
t �u − �∇s · σ

�
= [σ ]+− �ν + α �f� , �∇s · �u = 0

have to hold on �(t). Here ρ� is the surface material density,
∂•
t is the material derivative and �∇s is the gradient operator on

the surface. The surface stress tensor is given by

σ
�

= 2 μ� Ds(�u) − p� P�,

where p� is the surface pressure, μ� is the surface shear
viscosity, P

�
is the projection onto the tangent space, and

D
s
(�u) = 1

2 P� [ �∇s �u + ( �∇s �u)T ]P�

is the surface rate-of-strain tensor. Furthermore, the term
[σ ]+− �ν = σ+ �ν − σ− �ν is the force exerted by the bulk on the
membrane, where �ν denotes the exterior unit normal to �−(t).
The remaining term α �f� denotes the forces stemming from
the elastic bending energy. These forces are given by the first
variation of the bending energy α E[�(t)]; see Refs. [1,43]. It
turns out that �f� points in the normal direction, i.e., �f� = f� �ν,
and we obtain (see Refs. [1,51])

f� = −�s � − (� − �) | �∇s �ν|2 + 1
2 (� − �)2 �

+ β (M(�) − M0) (| �∇s �ν|2 − �2) on �(t).

Here �s is the surface Laplace operator, �∇s �ν is the Weingarten
map, and | �∇s �ν|2 = �2

1 + �2
2 . Assuming, e.g., no-slip boundary

conditions on ∂�, the boundary of �, we obtain that the total
energy can only decrease; i.e.,

d

dt

[∫
�

ρ

2
|�u|2 dx + ρ�

2

∫
�

|�u|2 ds + α E(�)

]

= −2

[∫
�

μ |D(�u)|2 dx + μ�

∫
�

|Ds(�u)|2 ds

]
� 0 . (3)

We now nondimensionalize the problem. We choose a time
scale t̃ , a length scale x̃, and the resulting velocity scale ũ =
x̃/t̃ . Then we define the bulk and surface Reynolds numbers,

Re = x̃ ρ+ ũ/μ+ and Re� = x̃ ρ� ũ/μ�,

the bulk and surface pressure scales,

p̃ = μ+/t̃ and p̃� = μ+ x̃/t̃ = μ+ ũ ,

and

ρ∗ = ρ/ρ+ =
{

1 in �+
ρ−/ρ+ in �−

,
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μ∗ = μ/μ+ =
{

1 in �+
� in �−

, � = μ−/μ+ ,

μ∗
� = μ�/(μ+ x̃) ,

as well as the new independent variables x̂ = x/x̃, t̂ = t/t̃ .
For the unknowns,

�̂u = �u/ũ , p̂ = p/p̃ , p̂� = p�/p̃�,

we now obtain the following set of equations (on dropping thê notation for the new variables for ease of exposition):

Re ρ∗ (�ut + (�u · �∇) �u) − μ∗ � �u + �∇ p = 0 in �±(t) ,

Re� μ∗
� ∂•

t �u − �∇s · (2 μ∗
� D

s
(�u) − p� P�)

= [
2 μ∗ D(�u) − p Id

]+
−�ν + α∗ �f ∗

� on �(t) , (4)

with �f ∗
� = f ∗

� �ν,

f ∗
� = −�s � − (� − �∗) | �∇s �ν|2 + 1

2 (� − �∗)2 �

+ β∗ (M(�) − M∗
0 ) (| �∇s �ν|2 − �2) on �(t) , (5)

α∗ = α/(μ+ ũ x̃2) and �∗ = x̃ �, M∗
0 = M0/x̃, β∗ = x̃2 β. We

remark that the Reynolds numbers for the two regions in the
bulk are given by Re and Re ρ∗/μ∗, respectively, and that
they will, in general, differ in the case of a viscosity contrast
between the inner and outer fluid. In addition to the above
equations, we of course also require that �u has zero divergence
in the bulk and that the surface divergence of �u vanishes on �.

Typical values for the bulk dynamic viscosity μ are around
10−3–10−2 kg

s m (see Refs. [4,43,52]), whereas the surface shear

viscosity typically is about 10−9–10−8 kg
s (see Refs. [4,30,53]).

The bending modulus α is typically 10−20–10−19 kg m2

s2 (see
Refs. [30,52,53]).

The term μ∗
� = μ�/(μ+ x̃) in Eq. (4) suggests choosing the

length scale

x̃ = μ�/μ+ ⇐⇒ μ∗
� = 1.

As α∗ = α/(μ+ ũ x̃2) = α t̃/(μ+ x̃3) appears in Eq. (4), we
choose the time scale

t̃ = μ+ x̃3/α.

Choosing

μ� = 5 × 10−9 kg

s
, μ+ = 10−3 kg

s m
, α = 10−19 kg m2

s2
,

see, e.g., Ref. [43], we obtain the length scale 5 × 10−6 m and
the time scale 1.25 s, which are typical scales in experiments.
With these scales for length and time together with values of
∼ 103 kg/m3 for the bulk density and ∼ 10−6 kg/m2 for the
surface densities, we obtain for the bulk and surface Reynolds
numbers

Re ≈ 10−5 and Re� ≈ 10−8,

and hence we will set the Reynolds numbers to zero in this
paper. We note that it is straightforward to also consider
positive Reynolds numbers in our numerical algorithm; see
Refs. [45,46] for details. Together with the other observations

above, we then obtain the following reduced set of equations:

− μ∗ � �u + �∇ p = 0 in �±(t) ,

− 2 �∇s · D
s
(�u) + �∇s · (p� P�)

= [2 μ∗ D(�u) − p Id]+−�ν + α∗ �f ∗
� on �(t). (6)

A downside of the scaling used to obtain Eq. (6) is that the
surface viscosity no longer appears as an independent param-
eter. However, studying the effect of the surface viscosity,
e.g., on the tank treading to tumbling transition in shearing
experiments, is one of the main focuses of this paper. It is
for this reason that we also consider the following alternative
scaling, when suitable length and velocity scales are at hand.
For example, we may choose the length scale x̃ based on the
(fixed) size of the membrane and a velocity scale ũ based on
appropriate boundary velocity values. In this case we obtain
from Eq. (4), for small Reynolds numbers, the following set
of equations:

− μ∗ � �u + �∇ p = 0 in �±(t),

− �∇s · [2 μ∗
� D

s
(�u) − p� P�]

= [2 μ∗ D(�u) − p Id]+−�ν + α∗ �f ∗
� on �(t). (7)

Note that here three nondimensional parameters remain: μ∗
� ,

�, and α∗. Here μ∗
� compares the surface shear viscosity to

the bulk shear viscosity, � is the bulk viscosity ratio, and α∗
is an inverse capillary number, which describes the ratio of
characteristic membrane stresses to viscous stresses. Clearly,
the system Eq. (6) corresponds to Eq. (7) with μ∗

� = 1. Hence,
from now on, we will only consider the scaling Eq. (7) in
detail.

Of course, the system Eq. (7) needs to be supplemented with
a boundary condition for �u or σ , and with an initial condition
for �(0). For the former we partition the boundary ∂� of �

into ∂1�, where we prescribe a fixed velocity �u = �g, and ∂2�,
where we prescribe the stress-free condition σ �n = �0, with �n
denoting the outer normal to �.

We note that our nondimensionalization may be different
to others presented in the literature. Often the length scale
a = (A(0)

4 π
)

1
2 is chosen, where A(0) denotes the surface area of

the vesicle at time zero; see, e.g., Ref. [54]. Our length scale
x̃ may lead to simulations with A(0) = 4 π S2, with S > 0, so
that our nondimensional parameters in Eq. (7) correspond to
the nondimensional values for a fixed length scale x̃ = a as
follows:

M = μ�

μ+ a
= μ∗

�

S
, a � = S �∗, Ca = μ+ ũ a3

x̃ α
= S3

α∗ . (8)

III. NUMERICAL APPROXIMATION

The numerical computations in this paper have been
performed with a finite-element approximation introduced by
the authors in Ref. [46]. The approach discretizes the bulk
and surface degrees of freedom independently. In particular,
the surface mesh is not a restriction of the bulk mesh. The
bulk degrees of freedoms �u and p are discretized with the
lowest order Taylor-Hood element, P2-P1, in our numerical
computations. The evolution of the membrane is tracked
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FIG. 1. (Color online) A plot of θ/π againstAr for L = 20, W =
5, � = 1, α∗ = 0.01, Re = 10−3; compare with Ref. [32, Fig. 1].

with the help of parametric meshes �h, which are updated
by the fluid velocity. Since the membrane surface is locally
incompressible, it turns out that the surface mesh has good
mesh properties during the evolution. This is in contrast to
other fluid problems with interfaces in which the mesh often
deteriorates during the evolution when updated with the fluid
velocity; see, e.g., Ref. [55].

The nondimensionalized elastic forcing by the membrane
curvature energy, �f ∗

� in Eq. (7), is discretized with the help
of a weak formulation by Dziuk [18], which is generalized
by Barrett et al. [46] to take spontaneous curvature and area
difference elasticity effects into account. A main ingredient of
the numerical approach is the fact that one can use a weak
formulation of Eq. (5) that can be discretized in a stable way.
In fact, defining A∗ = β∗ [M(�) − M∗

0 ] and �y = �� + (A∗ −
�∗) �ν the following identity, which has to hold for all �χ on �,

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

Δ

D

D

1.3
√

Δ

FIG. 2. (Color online) A plot of D against � for L = 20, W = 5,
� = 1, α∗ = 0.01, Re = 10−3; compare with Ref. [32, Fig. 2].
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Λ
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FIG. 3. (Color online) A plot of �C against Ar for L = 20, W =
5, α∗ = 0.01, Re = 10−3; compare with Ref. [32, Fig. 3].

characterizes �f ∗
� :〈 �f ∗

� , �χ 〉= 〈 �∇s �y, �∇s �χ 〉 + 〈 �∇s · �y, �∇s · �χ 〉
− 2

〈
( �∇s �y)T ,D

s
( �χ) ( �∇s

�id)T
〉+(A∗−�∗)

〈��,[ �∇s �χ]T �ν〉
− 1

2

〈
[|�� − �∗ �ν|2 − 2 (�y · ��)] �∇s

�id, �∇s �χ 〉
−A∗〈(�� · �ν) �∇s

�id, �∇s �χ 〉
.

Here 〈·,·〉 is the L2-inner product on �, and �∇s �y = (∂sj
yi)3

i,j=1

with (∂s1 ,∂s2 ,∂s3 )T = �∇s . Roughly speaking, the above identity
shows that �f ∗

� has a divergence structure. We remark here that

0 5 10 15
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0.4

0.6

0.8

Λ

θ
V
ω

FIG. 4. (Color online) A plot of θ/ π

6 , V/ 1
2 , and ω/ 1

2 π
against �

for Ar = 0.8, L = 11.55, W = 3.85, α∗ = 2; compare with Ref. [67,
Fig. 1].
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FIG. 5. (Color online) Analogue of the phase diagram from
Ref. [54, Fig. 8] for the domain � = [−3,3]3, starting with a prolate
shape with Vr = 0.8 and the longest axis in the x3 direction.

similar divergence structures have been derived with the help
of Noether’s theorem; see Refs. [56,57].

The numerical method of Barrett et al. [46] has the feature
that a semidiscrete, i.e., continuous in time and discrete in
space, version of the method obeys a discrete analog of
the energy inequality Eq. (3). In addition, this semidiscrete
version has the property that the volume enclosed by the
vesicle and the membrane’s surface area are conserved exactly.
After discretization in time these properties are approximately
fulfilled to a high accuracy, see Sec. IV. The fully discrete
system is linear and fully coupled in the unknowns. The overall
system is reduced by a Schur complement approach to obtain
a reduced system in just velocity and pressure unknowns. For
this resulting linear system, well-known solution techniques
for finite-element discretizations for the standard Navier-
Stokes equations can be used; see Barrett et al. [58].

IV. NUMERICAL COMPUTATIONS

In shearing experiments the inclination angle of the vesicle
in the shear-flow direction is often of interest. Here we will
always consider shear flow in the x1 direction with x3 being
the flow gradient direction. Precisely, if � = [−L,L]2 ×
[−W,W ], then we prescribe the inhomogeneous Dirichlet
boundary condition �g(�x) = (x3,0,0)T on the top and bottom
boundaries ∂1� = [−L,L]2 × {±W }. Assuming the vesicle’s
center of mass is at the origin, then M = ∫

�−(t) |�x|2 Id − �x ⊗
�x dx denotes the vesicle’s moment of inertia tensor. Let �p, with
| �p| = 1 and p1 � 0, be the eigenvector corresponding to the
smallest eigenvalue of M. Then the vesicle’s inclination angle
is defined by θ = arg(p1 + i p3) ∈ (−π/2,π/2], where arg :
C → (−π,π ]. For later use we also note that the deformation
parameter D is defined by (b − c)/(b + c), where b,c are
the major and minor semiaxes of an ellipsoid with the same
moment of inertia tensor; see, e.g., Ref. [59]. Hence, in 2D,

D = (λ
1
2
max − λ

1
2
min)/(λ

1
2
max + λ

1
2
min), where λmax and λmin are the

two eigenvalues of M.
The inclination angle θ is important for the classification

of different types of dynamics in the shear-flow experiments
that we will present. The classical deformation dynamics for
vesicles are the tank-treading (TT) and the tumbling (TU)
motions. In the tank-treading motion the vesicle adopts a
constant inclination angle in the flow, while the surface fluid
rotates on the membrane surface. This motion is observed for
small viscosity contrasts between the inner and the outer fluid
and, as we will see later, at low surface membrane viscosity.
At large viscosity contrasts or large membrane viscosity the
tumbling motion occurs. In the tumbling regime the membrane
rotates as a whole, and the inclination angle oscillates in
the whole interval (−π/2,π/2]. In the past ten years a new
dynamic regime for vesicles in shear flow has been identified.
In this regime the inclination angle is neither constant nor does
it oscillate in the whole interval (−π/2,π/2]. The dynamics are
characterized by periodic oscillations of the inclination angle
θ such that θ ∈ [−θ0,θ0] for a θ0 in the open interval (0,π/2).
This regime was first predicted theoretically by Ref. [60]
and subsequently observed experimentally in Ref. [61]. Later

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

1/α∗ (= Ca)

μ
∗ Γ

(=
M

)

TU

TR

TT

(a) (b)

FIG. 6. (Color online) Phase diagram for � = 1 for the domain � = [−3,3]3, starting with a biconcave shape with Vr = 0.8 and the
shortest axis in the x1 direction. The three big circles in the phase diagram in (a) correspond to the simulations in (b), where from top to bottom
we show the evolutions for μ∗

� = 3, 1, 0.1 for 1/α∗ = 10 at times t = 0, 3, 6, 9 (from left to right).
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FIG. 7. The inclination angle θ , in radiant, plotted against time for the computations in Fig. 6. They correspond to the motions TU for
μ∗

� = 3 (a), TR for μ∗
� = 1 (b), and TT for μ∗

� = 0.1 (c), respectively.

this regime has been studied by different groups; see, e.g.,
Refs. [53,54,62–66] for more details. In Ref. [60] this motion
was called vacillating-breathing, and later the same motion was
also called trembling, transition mode, or swinging. Following
Ref. [64] we will refer to this new regime as the transition (TR)
mode.

In our numerical simulations we will only consider the
scaling Eq. (7). For all the presented simulations we will state
the reduced volume as a characteristic invariant. It is defined as
Vr = 6 π

1
2 V(0)/A 3

2 (0); see, e.g., Ref. [15]. HereV(t) andA(t)
denote the volume of the discrete inner phase and the discrete
surface area, respectively, at time t . Moreover, if nothing else
is specified, then our numerical simulations are for no-slip
boundary conditions; i.e., ∂1� = ∂� and �g = �0. In all our
experiments it holds that �∗ β∗ = 0, and we will only report
the values of �∗ and β∗ for simulations where they are nonzero.
Here we recall, as stated in the Introduction, that the energy

E∗(�) = 1

2

∫
�

(� − �∗)2 ds + β∗

2
(M(�) − M∗

0 )2 (9)

for �∗ β∗ �= 0 is equivalent to Eq. (9) with �∗ = 0, the same
value of β∗ > 0, and a modified value of M∗

0 . Finally, we stress
that our sign convention for curvature is such that spheres have
negative mean curvature.

A. 2D validation

In order to validate our numerical method, we reproduce
some numerical results from Refs. [32,67], where we always
consider a domain � = [−L,L] × [−W,W ]. As these works
consider Navier-Stokes flow in the bulk, we consider Eq. (4)
with Re = 10−3, Re� = 0, μ∗

� = �∗ = β∗ = 0, and vary �.
For the comparison with Figs. 1–3 in Ref. [32] we also set
α∗ = 10−2. Moreover, we consider vesicles with reduced areas
Ar = 4 π A(0)

P 2(0) ∈ {0.6,0.7,0.8,0.9}, and with a = P (0)
2 π

= 1, so

(a) (b)

FIG. 8. (Color online) The vesicles for �∗ = −5 (a) and �∗ = 5
(b) at time t = 0.
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FIG. 9. (Color online) Phase diagram for Ca = 1/α∗ = 10 for
the domain � = [−3,3]3, starting with biconcave shapes with Vr =
0.8 and the shortest axis in the x1 direction.
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FIG. 10. (Color online) Phase diagram for Ca = 1/α∗ = 10 for
the domain � = [−3,3]3, starting with biconcave shapes with Vr =
0.8 and the shortest axis in the x2 direction.
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TABLE I. Some inclination angles θ for the TT motions in Fig. 9.

μ∗
� �∗ = −5 �∗ = 0 �∗ = 5

0.05 0.179 0.178 0.194
0.1 0.169 0.158 0.179
0.2 0.161 0.116 0.138

that perimeter and area are given by P (0) = 2 π and A(0) =

TABLE II. Some inclination angles θ for the TT motions in Fig. 10.

μ∗
� �∗ = −5 �∗ = 0 �∗ = 5

0.05 0.180 0.156 0.162
0.1 0.160 0.132 0.156
0.2 0.118 0.084 0.143

Ar π , respectively. At first, for � = 1, we try to re-create

FIG. 11. (Color online) Shear flow for a torus with � = μ∗
� = 1. The plots show the interface �h within �, as well as cuts through the

x1-x3 plane, at times t = 0, 2.5, 5, 7.5 (from left to right). The interface at t = 10 is very close to the plot at t = 2.5.

FIG. 12. (Color online) Shear flow for a torus with � = 1, μ∗
� = 10. The plots show the interface �h within �, as well as cuts through the

x1-x3 plane, at times t = 0, 2.5, 5, 7.5 (from left to right).

FIG. 13. (Color online) Shear flow for a torus with � = 1, μ∗
� = 0. The plots show the interface �h within �, as well as cuts through the

x1-x3 plane, at times t = 0, 2.5, 5, 7.5 (from left to right).
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FIG. 14. The inclination angle θ , in radiant, plotted against time
for the simulations in Figs. 12(a) and 13(b).

FIG. 15. (Color online) The flow at time t = 7.5 in the x1-x3

plane for the simulations in Figs. 12 and 13.

FIG. 16. (Color online) Flow for a cup-like stomatocyte shape
with Vr = 0.65 for M∗

0 = −48.24 and β∗ = 0.053. The plots show
the interface �h at times t = 0, 5, 10, 20 (from left to right), with the
top row visualizing the triangulations by showing half the vesicle.

FIG. 17. (Color online) Same as Fig. 16 with β∗ = 0.

0.99998

1.00000

1.00002

 0  5  10  15  20

V(t)/V(0)
A(t)/A(0)

FIG. 18. The evolutions of the relative discrete volume
V(t)/V(0), and the relative discrete surface area A(t)/A(0) over time.

FIG. 19. (Color online) Flow for a varying-diameter cigar-like
shape with Vr = 0.75 for M∗

0 = −33.5 and β∗ = 0.46. The plots
show the interface �h at times t = 0, 1, 10, 50 (from left to right),
with the top row visualizing the triangulations.

Ref. [32, Fig. 1]. To this end, we set L = 20 and W = 5,
and use stress-free boundary conditions left and right, rather
than periodic boundary conditions in the x1 direction on the
square domain [−5,5]2 as used in Ref. [32]. We obtain the
results in Fig. 1, where we plot θ/π against Ar , which show
a good agreement with Ref. [32, Fig. 1]. Similarly, in trying
to re-create Ref. [32, Fig. 2] we also compute the deformation
parameter D, and plot D against the excess length parameter

� = 2 (1 − A
1
2
r )/(π A

1
2
r ). We obtain the results in Fig. 2, which

show good agreement with Ref. [32, Fig. 2]. In Fig. 3 we plot
the critical viscosity ratio �C for the TT to TU transition
against the reduced area Ar . It should be noted that our
numerical method produces larger values of �C than reported
in Ref. [32, Fig. 3].

Moreover, in trying to re-create Ref. [67, Fig. 1], we also
ran with Re = 0.05, L = 11.55, and W = 3.85, so that the
restriction parameter χ as defined in Ref. [67] is χ = 0.26.
However, we note that periodic boundary conditions in the
x1 direction are used in Ref. [67], with the length L of the
domain not clearly stated. We obtain the results in Fig. 4, where
apart from θ , normalized by π

6 , we also show the membrane
tank-treading velocity V = 1

P (0)

∫
�

|�u| ds, normalized by 1
2 ,

and the tumbling frequency ω, normalized by 1
2 π

(note that
the frequency in Ref. [67, Fig. 1] is said to be normalized by

1
4 π

). It should be noted that qualitatively our results agree well
with Ref. [67, Fig. 1], but our numerical method produces a
smaller value of �C than reported in Ref. [67, Fig. 1].

Overall we are satisfied that our numerical method performs
well. The observed differences with existing results in the
literature can be explained by differences in the length
of the domain, different boundary conditions, and different
numerical methods used.

FIG. 20. (Color online) Same as Fig. 19 with β∗ = 0.
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FIG. 21. (Color online) Shear flow for a budding shape with � = μ∗
� = 1. Here β∗ = 0.1 and M∗

0 = −33.5. The first two rows show the
interface �h within � at times t = 0, 5, 15, 17.5 (first row, from left to right) and t = 20, 25, 27.5, 32.5 (second row, from left to right).
Similarly, the last two rows show cuts of �h through the x1-x3 plane at the same times.

B. 3D validation

For a similar validation in 3D we compare our method to
some numerical results from Ref. [54], where Stokes flow
in an infinite domain is considered. In order to reproduce
the phase diagram in Ref. [54, Fig. 8], which also contains
numerical results from Ref. [66], we let � = [−3,3]3 and
choose the initial shape of the interface to be a prolate
vesicle with a reduced volume of Vr = 0.8 and a surface
area of A(0) = 4 π , so that S = 1. The results from our
algorithm are shown in Fig. 5. Due to finite-size effects, and
the different boundary conditions, we observe different critical
values for the phase transitions compared to Ref. [54, Fig. 8].
However, qualitatively our numerical method produces similar
results.

C. Effect of surface viscosity

We consider the effect that surface viscosity has on the
TT to TU transition. To this end, we let � = [−3,3]3, and
choose as initial shape of the vesicle a biconcave shape with
reduced volume Vr = 0.8 and A(0) = 4 π , so that S = 1. We
let � = 1. In Fig. 6 we present a phase diagram with the axes
labeled in terms of the nondimensional values Ca = 1

α∗ and
M = μ∗

�; recall Eq. (8) for S = 1. The evolutions for α∗ =
0.1, and either μ∗

� = 3, μ∗
� = 1, or μ∗

� = 0.1, are visualized
in Fig. 6, where we observe the motions TU, TR, and TT,
respectively. We stress that the tumbling occurs for a viscosity
contrast of � = 1, and so is only due to the chosen high surface
viscosity μ∗

� . The fact that vesicles undergo a transition from
steady tank-treading to unsteady tumbling motion has been

observed earlier by Ref. [68], where, however, the authors
used a particle-based mesoscopic model to analyze the fluid
vesicle dynamics. A plot of the inclination angle θ for the
simulations in Fig. 6 can be seen in Fig. 7.

D. Effect of spontaneous curvature

Here the initial shapes of the vesicles, for a reduced volume
of Vr = 0.8 and surface area A(0) = 4 π , so that S = 1, were
chosen to be numerical approximations of local minimizers
for the curvature energy

∫
�

(� − �∗)2 ds. These discrete local
minimizers were obtained with the help of the gradient flow
scheme from Ref. [19], and for the choices �∗ = ±5 they are
displayed in Fig. 8. For Ca = 1/α∗ = 10 we show a phase
diagram of M = μ∗

� versus �∗ in Fig. 9, where the initial
vesicles are aligned such that their shortest axis is in the x1

direction. Similarly, in Fig. 10 we show a phase diagram of
M = μ∗

� versus �∗ when the initial vesicles are aligned such
that their shortest axis is in the x2 direction. The results in
Figs. 9 and 10 indicate that the values of the surface viscosity,
at which the transitions between TT, TR, and TU take place,
strongly depend on the spontaneous curvature as well as on
the orientation of the initial vesicle. As in Ref. [68], where the
case �∗ = 0 was studied, we also observe that the inclination
angle in the tank-treading motion decreases as μ∗

� increases;
see Tables I and II.

E. Shearing for a torus

Here we use as the initial shape a Clifford torus, which is
aligned with the x2-x3 plane, with reduced volume Vr = 0.71
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FIG. 22. (Color online) Same as Fig. 21 but with β∗ = 0.

and A(0) = 13.88, so that S = 1.05. We let � = μ∗
� = 1,

α∗ = 0.05 and use the domain � = [−2,2]3; see Fig. 11,
where the torus appears to tumble while undergoing strong
deformations.

Repeating the experiment for an initial torus aligned with
the shear flow direction, and setting α∗ = 1 and μ∗

� = 10,
leads to the results shown in Fig. 12. This shows a TR motion.
Setting μ∗

� = 0, on the other hand, leads to TT, as shown in
Fig. 13. A plot of the inclination angle θ for the simulations in
Figs. 12 and 13 can be seen in Fig. 14, while we visualize the
flow in the x1-x3 plane in Fig. 15.

F. Effect of area difference elasticity

We consider � = [−4,4]3 and set � = μ∗
� = α∗ = 1. The

parameters for �f ∗
� are β∗ = 0.053 and M∗

0 = −48.24. For the
vesicle we use a cup-like stomatocyte initial shape with Vr =
0.65 and A(0) = 82.31, so that S = 2.56. See Fig. 16 for a

7.5

 8

8.5

 9

9.5

 0  10  20  30

(a)

 1.5

 2

 2.5

 0  10  20  30

(b)

FIG. 23. The bending energy α∗ E∗(�h) plotted against time for
the computations in Figs. 21(a) and 22(b).

numerical simulation. As a comparison, we show the same
simulation with β∗ = 0 in Fig. 17.

In Fig. 18 we show the evolutions of the discrete volume
of the inner phase and the discrete surface area over time.
Clearly these two quantities are preserved almost exactly for
our numerical scheme in this simulation. In fact, a semidiscrete
variant of our scheme conserves these two quantities exactly,
and so in practice the fully discrete algorithm will preserve
them well for sufficiently small time-step sizes.

In our next simulation, we let � = [−2.5,2.5]3 and set
� = α∗ = 1, as well as β∗ = 0.46 and M∗

0 = −33.5. As
initial vesicle we take a varying-diameter cigar-like shape
that has Vr = 0.75 and A(0) = 9.65, so that S = 0.88. A
simulation can be seen in Fig. 19. As a comparison, we show
the simulation with β∗ = 0 in Fig. 20. Similarly to previous
studies, where an energy involving area difference elasticity

(a) (b)

FIG. 24. (Color online) Flow for a seven-arm figure with Vr =
0.38. Here β∗ = 0.05 and M∗

0 = 180. The triangulations �h at times
t = 0 (a) and 5 (b).
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FIG. 25. (Color online) Shear flow for a budding shape with � = μ∗
� = 1. Here β∗ = 0.05 and M∗

0 = 180. The plots show the interface
�h within � at times t = 0, 2.5, 5, 7.5 (first row, from left to right) and t = 10, 12.5, 15, 17.5 (second row, from left to right).

terms was minimized, we also observe in our hydrodynamic
model that less symmetric shapes occur when the ADE-energy
contributions are taken into account.

G. Shearing for budded shape (two arms)

We start a scaled variant of the final shape from Fig. 19
in a shear flow experiment in � = [−2,2]3. In particular, the
initial shape is axisymmetric, with reduced volume Vr = 0.75
and A(0) = 5.43, so that S = 0.66. We set � = μ∗

� = 1, α∗ =
0.05; see Fig. 21 for a run with β∗ = 0.1 and M∗

0 = −33.5.
We observe that the shape of the vesicle changes drastically,
with part of the surface growing inwards. This is similar to
the shapes observed in Fig. 16, where the presence of a lower
reduced volume led to cup-like stomatocyte shapes. We repeat
the same experiment for β∗ = 0 in Fig. 22. Now the budding
shape loses its strong nonconvexity completely, as can be
clearly seen in the plots of the two-dimensional cuts in Fig. 22.
Plots of the bending energy α∗ E∗(�h) are shown in Fig. 23,
where we recall that the energy inequality in Eq. (3) does not
hold for the inhomogeneous boundary conditions employed in
the present simulations.

H. Shearing for a seven-arm starfish

We consider simulations for a scaled version of the final
shape from Barrett et al. [19, Fig. 23] with reduced volume
Vr = 0.38 and A(0) = 10.54, so that S = 0.92, inside the
domain � = [−2,2]3. We set � = μ∗

� = α∗ = 1. In order

to maintain the seven-arm shape during the evolution we set
β∗ = 0.05 and M∗

0 = 180. The first experiment is for no-slip
boundary conditions on ∂� and shows that the seven arms
grow slightly; see Fig. 24. If we use the shear flow boundary
conditions, on the other hand, we observe the behavior in
Fig. 25, where we have changed the value of α∗ to 0.05. The
vesicle can be seen tumbling, with a tumbling period of about
7, with the seven arms remaining intact throughout. Repeating
the same experiment with β∗ = 0 yields the simulation in
Fig. 26. Not surprisingly, some of the arms of the vesicle
are disappearing. We also tried to investigate whether the
arms enhance or inhibit the tumbling behavior of the vesicle.
To this end, we repeated the simulation in Fig. 25 for an
ellipsoidal vesicle with the same reduced volume and surface
area. This vesicle also exhibited TU with a tumbling period
of about 7, so there was no significant change to the behavior
in Fig. 25.

V. CONCLUSIONS

We have introduced a parametric finite-element method for
the evolution of bilayer membranes by coupling a general cur-
vature elasticity model for the membrane to (Navier-)Stokes
systems in the two bulk phases and to a surface (Navier-)Stokes
system. The model is based on work by Arroyo and DeSimone
[43], which we generalized such that ADE effects are taken into
account. Our main purpose was to study the influence of the
area difference elasticity and of the spontaneous curvature on

FIG. 26. (Color online) Same as Fig. 25 with β∗ = 0.
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the evolution of the membrane. In contrast to most other works,
we discretized the full-bulk (Navier-)Stokes systems coupled
to the surface (Navier-)Stokes system and coupled this to a
bending energy involving ADE and spontaneous curvature.

The numerical simulations led to the following findings.
(1) The proposed numerical method conserves the volume

enclosed by the membrane and the surface area of the
membrane to a high precision.

(2) The transition from a tank-treading (TT) motion to
a transition motion (TR) and to a tumbling (TU)
motion depended strongly on the surface viscosity.
We observed that the surface viscosity alone with
no viscosity contrast between inner and outer fluid
can lead to a transition from tank treading to a TR
motion and to tumbling. Similar observations have
been reported by Ref. [68] using a particle-based
method.

(3) The surface viscosity at which a transition between
the different motions TT, TR, and TU occur, strongly
depends on the spontaneous curvature and on the initial
alignment of the vesicle. In particular, we observed
that for negative spontaneous curvature and an initial
biconcave vesicle aligned such that the shortest axis
is in the shear-flow direction all transitions occurred
for larger values of the surface viscosity. For this
alignment, and for positive spontaneous curvature, we
observed that tumbling occurred already for much
smaller values of the surface viscosity. The reverse was

true for an alternative alignment. Here we recall that
our sign convention for curvature means that spheres
have negative mean curvature.

(4) In some cases, shear flow can lead to drastic shape
changes, in particular for the ADE model. For example,
we observed the transition of a budded pear-like shape
to a cup-like stomatocyte shape in shear flow if an ADE
model was used for the curvature elasticity.

(5) The ADE model can also lead to starfish-type shapes
with several arms; see, e.g., Refs. [1,15]. In computa-
tions for a seven-arm starfish for a model involving an
ADE-type energy, we observed that in shear flow the
overall structure seems to be quite robust. In particular,
the seven arms deformed but remained present even in
a tumbling motion. However, arms tend to disappear if
the area difference elasticity term is neglected.

Thus, we have shown that the proposed numerical method
is a robust tool to simulate bilayer membranes for quite general
models, which in particular take the full hydrodynamics and
a curvature model involving area difference elasticity and
spontaneous curvature into account.
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