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Smoothening in thin-film deposition on rough substrates
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The evolution of the surface roughness W of a thin film deposited on a rough substrate is studied with a model
of temperature-activated adatom diffusion, irreversible lateral aggregation, and no step energy barrier, in which
the main parameter is the ratio R of diffusion and deposition rates. At sufficiently low temperatures (R � 10),
the average number of adatom steps after adsorption is very small, thus W monotonically increases with time t

due to an approximately uncorrelated deposition at short times. If the temperature is not very low (R ∼ 103 or
larger), smoothening occurs at short times and the Villain-Lai-Das Sarma (VLDS) growth equation governs the
long time roughening, which is attained after a crossover time tc that increases with the correlation length ξi of
the substrate. Scaling arguments predict the dependence of tc on temperature and on the substrate production time
and the scaling relation for the difference between the roughness of films deposited on rough and flat substrates,
in good agreement with numerical results. The effect of temperature is not a direct extension of previous results
on flat substrates because the short wavelength fluctuations delay the formation of terraces. For this reason, the
effective energy obtained from the dependence of tc on R is 40% of the energy of activated adatom diffusion.
A scaling law for the initial smoothening is proposed as W/Wi = �(t/tc1), with a crossover time tc1 ≡ R−θ ξi

z,
where Wi is the substrate roughness, θ ≈ 0.4, and z is the VLDS dynamical exponent. It provides good data
collapse if W is not very small and is suggested to be tested experimentally.
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I. INTRODUCTION

Models of thin film deposition are widely studied due to the
technological relevance of these processes [1]. They usually
consider initial flat surfaces, which represent substrates whose
fluctuations are of atomic or molecular size, typically below
1 nm. Roughening takes place due to the interplay of the
deposition noise and mechanisms of surface relaxation charac-
teristic of the material and substrate-film interactions [2,3]. On
the other hand, in the absence of deposition, the smoothening
of corrugated surfaces is observed, i.e., they evolve to
configurations of decreasing roughness [4–7]. This is a typical
situation in thermal annealing [8,9]; in the absence of the
deposition noise, a conservative thermal noise brings the
system to statistical equilibrium configurations.

A less studied case is the deposition of a thin film over an
initially rough or patterned substrate. Majaniemi et al. [10]
and Nguyen et al. [11] addressed this problem with the
study of Edwards-Wilkinson (EW) [12] and Mullins-Herring
(MH) [13] growth on rough substrates. They show that the
roughness and the height-height correlation function can
be split in smoothening and roughening terms, respectively
dominant at short and long times, with scaling forms of the
smoothening term depending on the initial roughness and
correlation length. A particularly interesting feature is the pos-
sibility of nonmonotonic roughness evolution, which was also
observed in unstable film growth on rough substrates [14,15].
An equivalent problem is that of sudden changes in interface
growth dynamics, which consider the interplay of the initial
and final dynamics in the interface evolution [16–18]. Those
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works had a focus on EW and Kardar-Parisi-Zhang (KPZ) [19]
growth, with the KPZ-EW changes showing a much slower
decay of the roughness due to the initially large correlation
length [18].

Here we are interested in deposition of thin films whose
dynamics is governed by the competition of deposition and
adsorbate diffusion taking place on rough substrates. This type
of surface dynamics was not considered in the previous work
on sudden changes of interface growth dynamics. We consider
a deposition model with temperature-activated adatom diffu-
sion, irreversible lateral aggregation, and no additional step
energy barrier [20]. This is a low-temperature approximation
of models with reversible aggregation mechanisms, such
as the Clarke-Vvedensky (CV) model [21,22]; for a recent
comparison with CV model results, see Ref. [23]. These
deposition models are represented by the Villain-Lai-Das
Sarma (VLDS) [24,25] equation in the hydrodynamic limit [2].

An important question is concerned with the roughness
evolution at short times, for which previous work predicted
cases of monotonic and nonmonotonic variation in EW and
KPZ growth. For deposition in temperatures that are not very
low, we will show that smoothening takes place at short times,
followed by the expected long time VLDS roughening. The
crossover features of the surface roughness, from smoothening
to the asymptotic scaling, are addressed by extending the
scaling approach of Ref. [18].

However, this problem raises other questions intrinsic
to activated diffusion models and important for possible
applications. First, we discuss the role of the temperature in
the evolution of the roughness. The changes in the surface
roughness are shown to scale with the diffusion-to-deposition
ratio R with a nontrivial exponent, which is a consequence of
a delay in the propagation of correlations relatively to growth
on flat substrates. Second, we discuss how the film roughness
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can be properly scaled during the smoothening to provide
information on the film growth dynamics and on the formation
of the rough substrate without requiring the knowledge of
its evolution on flat substrates. This leads to a scaling law
for smoothening, which is suitable for experimental tests, in
contrast to the scaling relations obtained in previous works on
the same type of crossover [16–18].

This paper is organized as follows. In Sec. II we present
the models and basic concepts and definitions of kinetic
roughening theory. In Sec. III we discuss the general trends
of the film roughness in deposition on rough surfaces. In
Sec. IV we use scaling approaches to study the crossover of
the difference of roughness between flat and rough substrates
and present numerical results to support them. In Sec. V
we propose the scaling for surface smoothening. Section VI
summarizes our results and conclusions.

II. MODELS, ROUGHNESS SCALING, AND SIMULATION

A. Models of rough substrate production

We consider three growth models on simple cubic lattices
for generating the rough substrates. The lattice constant is the
unit length. Lattices of lateral size L are considered, with
periodic boundaries in the x and y directions. The initial
condition in all cases is a flat interface in the plane z = 0.
All models are of solid-on-solid type; i.e., overhang and pore
formation is not allowed. Most simulations are performed in
lattices with L = 1024. The time for substrate production is s.

The first model is the erosion version of the etching model of
Mello et al. [26], which is hereafter called the E model. At each
growth attempt, a column (x,y) is randomly chosen. Its current
height h(x,y) ≡ h0 is decreased by one unit, i.e., h(x,y) ←
h0 − 1. Subsequently, any neighboring column whose height
is larger than h0 decreases to the height h0. These rules are
illustrated in the two-dimensional scheme of Fig. 1(a).

One time unit corresponds to L2 selections of random
columns in the E model. The time for the substrate production
varies from s = 20 to 200.

The second model is that of Wolf and Villain (WV) [27],
which is described in terms of particle deposition. The column

(a) (b)

FIG. 1. (a) Growth rules of the E model: the attack of the solution
at three columns is indicated by arrows in the upper panel, and the
resulting configuration of the solid is shown in the lower panel, with
removed particles indicated by crosses. (b) Growth rules of the WV
model, in which the columns of particle incidence are indicated by
thick arrows and aggregation positions, are indicated by thin arrows.
The double arrow of the left case indicates that one of the NN columns
will be randomly chosen.

(x,y) of incidence of a new particle is randomly chosen. The
numbers of lateral neighbors at the top of this column and at the
tops of the four nearest neighbor (NN) columns are calculated.
The new particle aggregates at the top of the column with the
largest number of lateral neighbors. If there is a tie between
column (x,y) and one or more NN, then the particle aggregates
at the former. If there is a tie between one or more NN columns,
one of them is randomly chosen. The WV growth rules are
illustrated in the two-dimensional scheme of Fig. 1(b).

The third model is the WV model with multiple-hit
aggregation. At a given column (x,y), the aggregation of a
particle is executed only after that column has been chosen for
aggregation m times. The original WV model has m = 1. We
also generated rough substrates with m = 10, which we call
the WV10 model. Large values of m are expected to produce
mounded surface morphology [28,29], which is a common
feature in films of several materials.

In the WV models, one time unit corresponds to aggre-
gation of L2 particles; in the model with noise reduction, it
corresponds to mL2 trials. The time for substrate production
with those models varies from s = 1000 to 3000.

B. Model of film deposition

Here we present the model of deposition, diffusion, and
aggregation for thin film growth on rough or flat substrates.
We consider an external flux of F atoms per substrate column
per unit time in the negative z direction. For simplicity, these
atoms are also of the size of a lattice site; thus no effect of
mismatch with the rough substrates is considered.

The incident atom is adsorbed upon landing above a pre-
viously deposited atom (an adatom) or above a substrate site.
Adatoms with no lateral and no upper neighbor (i.e., isolated
atoms in terraces) are mobile. Their diffusion coefficient D is
the number of random steps to neighboring columns per unit
time. If an adatom has a lateral or an upper neighbor, then it is
permanently aggregated at that position.

The diffusion coefficient depends on temperature as D =
ν0 exp (−Ea/kBT ), where ν0 is a characteristic frequency and
Ea is an activation energy. The relevant model parameter is
the diffusion-to-deposition ratio

R ≡ D

F
= ν0

F
exp (−Ea/kBT ). (1)

In the simulations we consider ν0/F = 1014, which is
typical of very small atomic flux [22]. The activation energy
is fixed as Ea = 0.6 eV, which is close to the values of (100)
homoepitaxy of most metals (they vary from ≈0.4 eV for Ag
to ≈0.9 eV for Rh [22]). Thus, the deposition temperature T

is used as the control parameter in the simulations, although
the values of R are usually shown in the presentation of results
and are used in the scaling relations. For each substrate and
each temperature, the number of different film configurations
grown varies between 100 and 1000.

The thin film growth time τ is measured in number of
deposited monolayers; i.e., �τ = 1 is the time of deposition
of L2 atoms. This is equivalent to stating that τ is measured in
units of 1/F . Here τ = 0 corresponds to the initial substrate,
which may be rough or flat.
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FIG. 2. (Color online) Portion of cross section of lateral size 1024
of a deposit with 10 layers of atoms (τ = 10) deposited at T = 310 K
over a rough substrate produced by the E model with s = 20.

The total time from the beginning of substrate production
to the regime of film growth is called t , in order to match
the definition of previous works on sudden changes of growth
dynamics [16–18]. Consequently,

t = τ + s. (2)

Figure 2 shows a cross section of a deposit with 10 layers of
atoms (τ = 10) deposited on a rough substrate produced by
the E model with s = 20, at T = 310 K (R ≈ 1.7 × 104).

C. Basics of kinetic roughening

The simplest quantity for characterizing a rough interface
is its roughness or interface width, which is defined as the rms
fluctuation of the height h:

W = W2
1/2 ≡ [〈(h − h)

2〉]
1/2

. (3)

The overbars in Eq. (3) represent spatial averages, and the
angular brackets represent configurational averages. Most
results in this paper are presented in terms of the squared
roughness W2.

In this work, our interest is to study the surface evolution in
the growth regime, with negligible finite-size effects (far from
the steady state). If the surface is initially flat, the roughness
is expected to scale as [2,3]

W ∼ tβ, (4)

where β is the growth exponent.
The autocorrelation function is useful to characterize the

lateral spread of interface fluctuations. It is a function of a
distance r along the substrate and of the time t and is defined
as

	(r,t) ≡ 〈[h̃( �r0 + �r,t)h̃( �r0,t)]〉, r ≡ |�r|, (5)

where h̃ ≡ h − h and the configurational averages are taken
over different initial positions �r0, different orientations of
�r , and different deposits. In lattice models, we restrict the
orientation of �r to the substrate directions x and y.

The correlation length ξ (t) is frequently estimated as
the position of the first zero (r0) or of the first minimum
(rm) of 	(r,t) [30]. However, 	(r,t) may oscillate with r

before crossing the value 	 = 0. For this reason, we define
a correlation length ξ1(t) by

	(ξ1,t)/	(0,t) = 0.1. (6)

ξ1 is slightly smaller than r0, except if oscillations of 	(r,t)
appear before it goes to zero. That length is expected to

scale as

ξ1 ≈ At1/z, (7)

where z is the dynamical exponent and A is a model-dependent
constant. This scaling is confirmed with good accuracy for
several models in the EW and KPZ classes in Ref. [31] and
for the models studied here. Instead, r0 and rm show larger
deviations from the time scaling of Eq. (7).

The roughness exponent α, which characterizes the size
dependence of the roughness, is related to the other ones as
α = βz.

When models of sudden changes in the growth dynamics
are considered, the roughness of the interface after the change
is usually called Wc(t,s). The roughness of the interface grown
only with the final dynamics, i.e., without change, is Wu(t). In
both cases, the interface was flat at t = 0.

For changes in linear growth equations, the difference in
the squared roughness of the changed growth and of the pure
growth,

�W 2(t,s) ≡ ∣∣W 2
c (t,s) − W 2

u (t)
∣∣, (8)

was exactly calculated in Ref. [17]. When the change takes
place in the growth regime of the initial and the final
dynamics [16–18], the general scaling form of �W 2 is

�W 2 ∼ scτ−γ , (9)

where c and γ depend on both dynamics. �W 2 corresponds
to the smoothing terms in Refs. [10,11].

For real systems applications, the time interval s of pro-
duction of the rough substrate is usually meaningless. In this
case, the relevant comparison is that between the roughness
of the film grown on the rough substrate, Wr (τ ) ≡ Wc(t,s)
[see Eq. (2)], and that of the film grown on the flat substrate,
Wf (τ ) ≡ Wu(t − s). Thus, we define the difference of squared
roughness of films grown on those substrates as

�Wrf
2(τ ) ≡ ∣∣Wr

2(τ ) − Wf
2(τ )

∣∣, (10)

i.e., with the same film growth time τ for flat and rough
substrates.

Note that �Wrf
2(τ ) = |W 2

c (t,s) − W 2
u (t − s)|, which co-

incides with �W 2(t,s) only for s = 0. However, for τ 	 s,
the scaling in Eq. (9) is also expected for �Wrf

2(τ ).

D. Universality classes

When growth is dominated by surface diffusion, it is
expected to be described by the VLDS equation [2,24,25]

∂h(�r,t)
∂t

= ν4∇4h + λ4∇2(∇h)2 + η(�r,t), (11)

where h(�r,t) is a coarse-grained height variable in a d-
dimensional substrate, ν4 and λ4 are constants, and η is
a Gaussian, nonconservative noise. The contribution of the
average external flux is omitted. The linear version of Eq. (11)
(λ4 = 0) is the is the Mullins-Herring (MH) equation [13].

The temperature-activated diffusion model studied here is
in the VLDS class, as confirmed by numerical simulation [20].
The scaling exponents of this class in d = 2 are β ≈ 0.2 and
z ≈ 3.33 [32]; for a discussion of small corrections to these
values, see Ref. [33].
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The E model is represented by the KPZ equation in the
hydrodynamic limit:

∂h

∂t
= ν2∇2h + λ2(∇h)2 + η(�r,t), (12)

where ν2 is a surface tension and λ2 is an excess velocity.
The EW equation [12] corresponds to the KPZ equation with
λ2 = 0. In d = 2, recent numerical results for KPZ give α ≈
0.39 and β ≈ 0.24 [34]. The corresponding estimate of the
dynamical exponent is z ≈ 1.63, which will be considered in
this work.

The universality class of the WV model in 2 + 1 dimensions
is controversial. Simulations of the original model (m = 1) in
short times or small lattices give exponents close to the MH
values β = 0.25 and z = 4. This is the expected behavior in the
present work. A crossover to EW scaling is suggested at longer
times [35–37]. Simulations of the model with m = 5 show
mounded surface morphology and growth exponent near 0.30,
with no evidence of crossover to EW scaling [28,29]. Thus, an
effective MH scaling is also expected in our simulations with
relatively short times.

III. ROUGHENING VERSUS SMOOTHING

Figure 3 shows the roughness W as a function of the time
of film deposition τ in three different temperatures, starting
with a substrate produced by the E model with s = 100. The
roughness of this substrate is Wsub ≈ 4.0, which corresponds
to 1–2 nm for most metals and semiconductors and slightly
more for larger molecules. The results for growth with an
initial flat substrate are also shown in Fig. 3 for comparison.

At low temperature (T = 233 K, R ≈ 10), the roughness
increases with time since the beginning of the film deposition.
The initial surface has a large number of kink sites, and the
mobility of deposited particles is small; thus the initial growth
takes place approximately as a random uncorrelated depo-
sition, in which the roughness rapidly increases [2]. Below
we will show additional results to support this interpretation.
For high temperatures (R ≈ 4 × 103 or larger in Fig. 3),

FIG. 3. (Color online) Roughness as a function of the film de-
position time at temperatures 233 K (R ≈ 10; blue squares), 290 K
(R ≈ 4 × 103; black triangles), and 330 K (R ≈ 7 × 104; red circles).
For each temperature, the lower curve is for deposition on flat
substrates and the upper curve is for deposition on rough substrates
produced by the E model with s = 100.

FIG. 4. (Color online) Roughness as a function of the film de-
position time at temperatures 233 K (R ≈ 10; blue squares), 290 K
(R ≈ 4 × 103; black triangles), and 330 K (R ≈ 7 × 104; red circles).
For each temperature, the lower curve is for deposition on flat
substrates and the upper curve is for deposition on rough substrates
produced by the WV model with s = 3000.

the smoothening effect of the adparticle diffusion leads to
a slow decrease of the roughness. Even after deposition of a
large number of layers (≈5000), smoothing persists, with no
evidence that the roughness evolution will change this trend
and begin to increase [11,18]. However, curves for deposition
on rough and flat substrates at the same temperature seem to
converge to the same value at long times.

Figure 4 shows the roughness of films deposited on
substrates produced by the WV model at s = 3000 as a
function of τ . The substrate has roughness Wsub ≈ 3.0. Results
for growth in a flat substrate are also shown. At short deposition
times, Fig. 4 also shows that low-temperature deposition
leads to time-increasing roughness, and high-temperature
deposition leads to time-decreasing roughness. However, the
high-temperature decrease is much faster than that observed in
Fig. 3. For this reason, when a number of monolayers between
1000 and 2000 is deposited, the roughness reaches a minimum
and subsequently increases. Again, this is consistent with the
trend of the roughness of the film grown in the rough substrate
to converge to that of the film grown in the flat substrate.

The contrast between the slow convergence in Fig. 3 and the
rapid convergence in Fig. 4 cannot be related to the value of the
roughness of the substrates, since it changes only 25% from
the E model at s = 100 to the WV model at s = 3000. Instead,
this difference is related to the correlation length behavior.
The low-temperature case deserves a separate discussion, as
explained below.

In Fig. 5 we show ξ1 as a function of τ for deposition at
310 K (a typical high temperature in the present context) in
three different substrates: the flat one and those produced by
E (s = 100) and WV (s = 3000) models. In flat substrates,
the correlation length increases with the VLDS exponent
1/z ≈ 0.3 [20]; after deposition of the maximal thickness of
5000 monolayers, it reaches ξ1 ≈ 60. The correlation length
of the WV model substrate is small (ξ1 ≈ 25). Thus, the film
deposition is able to create longer correlations since short
times, so that ξ1 rapidly attains the VLDS scaling. On the other
hand, the correlation length of the E model substrate is ξ1 ≈ 60.
Thus, even after deposition of many layers (t ≈ 5000), the
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FIG. 5. (Color online) Correlation length ξ1 as a function of the
film deposition time at 310 K (R ≈ 1.7 × 104) in three different
substrates: the flat one (blue asterisks) and those produced by WV
(s = 3000) (red squares) and E (s = 100) (black triangles) models.
Error bars are also shown. The dashed lines have slope 0.3.

VLDS kinetics is not able to create correlations in much longer
distances. Indeed, for deposition on E model substrates, Fig. 5
shows that ξ1 does not follow the expected scaling at the longest
times. This analysis shows that the correlation length of the
substrate fluctuations is the main quantity to determine the rate
in which the roughness converges to that of deposition on a
flat substrate.

Now we turn to the case of low-temperature deposition.
In Figs. 6(a) and 6(b), we show the autocorrelation function
	(r,τ ) as a function of r for several times at T = 233 K
(R ≈ 10) in the substrates produced respectively by the E
model and the WV model. In both cases, 	 increases in time
for small r but has small changes for larger r , so that r0

and rm slowly vary in time; correspondingly, ξ1 will show
an apparently unphysical time decrease. It means that only
short wavelength fluctuations increase, while long wavelength
fluctuations are approximately constant. This is consistent with
our interpretation of an approximately uncorrelated deposition,
i.e., a deposition with negligible surface diffusion.

Additional support to this interpretation follows from a
related deposition model with a step number parameter G

that was studied in Ref. [20] (with flat substrates). It was
connected to the present model by the relation G ≈ 0.3R0.58,
and the average number of steps of an adatom was Ns ≈ 0.1 G

[20]. For deposition at T = 233 K, these relations give an
estimate Ns ≈ 0.1, suggesting that most atoms do not move
after adsorption; this is uncorrelated growth. At 290 K, the
same relations give Ns ≈ 4. Thus, smoothening of a rough
substrate is related to a non-negligible adatom mobility at
nanoscopic level (Ns > 1), even if diffusion lengths are very
small.

IV. CROSSOVER SCALING OF ROUGHNESS
DIFFERENCE

In this section we study the scaling relations for the
difference between the roughnesses of the films grown on
rough and flat substrates, �Wrf

2(τ ). The scaling arguments of
Ref. [18] are extended to predict its time decay and the effect
of the initial roughness and correlation length (Sec. IV A).

FIG. 6. (Color online) Autocorrelation function as a function of
the distance r at several scaled times, for deposition at T = 233 K
(R ≈ 10) on substrates produced by (a) the E model (s = 100) and
(b) the WV model (s = 3000). The horizontal dashed lines indicate
	(r,τ ) = 0.

Numerical examples are presented in Sec. IV B. Subsequently,
we discuss the role of temperature (or the ratio R) on that
smoothening term (Sec. IV C), which is very different from its
role on roughness scaling with an initially flat substrate due to
the effect of short-range corrugation on the adatom mobility.

A. Scaling approach

Here we extend the scaling arguments of Ref. [18] for
predicting the characteristic time of the convergence of the
roughness to its value in the flat substrate. We refer to the
scaling exponents of the model for production of the substrate
with subindex i (initial dynamics; zi , αi , βi) and no index is
used in the exponents of the film deposition model (VLDS
class; z, α, β).

Substrate features are related to the production time s. At
this time, Eq. (4) gives a roughness

Wi ∼ sβi , (13)

and Eq. (7) gives a correlation length

ξ1i ≈ Ais
1/zi , (14)

where Ai is a model-dependent constant related to substrate
production process. If film deposition takes place on an initially
flat substrate, the correlation length increases as [20]

ξ1f ≈ Af τ 1/z, Af ∼ R1/z, (15)
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with the VLDS exponent z ≈ 3.33 [32]. If the substrate is
rough, the correlation length is expected to increase with the
same dynamical exponent, as

ξ1r ≈ Arτ
1/z. (16)

The amplitude Ar is also related to R, but it is different from
Af , as will be discussed in Sec. IV C.

As illustrated in Sec. III, we expect the crossover to the
final dynamics to occur when ξ1r ∼ ξ1i . In this situation, the
correlations created in the substrate production are replaced by
correlations of the film growth dynamics. Matching Eqs. (14)
and (16) gives the crossover time tc as

tc ∼
(

Ai

Ar

)z

sκ ∼ R−θ sκ , (17)

with

κ = z

zi

(18)

and θ obtained by power counting from

Rθ ∼ Ar
z. (19)

Here note that Ai does not depend on R in Eq. (17).
The convergence of the roughness to its value in the flat

substrate is determined by the decay of �Wrf
2(τ ), which scale

as Eq. (9) at long times. The expected crossover scaling is

�Wrf
2 ≈ scF (x), (20)

where c is a constant and F is a scaling function of the variable

x ≡ τ

tc
. (21)

Immediately after the film deposition begins, τ is very small
and Wr 	 Wf . In this case, x � 1 and F (x) → const. Using
Eq. (4), we obtain

c = 2βi. (22)

At long times (τ 	 tc), the expected to decay of Eq. (9) leads
to

F (x) ∼ x−γ (23)

for x 	 1.
Reference [10] had formerly proposed a scaling form for

EW or MH smoothening terms which is equivalent to Eq. (20),
with the same scaling of tc on the initial correlation length.
References [17,18] showed that the value of exponent γ

depends on the final dynamics and on the choice of coefficient
of the growth equation to be changed. For instance, in changes
from an EW growth to another EW growth, γ = d/2 + 1 if
only the surface tension changes and γ = d/2 if only the
noise amplitude changes [17]. In many cases, the conditions
�W � Wu or �Wrf � Wu apply at long times, and a simple
time-shift hypothesis in Eq. (4) leads to [18]

γts = 1 − 2β. (24)

However, this is not a universal result. It works for changes in
the noise amplitude of the EW equation but fails for changes
only in the surface tension due to a particular cancellation of
terms in the difference of square roughness [16].

FIG. 7. (Color online) Scaled square roughness change as a
function of scaled time for deposition in various temperatures and
substrates produced by the E model in different times s. Scaling
exponents are c = 0.4, κ = 2.04, and θ = 0.4. The dashed line has
slope −0.6.

B. Numerical results

Figure 7 shows the scaled square roughness change
s−c�Wrf

2 as a function of the scaled time τ/(sκR−θ ), as
suggested by Eq. (20), for deposition at several temperatures
and several substrates produced by the E model (Wi varies
from ≈3 to ≈4). The collapse of data in a single curve
was obtained in three steps. First, c = 0.4 was chosen for
collapsing the data for short τ . This value is slightly below
the one predicted by Eq. (22) using β = 0.24 [34]. The
discrepancy is expected due to corrections to scaling in
short time KPZ growth. Subsequently, the value κ ≈ 2.04
[Eqs. (17), (20), and (21)] was chosen because it is consistent
with the dynamical exponent values z ≈ 3.33 of the VLDS
class [32,33] and z ≈ 1.63 of the KPZ class [34]. These two
steps lead to collapse the data for the same R and different s.
The third step was the choice of θ = 0.4, which provides the
collapse of the data for different R.

The long crossover observed in Fig. 3 is related to
the large value of the crossover exponent κ , which is a
consequence of the small dynamical exponent of the substrate
production process (KPZ). If the temperature dependence of
the correlation length amplitudes Af and Ar was the same
[Eq. (15)], then θ = 1 would be obtained from Eq. (19).
However, the numerical estimate of θ is very different from this
value. This represents a much weaker temperature effect on the
roughness change. If the crossover time is written is terms of
an effective Boltzmann variable as tc ∼ exp (Eef /kBT ), then
we obtain Eef = θEa . This means that the apparent activation
energy is only 40% of the actual activation energy of surface
diffusion.

Figures 8(a) and 8(b) show the scaled square roughness
change s−c�Wrf

2 as a function of the scaled time τ/(sκR−θ )
for deposition in several temperatures and substrates produced
by the WV and WV10 models, respectively. The estimate
κ = 0.83 is consistent with the short time MH scaling of the
WV model (zi = 4) and VLDS scaling of the film deposition
model (z ≈ 3.33), using Eqs. (17), (20), and (21). It shows
that the scaling approach originally proposed in Ref. [18] for
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FIG. 8. (Color online) Scaled square roughness change as a
function of scaled time for deposition in various temperatures and
substrates produced in different times s by the WV model with (a)
m = 1 and (b) m = 10. Scaling exponents are c = 0.4, κ = 0.83, and
θ = 0.4. The dashed line has slope −0.6

z > zi (rephrased in Sec. IV A) is also valid for z < zi . In this
case, the exponent κ < 1 explains the rapid crossover observed
in Fig. 4.

Finally, θ = 0.4 is the same exponent used to collapse the
data of films grown on the substrates produced by the E model
(Fig. 7). This is consistent with a universal scaling of the
crossover time on the temperature-like variable R in conditions
of surface smoothening.

The long time decays in Figs. 7, 8(a), and 8(b) have the
same exponent γ ≈ 0.6. This is consistent with the prediction
of the time-shift hypothesis, Eq. (24), which gives γts ≈ 0.6
for this system. This is not an obvious result in the case of
substrates produced by the E model, since �Wrf

2 is not much
smaller than Wf

2.
A subtle point in this analysis is that the scaling variables

can be written independently of the substrate production time
s. The variable �Wrf

2 compares the roughness of the films
grown in rough and flat substrates for the same deposition
time τ , and powers of s may be replaced by the roughness
and the correlation length. On the other hand, the variable
�W 2 [Eq. (8)] commonly used in works on changes of
interface growth dynamics [16–18] is implicitly connected
to s. Using this variable, the best data collapse is obtained
with approximately the same exponents c, θ , and κ for all

substrates. However, the long time slope of the scaling plots are
≈ − 0.6 for substrates produced by the E model and ≈ − 1.32
for substrates produced by the WV model (plots not shown
here).

The experience with EW-EW changes [16,17] shows that
the value of γ may depend on both the initial and the
final dynamics, although the time-shift hypothesis disregards
the initial one. The apparently nonuniversal exponent γ in
the scaling of �W 2 possibly is another example. However,
no analytic approach for a KPZ-VLDS change is currently
accessible to clarity this point.

C. Temperature effects

If the thin film is deposited on a flat substrate, the formation
of terraces is observed for large R (high temperatures).
The equivalence with a limited mobility deposition model
shows that the average lateral size of the terraces is lF ∼
R1/z [20]. This is schematically illustrated in Fig. 9(a). The
corresponding terrace area is of order lF

2. Since these terraces
are dynamically formed during the growth, the mobile adatoms
deposited on them are not expected to nucleate new terraces
(or islands); instead, most of these atoms will migrate to the
boundaries and attach there. Thus, for simplicity, the scheme
of Fig. 9(a) does not represent the mobile adatoms on the
terraces.

The rough substrates considered here (produced by E or WV
model) may have large correlation lengths, but they are locally
rough; thus the lateral size of terraces li is very small. This is
illustrated in Fig. 9(b); see also the substrate profile in Fig. 2.
The diffusion length of the adatoms on this type of surface is
much smaller than the diffusion length on the landscapes of
Fig. 9(a) because lateral aggregation is much more frequent.
Thus, the propagation of the lateral correlations is slower in
the rough substrates.

lF

l2
l

tΔ

l <<

lF ~R1/z(a)

(b)

(c)

i

(d)

FIG. 9. (Color online) (a) Terrace formation at a high tempera-
ture; (b) profile of a locally rough substrate, such as those produced by
E or WV model showing a small lateral size of terraces; (c) increase of
the lateral size of terraces on the rough substrates in a time interval �t

in which the average size increases from l to 2l; (d) adatom diffusion
on terraces before reaching the step edges.
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In deposition on flat substrates, the correlation length scales
as Eq. (15); i.e., it is a function of the time variable X ≡ Rt

[20]. In deposition on rough substrates, the slower correlation
involves a rescaled time variable Y ≡ X/t×, as observed in
other systems with crossovers between different universality
classes. A typical example is the competition of uncorrelated
deposition and some limited mobility model (e.g., the E and
WV models), in which t× is the time necessary to correlate
neighboring column heights [38]. In the present case, the
rescaling factor t× is the time necessary for the formation of the
same structures that appear in the growth on flat substrates, i.e.,
the time of formation of the terraces shown in Fig. 9(a). The
example of Fig. 2 confirms the trend of formation of terraces
during film deposition on a rough substrate.

Figure 9(c) shows the coarsening of terraces in a time
interval �t , in which the average size increases from l to
2l, with l < lF . The area of a terrace increases or decreases
by a total amount of order �A ∼ l2 during this time. This
is a consequence of random attachments of adatoms to steps
at the same level or below. Those adatoms are deposited on
neighboring terraces and diffuse on them until reaching the
step edges, as shown in Fig. 9(d). For l < lF , as explained
above, the nucleation of new terraces by those mobile adatoms
can be neglected.

For the above reasons, the area of a terrace changes as a
random walk with unit steps. At a given terrace, the addition
of a single adatom takes place in a time of order t1 ∼ 1/�A in
units of monolayers (or 1/F units). Thus, the random increase
or decrease of its area by one unit takes place as a random walk
with diffusion coefficient DA ∼ 1/t1 ∼ l2. For the terrace area
in Fig. 9(c) to increase �A, we have (�A)2 ∼ DA�t , which
gives �t ∼ l2. Thus, since t× is the time interval for formation
of the terraces of size lF , we obtain

t× ∼ lF
2 ∼ R2/z (25)

(coarsening of terraces with l � lF takes a much smaller time,
thus it does not contribute to the scaling of t×).

The rescaled time variable for deposition on the rough
substrate is

Y ≡ X

t×
∼ R1−2/zt. (26)

The correlation length scaling involves the VLDS exponent z

as

ξ1r ∼ Y 1/z ∼ (R1−2/zt)
1/z

. (27)

Using the VLDS exponent z ≈ 3.33, Eqs. (19) and (27)
give

θ = 1 − 2/z ≈ 0.4. (28)

This result is in excellent agreement with the numerical
estimate obtained by data collapse in Sec. IV B.

V. SCALING LAW FOR SMOOTHENING

The scaling features of the height differences defined in
Eqs. (8) or (10) is very difficult to be tested experimentally
because it requires independent measurements for deposition
on two different substrates: a flat one and a rough one. For
applications, it is generally not interesting to perform this

type of comparison; instead, the main interest is usually
to understand the roughness scaling of films deposited on
substrates of different materials of technological relevance.
For this reason, here we show how the crossover scaling can
be expressed without quantities characterizing the ideal case
of deposition on flat substrates. In other words, we look for
a scaling law for smoothening, analogously to Eq. (4), which
applies for roughening.

Figures 3 and 4 show that the roughness of the substrate and
of the films deposited on it at short times are much larger than
the roughness of films deposited on the flat substrate. This is
the typical behavior for τ � tc. The corresponding differences
in the square roughness [Eqs. (8) or (10)] are dominated by the
roughness of the film deposited on the rough substrate, so that
�Wrf

2(τ ) ≈ Wr
2(τ ). From Eqs. (13) and (22), the substrate

roughness is Wi ∼ sc/2, thus the scaled roughness difference
shown in Figs. 7 and 8 is approximately

rw(τ ) ≡ Wr
2(τ )

Wi
2 . (29)

This is simply the ratio between the current and the initial
square roughness.

Now consider the crossover time in the scaling relation (20),
with definitions in Eqs. (17) and (21). That time may be written
as

tc1 ≡ R−θ ξ1i
z (30)

or as

tc2 ≡ R−θWi
a, a ≡ z

αi

, (31)

which depend on the initial correlation length or the initial
roughness, respectively. These quantities can be calculated
independently of the knowledge of the substrate production
process. Note that both crossover times involve exponents
of the film deposition process, but the latter [Eq. (30)] also
involves an exponent of the substrate production process (αi).

These results imply that the reduced roughness rw is a
function of τ/tc1 or τ/tc2 for short times, in which rw is not
very small:

rw = �(τ/tc1) (32)

or

rw = �(τ/tc2), (33)

with scaling functions � and �.
For deposition on substrates produced by the E model,

Figs. 10(a) and 10(b) show rw as a function of τ/tc1 and τ/tc2,
respectively. Those plots consider θ = 0.4 and the values of z

(tc1) and a (tc2) that give the best data collapses. In Fig. 10(a)
the VLDS and KPZ estimates z ≈ 3.33 [32,33] and αi ≈ 0.39
[34] give a = 8.5 in Eq. (31), which is only 2.4% larger than
the above numerical estimate. In Fig. 10(b) the numerical
estimate of z is very close to the VLDS value; this result
and the independence of tc1 on substrate production exponents
are two important advantages of the scaling variable τ/tc1.

Figures 11(a) and 11(b) show rw as a function of τ/tc1 and
τ/tc2, respectively, for deposition on substrates produced by
the WV model. In this case, the values of a and z that provide
the best data collapses are consistent with the VLDS exponent
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FIG. 10. (Color online) Reduced roughness as a function of (a)
τ/tc1 and (b) τ/tc2 for deposition on substrates produced by the E
model. The scaling exponents are θ = 0.4, a = 8.3, and z = 3.33.

z ≈ 3.33 and the MH exponent αi = 1 (which is the effective
scaling of WV model in short times).

The data collapse in the above plots show smoothening by
factors between 3 and 5, which represent significant changes
in the film roughness. The ranges of scaled times varied
between 1.5 and 2 orders of magnitude. These results strongly
suggests experimental tests of relations (32) and (33) (partic-
ularly the former) for smoothening in film growth on rough
substrates.

VI. CONCLUSION

We studied the evolution of surface roughness during
thin film deposition on a rough substrate using a model of
temperature-activated adatom diffusion, irreversible lateral
aggregation, and no additional step energy barrier. Previous
works on deposition on flat substrates showed that this model
was in the VLDS class and that the roughness was not very
different from that of the (reversible) Clarke-Vvedensky model
if the temperature is not very high.

At very low temperatures, the roughness monotonically
increases because the average number of adatom steps after
adsorption is very small, which leads to an approximately
uncorrelated deposition. If the temperature is not very low,
smoothening takes place at short times. The expected long time

FIG. 11. (Color online) Reduced roughness as a function of (a)
τ/tc1 and (b) τ/tc2 for deposition on substrates produced by the WV
model with m = 1. The scaling exponents are θ = 0.4, a = 1.0, and
z = 3.33.

VLDS roughening is observed only after a crossover time that
increases with the correlation length of the initial rough pattern.
A scaling approach is used to predict the relation between
the crossover time and the time of substrate production.
The corresponding scaled time provides excellent collapse of
numerical data for the difference in the roughnesses of films
growing on rough and flat substrates. These results extend
those of previous works on KPZ-EW changes of interface
growth dynamics but suggest the use of the film deposition
time in the roughness difference and in the scaled time instead
of the total interface growth time, which includes substrate
production. The effect of temperature on the crossover time
cannot be predicted by a direct extension of the results on flat
substrates because the initial rough substrate leads to a delay
in the formation of terraces and the consequent propagation
of correlations. A scaling approach is able to capture these
corrections and predict a relation between the crossover time
and the diffusion-to-deposition ratio R in agreement with the
numerical data.

We also suggest a scaling law for smoothening, in which
the surface roughness and the deposition time are scaled
by factors that depend only on the initial roughness and
initial correlation length. It provides good data collapse for
smoothening by a factor up to 5, depending on the substrate
and temperature, and for more than one decade in time. This
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T. A. DE ASSIS AND F. D. A. AARÃO REIS PHYSICAL REVIEW E 92, 052405 (2015)

scaling may be experimentally tested without information
on the film deposition on flat substrates nor information on
substrate production time, which is an advance over the scaling
relations formerly proposed for sudden changes in interface
growth dynamics [16–18].
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