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Recent progress in material chemistry and surface engineering has led to emergence of new electrode materials
with unique physical and electrochemical properties. Here, we introduce a physical model describing charging
of ideal polarizable electrode-electrolyte interface where the electrode is characterized by a limited capacity to
store charge. The analytical model treats the electrode and electrolyte phases as independent nonlinear capacitors
that are eventually coupled through the condition of equality of the total stored electrical charge opposite in sign.
Gouy-Chapman and condensed layer theories applied to a general 1 : n valent electrolyte are used to predict
dependencies of differential capacitance of the electrolyte phase and surface concentration of the electrical
charge on the applied potential. The model of the nonlinear capacitor for the electrode phase is described by a
theory of electron donors and acceptors present in conductive solids as a result of thermal fluctuations. Both the
differential capacitance and the surface concentration of the electrical charge in the electrode are evaluated as
functions of the applied potential and related to the capacity of the electrode phase to accumulate charge and
its ability to form electron donors and acceptors. The knowledge of capacitive properties of both phases allows
to predict electrochemical characteristics of ideal polarizable interfaces, e.g., current responses in linear sweep
voltammetry. The coupled model also shows significant potential drops in the electrode comparable to those in
the electrolyte phase for materials with low charge carrier concentrations.
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I. INTRODUCTION

Electrochemical characteristics of ideal polarizable inter-
faces (IPI) bring important information about the dynamics
of charging processes and the properties of both phases
such as the concentration of electric charge carriers or
the composition of electrolytes. Understanding the charging
process and interface structure allows better interpretation of
experimentally observed electrochemical characteristics such
as polarization curves, cyclic voltammograms, or impedance
spectra, e.g., Refs. [1,2]. For example, one can differentiate
between the faradaic charge transfer through the interface,
capacitive, or adsorption processes [3].

In this work, IPI formed by an aqueous electrolyte on one
side and another phase on the other side is considered. The
nonelectrolyte phase is conductive and can be represented by
a metal conductor [4], semimetal [5], semiconductor [6], or
doped dielectrics [7]. The nonelectrolyte phase is called the
electrode in the following text.

The aforementioned interfaces appear in many modern and
traditional applications such as electrochemical microsensing
and biosensing [8], photocatalysis [9], nanopore transis-
tors [10], desalination [11], or devices for energy storage
and production such as supercapacitors [12], batteries, or fuel
cells [13]. IPIs are also exploited in energy efficient operations
such as capacitive deionization of water solutions on carbon
microporous electrodes [14,15].

When the electrode phase is formed by a thick layer of
a metal conductor, there is an abundance of free electrons
in this phase. Almost entire drop of electric potential is
localized in the aqueous electrolyte and electrochemical mea-
surement reveals only capacitive and resistive properties of the
electrolyte. However, the electrode layer can contain limited
number of free charge carriers. Typical examples are elec-
trodes made of common semiconductor layers, graphene [16],

diamond films [17], or metal coatings formed by a few
atomic layers [18]. Capacitive processes within the electrode
itself become important and both sides of the interface have
to be treated together to predict various electrochemical
characteristics.

II. OBJECTIVES

One of the possible models of IPI relied on dividing IPI
into three domains where two charged phases are separated by
one insulating layer of finite thickness [19,20]. This approach
based on statistical mechanics allowed to estimate interfacial
properties of IPI (differential capacity, surface tension, or
potential drop distribution).

In this work, we treat each side of the IPI as a nonlinear
capacitor. The total potential drop across the interface is then
divided between these two elements. The knowledge about
capacitances of both sides of IPI allows to predict electric
current responses to an applied voltage signal.

In the following section, mathematical equations relating
the ion concentration, surface electric charge, potential drop in
the diffuse part of electric double layer (EDL), and the differen-
tial capacitance for 1 : n electrolyte are summarized. Classical
Gouy-Chapman theory leading to the Poisson-Boltzmann
(PB) equation is applicable only for dilute electrolytes and
small potential drops [21]. To get characteristics of IPI under
higher voltage, we employ the theory describing formation of
condensed ionic layers (CL) at charged surfaces [22].

PB and CL models of the diffuse part of EDL have been
extensively analyzed for 1 : 1 electrolytes in Ref. [21], where
basic properties such as differential and integral capacitances
are provided. An important property of the CL model rep-
resents a decrease in EDL capacitance if a high voltage is
applied on EDL. It can explain observed flow reversals in ac

1539-3755/2015/92(5)/052404(11) 052404-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.052404
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electroosmotic pumps [23]. Understanding of dynamic and
near-equilibrium behaviors of EDL at electrode-electrolyte
interface is important in applications such as desalination due
to capacitive charging [24], faradaic interactions in porous
electrodes or metallic foams [25,26], hydrogen fuel cells [27],
or thin film electrolytes in batteries [28]. If electrochemical
reactions occur in a system, PB or CL models have to be
coupled with the description of electrode kinetics typically
based on the Butler-Volmer equation or its modifications [29].

In this work, both approaches to the treatment of the diffuse
layer based on either the PB equation or the Bikerman equation
for the condensed layer are used. We show that the capacitive
character of the electrolyte phase strongly depends on the
valency of ions dissolved in the electrolyte. In this study, 1 : n

electrolyte is considered, where the symbol n is the valency
of an anion, e.g., n = −1 for potassium chloride or n = −2
for potassium sulfate. The effects of valency on the electric
double layer capacitance are often neglected, which, however,
may lead to misinterpretation of electrochemical analysis of
aqueous electrolytes.

Section IV deals with the capacitive properties of the
electrode phase that can be represented by different materials.
Electric charge is localized at the electrode surface in the form
of electron and/or hole deficiency or excess. The electron
concentration in semiconductors is typically 106–108 times
lower than that in metal conductors [29]. Therefore, nonzero
drop of electric potential develops at the surface layer of
the electrode phase. Then, the potential drop is not only a
result of electrolyte properties, but also the properties of the
electrode phase itself. Possible thermodynamic treatment of
the electrode layer has been recently discussed in Ref. [30].

Finally, theoretical current responses of IPI to linear sweep
voltammetry at low sweep rates are constructed. As there are no
diffusion limitations in such regimes, the charging process of
IPI interface can be studied independently of bulk phenomena.
The effect of limited number of charge carriers on the potential
drop inside the electrode phase is also discussed.

The main results of this work can be summarized as follows:
(i) the relationships for differential and integral capacitances
of the diffuse part of EDL were derived for 1:n electrolyte
by means of widely used Poisson-Boltzmann and Bikerman
equations, (ii) the capacitance of the charged region of an
electrode phase with limited number of charge carriers was
derived using a donor-acceptor theory, (iii) our IPI model can
predict current responses to a voltage signal in near equilibrium
regimes by treating the electrode-electrolyte interface as a
system of two capacitors in series, (iv) it is shown that the
introduction of the electrode capacitance provides a finite
overall capacitance of the electrode-electrolyte interface even
under high voltage.

III. DIFFUSE LAYER

A. Poisson-Boltzmann (PB) model

Electrically charged electrodes attract counterions and repel
coions in the adjacent layer of aqueous electrolyte (Fig. 1). As
a result, a thin layer of an electrolyte with nonzero net electric
charge is formed. This region is called a diffuse part of the
electric double layer. Ions are transported by two mechanisms
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FIG. 1. Electrode-electrolyte interface.

in the vicinity of electrodes: diffusion and electromigration. In
equilibrium, the concentration profile of zi-valent ion obeys
the Boltzmann distribution

ci = c0
i exp[−ziFφ/(RT )] , (1)

where zi , F = 96485 C mol−1, R = 8.314 J K−1mol−1, T

are the ion charge number, the Faraday constant, the molar
gas constant, and the temperature, respectively. To simplify
mathematical expressions in the following text, we introduce
thermal voltage defined as ψ ≡ RT/F ≈ 26 mV. The symbol
c0
i represents the bulk concentration of the ion. φ is a local

value of electric potential. The reference zero value of electric
potential is chosen in the electrolyte bulk.

The distribution of electric potential in the diffuse layer
can be calculated from the Poisson equation. Here, we will
assume a spatially one-dimensional system with a constant
permittivity and 1 : n electrolyte

ε
d2φ

dx2
= −F

∑
i

zici = −F (c1 + ncn), (2)

where ε is the electrolyte permittivity, c1 and cn are the
concentrations of a univalent cation and n-valent anion, n is
the anion charge number (negative integer). The following
parameter values were used in our study: T = 298 K, ε =
7.083 × 10−10 F m−1, and c0

n = 500 mol m−3.
The local electroneutrality in the electrolyte bulk is satis-

fied, i.e.,

c0
1 = |n|c0

n . (3)

By combining Eqs. (1)–(3), we obtain the Poisson-Boltzmann
equation for 1:n electrolyte:

d2φ

dx2
= −2Fc0

n

ε

[
|n| exp

(
− φ

ψ

)
+ n exp

(
−nφ

ψ

)]
. (4)

Multiplying both sides of Eq. (4) by dφ/dx, integrating, and
using the boundary condition x → ∞, φ → 0, dφ/dx → 0
we obtain

dφ

dx
= −sgn(φ)

√
2c0

nRT
[
e
− nφ

ψ − 1 + |n|(e− φ

ψ − 1)
]/

ε. (5)

The surface concentration of electric charge on a planar
electrode phase σ can be calculated using the Gauss law

σ = −ε
dφ

dx

∣∣∣∣
x=0

. (6)
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FIG. 2. PB model. Dependencies of the surface concentration of
electric charge on the surface potential.

If φ0 is the electric potential on the electrode surface, then the
surface electric charge is

σ = sgn(φ0)
√

2c0
nεRT

[
e
− nφ0

ψ − 1 + |n|(e− φ0
ψ − 1

)]
. (7)

One can see that the dependence of σ on the surface electric
potential is an odd function only for a symmetric 1:1 electrolyte
(Fig. 2). As the valency of the anion increases, the same
positive value of the surface electric charge is reached at
significantly lower positive potential. This is because the anion
concentration at the electrode surface increases according to
the Boltzmann distribution cn ∝ exp(nφ0) [Eq. (1)]. At neg-
ative potentials, differences among the dependencies plotted
in Fig. 2 are relatively small due to the cation distribution
c1 ∝ |n| exp(φ0).

To make theoretical predictions on electric current re-
sponses in voltammetry measurements, we need to determine
the differential capacitance of the diffuse layer Cd:

Cd ≡ dσ

dφ

∣∣∣∣
φ=φ0

. (8)

The Poisson-Boltzmann model gives

Cd = sgn(φ0)

√
εc0

nF

2ψ

e
−(n+1)φ0

ψ

(
ne

φ0
ψ + |n|e nφ0

ψ

)
√

e
−nφ0

ψ + |n|(e −φ0
ψ − 1

) − 1
. (9)

The differential capacitance for φ0 → 0 is a monotonously
increasing function of the anion valency at a constant c0

n:

lim
φ0→0

Cd =
√

εc0
nFn(n − 1)/ψ . (10)

The dependence of the differential capacitance on φ0 exhibits
single minimum which is localized at φ0 = 0 only for the
symmetric 1:1 electrolyte (Fig. 3). The differential capacitance
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FIG. 3. PB model. The dependence of the differential capacitance
on the surface electrode potential. The filled circles depict the limit
capacitance values given by Eq. (10).

of the diffuse layer is sometimes assumed to be independent
of voltage for potentials |φ0| ≈ ψ . However, the dependencies
plotted in Fig. 3 show that such approximation is not valid
even for zero potential.

B. Condensed layer (CL) model

The Poisson-Boltzmann equation gives us useful insight
into the behavior of the diffuse layer. However, finite size of
hydrated ions limits their maximal possible concentration at
the electrode surface. For example, the diameters of hydrated
potassium, chloride, sulphate, and phosphate ions are 0.424,
0.448, 0.518, and 0.584 nm, respectively. The diameters of
other ions can be found in Ref. [31]. At certain value of φ0,
a condensed layer of counterions is formed at the electrode
surface.

Modified distribution of the ion concentrations that takes
into account the steric limits originally derived by Biker-
man [32] and reported also in [33,34] reads as

ci = 1

Na

NtN
0
i

/
N0

f e
−zi φ

ψ[
1 + ∑

j N0
j

/
N0

f e
−zj φ

ψ

] . (11)

The electrolyte domain is considered to be a spatial lattice
with the edge length of a. It is assumed that one cubic element
a3 of the lattice can by occupied only by one hydrated ion.
The value of the lattice parameter a was chosen 0.5 nm in this
study. The total volume concentration of lattice elements Nt is
conserved and equal to

Nt = 1/a3 =
∑

j

Nj + Nf . (12)
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Here, Nj and Nf are the volume concentrations of the lattice
elements occupied by the j th ion and the lattice elements not
occupied by any ion, respectively.

In the bulk of 1:n electrolyte, Eq. (12) can be rewritten
using the molar bulk concentrations

1/a3 = c0
1Na + c0

nNa + N0
f = (1 + |n|)c0

nNa + N0
f , (13)

where the Avogadro number Na is 6.022 × 1023 mol−1. The
superscript 0 again denotes the bulk quantities. The volume
fraction of elements occupied by any ion in the bulk is then

y = (1 + |n|)c0
nNaa

3. (14)

The concentration distributions of ions given by Eq. (11)
can be substituted into Eq. (2). The modified Poisson-
Boltzmann equation then reads as

ε
d2φ

dx2
= Fc0

n(1 + |n|)[ne
φ

ψ + |n|e nφ

ψ

]
(y − 1)(1 + |n|)e (1+n)φ

ψ − y
[
e

φ

ψ + |n|e nφ

ψ

] . (15)

We can solve Eq. (15) in the same manner as the original
Poisson-Boltzmann equation [Eq. (4)] to get the density of the
surface electric charge

σ = sgn(φ0)
√

−2εc0
n(1 + |n|)[Fφ0(1 + n)+RT ln(A)]/y ,

(16)

where A is

A = (1 + |n|)
(1 − y)(1 + |n|)e (1+n)φ0

ψ + y
(
e

φ0
ψ + |n|e nφ0

ψ

) . (17)

The corresponding dependencies of the surface electric
charge on the surface electrode potential are plotted in
Fig. 4. The condensed layer model predicts much smaller
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FIG. 4. CL model. Dependencies of the surface concentration of
electric charge on the surface potential. The dashed lines represent
the predictions of PB model.
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FIG. 5. CL model. The dependence of the differential capacitance
on the surface electrode potential. The dashed lines represent the
predictions of PB model.

concentrations of the electric charge than PB model even
for relatively low applied potentials, e.g., the validity of PB
model in the case of 1 : −3 electrolyte is significantly violated
for φ0 < 50 mV. Similarly to the PB model predictions, the
dependence (16) is monotonously increasing with the surface
electrode potential.

The dependence of the differential capacitance on the
surface electrode potential (Fig. 5) reads as

Cd = −sgn(φ0)
√

c0
nFA

(
ne

φ0
ψ + |n|e nφ0

ψ

)
√−2(1 + |n|)[Fφ0(1 + n) + RT ln(A)]/(εy)

. (18)

The dependencies of the differential capacitance are
strongly asymmetric with respect to zero potential for |n| > 1.
Ions with higher valency provide higher differential capaci-
tances than univalent ions due to higher charge concentration
in the condensed layer. This asymmetry necessarily leads to
asymmetric responses of electric current to a linear voltage
sweep during capacitive charging of the surface. As a result
of the condensed layer formation, the dependencies plotted in
Fig. 5 exhibit two maxima and are monotonously decreasing
when |φ0| exceeds a certain critical value.

In summary, we have introduced basic principles of the
Poisson-Boltzmann and condensed layer theories of the diffuse
layer and derived mathematical expressions for the differential
capacitances of the diffuse layer for 1:n aqueous electrolytes.

C. Other models

There are other models of EDL that, e.g., include the
formation of the Stern (compact) layer [35] without ion centers
directly at the charged surfaces or more sophisticated treatment
of the steric effects in the diffuse layer.

The concept of condensed layer which takes steric effect
into account has been widely discussed by Kilic et al. [21].
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In this paper, the authors concluded that a significant fraction
of applied voltage has to be sustained in the diffuse layer at
larger voltages providing a support for neglecting Stern layer
effects. Moreover, we show in Sec. V that the introduction of
an electrode layer capacitor leads to effects similar to those
predicted by models including the Stern layer. Particularly,
infinite increase in differential capacitance given by PB model
is eliminated.

It was shown that the predictions of the CL model based
on the Bikerman equation (11) are not accurate and they can
underestimate the excluded volume in aqueous electrolytes.
Further, the model does not take into account possible
differences in the size of ions [36]. More precise models
built on the Carnahan-Starling equation of state have been
developed [37,38] and used to explain processes related to
sedimentation [39] or polymer adsorption [40].

Another limitation of the CL model may result from possi-
ble crowding and overscreening effects under high voltage as
predicted, e.g., in [41]. When the separation distance between
two point charges is less than the Bjerrum length λB = (ziF )2/

(4πεRT Na), the energy of electrostatic interaction prevails
the thermal energy. This can lead to the formation of
overscreened or crowded double layers that are characterized
by changes of charge polarity across EDL. For example,
when the surface electric charge density is 1 C m−2, about six
monovalent ions or two trivalent ions have to be localized in
1 nm2. Under the conditions chosen in our study, the Bjerrum
length is about 7 and 63 Å for monovalent and trivalent ions,
respectively. This suggests that crowded double layers may
be formed under voltage less than 100 mV (see Fig. 4).

Other information on properties of electric double layers
and/or on alternative description of the electric double layers
can be found, e.g., in Refs. [42,43].

IV. ELECTRODE PHASE

A. Structure of electrode-electrolyte interface

To really understand the polarization phenomenon at IPI
surfaces, we have to include the charging process inside the
electrode phase. The IPI polarization leads to the formation
of two separated clouds of electric charge. One of them is
localized in the diffuse layer of the EDL and the other one, of
the same amount but with opposite charge, within the electrode
phase (see Fig. 6). There is no direct electric charge transfer
between the two phases at IPI. According to the Gauss law,
the electric charge in the electrode phase has to be localized
at the surface. The finite thickness of the charged layer
inside the electrode is usually estimated as the Thomas-Fermi
screening length λF, which is about 0.5 Å for copper [44] and
about 2.5 Å for germanium [45]. These materials represent
conductors and semiconductors, respectively. For the sake of
comparison, the Debye length λD, i.e., the typical thickness of
the diffuse layer, in aqueous electrolytes ranges from ≈1 nm
to ≈100 nm according to the electrolyte ionic strength I . By
nondimensionalizing the Poisson-Boltzmann equation [46],
we arrive at λD ∝ 1/

√
I . Because λF � λD, one can assume

that the electric charge is localized just on the electrode
surface. If necessary, expressions for the potential and electric
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FIG. 6. Structure of the electrode-electrolyte interface. Electric
current flows with the density i through the system during the
polarization process. Electric charge emerging on the electrolyte side
is balanced with the charge in the electrode phase.

charge distribution inside a semiconductor can be found
elsewhere [47–49].

The process of electrode polarization is not limited by
the transport of electric charge carries inside the solid phase.
The electron mobility in copper is about 4 × 10−3 m2 V−1 s−1

and the electron/hole mobilities in semiconductors are ∼10−1

m2 V−1 s−1 [50]. Typical mobilities of hydrated ions in diluted
electrolytes are only ∼10−7 m2 V−1 s−1 [51].

The presence of electric charge within the electrode phase
is necessarily accompanied by a nonzero drop of electric
potential φP − φ0 that will depend on the concentration of
available charge carries in the phase. One can determine
concentrations of charge carriers as well as the potential drop
in the electrode phase by using a simple model that has been
introduced recently [30]. The main features of the model are
summarized and discussed in the following section.

B. Concept of electron donors and acceptors

Thermal fluctuations in an electrode matter lead to the
formation of small areas either with electron excess (electron
donors, D−) or electron deficiency (electron acceptors, A+).
The formation and recombination of electron donors and
acceptors can be written in the form similar to a chemical
reaction

2S � A+ + D−. (19)

The above equation expresses the fact that thermal fluctuations
of charge carriers between two electroneutral pieces of matter
S give rise to the formation of electron acceptors and donors.

As the mobilities of charge carriers in the electrode phase
are very high, we can assume that the process of formation
of electric charge carriers reaches the thermal equilibrium
expressed by an equilibrium constant Ks:

Ks = cA+cD−/c2
S, (20)
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where cA+ , cD− , and cS are the surface concentrations of the
electron acceptors, electron donors, and remaining electroneu-
tral areas.

The concentrations of the electron mediators are naturally
volumetric. Because the electron mediators are localized
very close to the solid-electrolyte interface (the Thomas-
Fermi screening length in metals is less than 1 Å), one
can expect that the electric charge is effectively localized at
the surface. In our previous paper [30] we showed that the
formulation of the model by means of surface concentrations
is thermodynamically consistent when the space charge region
is very thin. We emphasize that the electric charge distribution
inside the solid phase has to be considered out of this limit.

The appearance of a nonzero electric charge at electrode
surface is given by the excess of either donors or acceptors at
the solid surface. The surface concentration of electric charge
is

σ = F (cA+ − cD− ). (21)

Finally, the total concentration of elements in the solid ctot

that can behave as either electron donors or acceptors is finite
and conserved

ctot = cA+ + cD− + cS. (22)

The equality of electrochemical potentials in the electrode
bulk and at the electrode surface written for free charge carriers
results in a relationship between the electric potential drop in
the electrode phase �φM and the surface concentrations of free
charge carriers [30]

�φM = φP − φ0 = ψ

2
ln

cA+

cD−
. (23)

We have shown [52] that the concept of electron donors
and acceptors allows a simple formulation of electrochemical
kinetics in a way analogical to that commonly used in
heterogeneous catalysis. Other models for prediction of charge
and potential distributions in semiconductors are available in
literature, e.g., Refs. [48,49,53].

C. Electrode capacitance

Combining Eqs. (20)–(23), we obtain an explicit expression
for the surface concentration of electric charge

σ =
2ctotF

√
Ks sinh

(
�φM

ψ

)
1 + 2

√
Ks cosh

(
�φM

ψ

) , (24)

and the differential capacitance

Ce =
2ctotF

√
Ks

[
2

√
Ks + cosh

(
�φM

ψ

)]
ψ

[
1 + 2

√
Ks cosh

(
�φM

ψ

)]2 . (25)

The electrode phase is fully characterized by two parame-
ters ctot and Ks that can be interpreted as the maximal possible
concentration of free electric charge carriers on the electrode
surface and the ability of these carriers to form electron excess
and deficiency regions, respectively. Values of these constants
can be in principle evaluated by means of an electrochemical
experiment with IPI as will be shown in the next section.

Equations (24) and (25) are odd and even functions,
respectively. Hence, the dependencies in Figs. 7 and 8 are
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electrode capacitance (bottom) on the potential drop in the electrode.
Ks = 1.

plotted only for positive potentials. Figure 7 shows that
increasing concentration of free charge carriers ctot leads to
the increase in the surface concentration of electric charge
and the electrode capacitance. For given ctot and Ks values,
the charge concentration initially grows with applied potential
and flattens out for �φM > 50 mV. This behavior reflects
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the finite number of charge carriers at the electrode surface
as expressed by Eq. (22). For that reason, the electrode
capacitance reaches its maximum for zero potential. We can
see exponential decrease in the electrode capacitance with
applied potential for �φM > 50 mV due to limited pool of
electric charge in the electrode phase.

Characteristics of the electrode phase for different Ks

values are plotted in Fig. 8. There are relatively insignificant
differences between the characteristics for Ks = 1 (circles) and
Ks = 1 × 105 (triangles), which correspond to insensitiveness
of the model to Ks when the reaction equilibrium given
by Eq. (19) is shifted to the right. The charge carriers
then easily appear at the interface even if low potential
difference is applied. The surface concentration of electric
charge monotonously increases with applied potential and
quickly reaches the asymptote given by the limited amount
of areas where electric charge can appear [see Eq. (22)].
The capacitance of the electrode phase then monotonously
decreases with applied potential.

Qualitatively different behavior is observed when the reac-
tion equilibrium (19) is shifted to the left, i.e., for Ks = 1 ×
10−5 (squares in Fig. 8). The surface concentration of electric
charge approaches the same asymptote as in the previous
cases, however, for �φM > 200 mV. This phenomenon can
be understood as follows. The concentration of donors and
acceptors have to differ significantly according to Eq. (20) to
provide high concentration of the electric charge for small Ks.
Such a difference appears only when the potential drop �φM

is high [see Eq. (23)]. In other words, more energy has to be
added to provide the same amount of surface electric charge.
This is reflected in the capacitance plot where single local
maximum appear for �φM ≈ 150 mV and also in the process
of interface charging as is shown in the next section.

V. CHARGING DYNAMICS

Dynamics of IPI charging can be studied, e.g., by linear
sweep voltammetry [51]. When a chosen scan rate is slow, the
electrode-electrolyte interface is close to the thermodynamical
equilibrium. Especially, when a microelectrode is used as the
working electrode, then possible limitation of the charging
process by ion transport in the electrolyte phase is avoided [29].
Under such conditions, the electric current response of IPI
to a linear voltage sweep can be calculated using equations
introduced in Secs. III and IV. To obtain current responses
to a high sweep rate, boundary value problem has to be
solved, e.g., [52,54,55]. If compared to experimental results,
theoretically predicted current-voltage dependencies can be
used for the determination of ctot and Ks.

The total difference of electric potential �φP = φP across
the electrode-electrolyte interface is considered in voltam-
metry experiments. Zero reference potential is set to the
electrolyte bulk. The total difference divides into the potential
drops in the electrode �φM = φP − φ0 and electrolyte �φ0 =
φ0, respectively. The response of electric current density to a
linear voltage sweep with low scan rate r ≡ dφP/dt can be
calculated from

i = Cd
dφ0

dt
or i = Ce

d�φM

dt
. (26)

Differential capacitances Cd and Ce depend on φ0 and �φM,
respectively. However, the distribution of the total potential
difference φP in the electrode and diffuse layer is not a priori
known. The necessary condition is that the absolute value of
the stored electric charge in the electrode phase is equal to
that one in the diffuse layer. One can choose any φP and solve
Eqs. (7) and (24) or Eqs. (16) and (24) to get φ0 or �φM. The
dependence of differential capacitances on the applied voltage
is obtained [see Eqs. (9), (18), and (25)]. The current response
is finally calculated from Eq. (26). The scan rate r = 0.01 V
s−1 was used for the evaluation of all current dependencies
showed in Sec. V.

A. Effects of potential drop in electrode phase

When the equilibrium described by Eq. (19) is not shifted
too much to the left side and the electrode phase contains vast
number of electron mediators, e.g., electrons in thicker layers
of metals, then cA+ ≈ cD− even if the surface concentration of
electric charge is high. Equation (23) predicts that the potential
drop �φM is negligibly small. The potential drop in the diffuse
layer φ0 is then approximately equal to the applied potential
φP and the electric current response can be calculated directly
from

i = Cd(φP)r. (27)

The corresponding dependencies of current density calculated
for PB and CL models are plotted in Fig. 9 with lines
highlighted by squares and circles, respectively.

However, the electrode phase can be made of a semiconduc-
tor, doped dielectrics, or thin metal layers where only limited
number of electron carriers is available. For example, gold
contains about 5.902 × 1028 free electrons per m−3 [56], which
is equal to the concentration of gold atoms, i.e., one gold atom
offers just one electric carrier. The nearest-neighbor distance
in the gold lattice is 2.88 Å [50]. The surface concentration
of gold atoms and free electric carriers in a gold monolayer
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FIG. 9. Dependencies of the current density (left) and relative
voltage drop in the electrode phase (right) on the applied voltage.
n = −1, ctot = 2 × 10−5 mol m−2, Ks = 1.
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is then ≈ 2 × 10−5 mol m−2. This value was assigned to the
parameter ctot.

The electric potential drop in the electrode phase is no
longer negligible if the number of free charge carriers is
limited. As shown in Fig. 9, PB and CL models demonstrate
monotonous increase in the relative potential drop in the
electrode phase f ≡ �φM/φP × 100%, with the applied
voltage φP. PB model predicts that almost 40% of the total
potential drop is localized in the electrode phase if φP = 300
mV. This fact is not surprising because it is necessary to
provide the same amount of electric charge (with the opposite
sign) on both sides of the electrode-electrolyte interface.
Equation (21) says that efficient separation of electron
acceptors and donors can lead to high concentration of electric
charge in the electrode phase. The mediator separation
emerges only for high �φM according to Eq. (23).

The significant increase in �φM predicted by PB model
is manifested in the linear sweep voltammetry (see Fig. 9).
While Eqs. (9) and (27) predict unlimited increase in the
differential capacitance and current density, the limited number
of charge carriers in the electrode and the decreasing relative
potential drop in the diffuse part lead to the appearance of
current maximum in the voltammogram (at about 200 mV
in Fig. 9) followed by a sharp current decrease. This finding
can be understood as behavior of two nonlinear capacitors Cd

and Ce in series. Qualitative similar behavior was predicted in
Ref. [21], who considered the Stern and diffuse layer capacitors
in series. The main difference is that Kilic et al. [21] assumed
a constant Stern layer capacitance, whereas in our report the
electrode capacitance nonlinearly depends on potential drop.
Both treatments predict more realistic behavior of the system
than the PB model itself because the infinite increase of the
capacitance and electric current density is eliminated.

Decrease in the differential capacitance at higher potentials
is a spontaneous feature of CL model due to the condensed
layer formation (see Fig. 5). It results in a limited accumulation
of electric charge at the interface. The increase in the potential
drop in the electrode phase is gradual and the relative drop
does not exceed 10% under φP = 300 mV. Hence, the two
voltammograms calculated by CL model for zero and nonzero
�φM almost coincide (see Fig. 9).

B. Effect of electrolyte symmetry

Theoretical voltammograms and relative voltage drops for
three different electrolytes are plotted in Fig. 10. In general, the
peaks predicted by CL model are always smaller (in absolute
value) than the peaks given by PB model due to limited ion
concentration in the condensed layers. Significant asymmetry
of the voltammograms for n = −2 and −3 is given by the
noneven dependencies of the differential capacitance on the
applied voltage (see Figs. 3 and 5). When the anion valency
is higher than the cation valency, higher current peaks are
observed in the positive part of voltammogram because anions
with higher valency provide more electric charge at the same
ion concentration.

High concentration of electric charge in the diffuse or
condensed layers formed by multivalent ions forces the
separation of electric carriers in the electrode phase, which is
accompanied by high potential drop in that phase (see Fig. 10).
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FIG. 10. (Color online) Dependencies of the current density (top)
and a relative voltage drop in the electrode phase (bottom) on the
applied voltage. ctot = 2 × 10−5 mol m−2, Ks = 1. Predictions given
by the CL model, solid lines; PB model, dashed lines.

For the given set of parameters, the relative potential drop in
the electrode phase reached ≈80% and ≈40% according to
PB model and CL model predictions, respectively.

C. Effect of electron mediators

The effect of the total concentration of electron mediators
in the electrode phase is plotted in Fig. 11. High mediator
concentration (squares) leads to �φM/φP → 0 for φP ranging
from −300 to 300 mV and the voltammogram is simply given
by the use of Eqs. (27) and (9) or (18). This suggests that the
dynamics of charging process is given only by the processes in
the diffuse layer when the electrochemical systems contain IPI
with high carrier concentration. This is of course true only for
slow scan rates when the diffuse layer is close to the thermal
equilibrium.

As described previously, remarkable potential drops in the
electrode phase and significant differences between CL an PB
model predictions emerge in systems with similar concentra-
tion of charge carriers as in the gold atomic monolayer (circles
in Fig. 11).

Distinctly different behavior is observed when the carrier
concentration is even smaller (triangles). Most of electric
potential drop is then localized in the electrode phase. The
remaining potential difference is not high enough to induce
condensed layer formation. Voltammograms predicted by
both models coincide; however, the recorded current density
is quite low.

D. Effect of donor-acceptor equilibrium constant

Finally, the effect of Ks on the character of voltam-
mograms and potential drop distribution will be discussed.
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applied voltage. n = −2, Ks = 1. Predictions given by the CL model,
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Qualitative interpretation of Ks can be expressed as the
ability of free electron carriers in a matter to form electron
rich or electron poor regions. These regions then accumu-
late at the interface, affect neighboring environment [57],
and possibly enter electrochemical charge transfer (not in
IPI).

Higher Ks value at a given ctot results in higher electric
current density. The peak current (in absolute value) is higher
for Ks = 1 × 105 (triangles) than for Ks = 1 (circles) (see
Fig. 12). The current responses predicted by CL model for
these Ks values almost coincide, which reflects insensitiveness
of the IPI systems and particularly of the electrode phase to
Ks in a broad range as shown in Fig. 8. The potential drop
in the electrode phase exhibits single minimum close to zero
φP. With growing |φP|, one can see that the potential drop
monotonously increases.

However, small Ks value such as 1 × 10−5 (rectangles
in Fig. 12) leads to different behavior. For |φP| < 150 mV,
over 50% of the potential drop is localized in the electrode
phase. This is due to high energy that is needed to provide
high concentration of electric charge carriers as discussed
in Sec. IV C. Hence, for |φP| < 150 mV, observed electric
current density is low. When energy applied on the interface
exceeds a certain value, which is necessary for the formation
of charge carriers at the electrode surface, the current density
grows. The peak value is reached for |φP| > 250 mV, which
is higher than 100 mV observed for Ks = 1 × 105 or 1.
Moreover, the condensed layer in electrolyte is not formed
for Ks = 1 × 10−5 and |φP| < 150 mV (the PB and CL model
predictions coincide) because most of the applied potential
emerges in the electrode phase.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

0

0.2

0.4

 i 
 [A

 m
−

2 ]

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

20

40

60

80

100

φ
P
 [V]

 f 
 [%

]

 K
s
 = 1

 K
s
 = 1 × 10−5

 K
s
 = 1 × 105

FIG. 12. (Color online) Dependencies of the current density (top)
and relative voltage drop in the electrode phase (bottom) on the
applied voltage. n = −2, ctot = 2 × 10−5 mol m−2. Predictions given
by the CL model, solid lines; PB model, dashed lines.

VI. CONCLUSIONS

Mathematical models of ideal polarizable electrode-
electrolyte interface have been proposed and tested in this
work. Capacitive characteristics of the interface have been
derived and used to predict the responses of electric current to
linearly varying voltage.

The physical description of the electrolyte phase based on
two different models shows that the capacitive behavior of
the diffuse layer strongly depends on the polarity of electric
field in the case of asymmetric electrolytes. The capacitance
minimum is not localized at zero potential. Moreover, the
diffuse layer capacitance cannot be considered to be constant
even for applied potentials lower than the thermal voltage
(≈26 mV). As expected, the condensed layer model describes
the charging of the diffuse layer more realistically at larger
potentials than that based on the Poisson-Boltzmann equation.

The concept of spontaneous formation of the electron
donors and acceptors in the electrode phase has been used
to derive its capacitive characteristics. If the number of
electric charge carriers in the electrode phase is limited, one
usually observes decreasing dependence of the differential
capacitance on the absolute value of the applied potential.
However, when the donor-acceptor equilibrium is shifted more
to the basic (uncharged) form of matter, then this dependence
exhibits single maximum for certain nonzero value of electric
potential. It corresponds to the fact that a large amount of
energy is necessary to induce the formation of electric charge
carriers.

Finally, current responses to linearly varying voltage
applied on the entire electrode-electrolyte interface have
been predicted and discussed. Consideration of capacitive
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properties of both phases allowed to evaluate potential drops
in both the electrode and electrolyte. The complex treatment
of both sides of the interface confirmed that the charging
process in the electrode phase is necessary only when the
number of free charge carriers in that phase is limited.
The approach reported in this work could be useful for the
prediction and understanding of charging processes at special
interfaces formed by thin conductive layers that appear, e.g.,

in supercapacitors, electrochemical sensors, or in photovoltaic
applications.
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