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Molecular dynamics study of phase separation in fluids with chemical reactions
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We present results from the first d = 3 molecular dynamics (MD) study of phase-separating fluid mixtures
(AB) with simple chemical reactions (A � B). We focus on the case where the rates of forward and backward
reactions are equal. The chemical reactions compete with segregation, and the coarsening system settles into
a steady-state mesoscale morphology. However, hydrodynamic effects destroy the lamellar morphology which
characterizes the diffusive case. This has important consequences for the phase-separating structure, which we
study in detail. In particular, the equilibrium length scale (�eq) in the steady state suggests a power-law dependence
on the reaction rate ε: �eq ∼ ε−θ with θ � 1.0.
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I. INTRODUCTION

In recent years, there has been great interest in the
phase-separation kinetics of a binary mixture (AB), which
has been destabilized by a quench from a high-temperature
homogeneous state to a point below the coexistence curve at
time t = 0 [1–3]. This thermodynamically unstable system
evolves via the emergence and growth of A-rich and B-rich
domains, which are characterized by a single time-dependent
length scale �(t). Such systems have been extensively studied
through experiments, numerical simulations, and approximate
analytical methods [1–3].

It is now well established that domain growth or coarsening
is a scaling phenomenon. The correlation function C(�r,t),
where �r is the separation between two points, exhibits
dynamical scaling: C(�r,t) = g[r/�(t)]. Similarly, the structure
factor S(�k,t), which is the Fourier transform of C(�r,t) at wave
vector �k, obeys S(�k,t) = �(t)df [k�(t)]. Here g(x) and f (p)
are scaling functions, and d is the spatial dimensionality. In
many systems, �(t) has a simple power-law dependence on
time: �(t) ∼ tφ , where φ is the growth exponent. The value
of φ depends on the physical mechanisms controlling domain
growth.

Many experiments on phase separation are performed on
fluid or polymer mixtures. Segregating fluids are characterized
by several different growth regimes, e.g., for d = 3:

�(t) ∼ (Dσt)1/3, � � (Dη)1/2

(diffusive or Lifshitz-Slyozov regime)

∼ σ t

η
, (Dη)1/2 � � � η2

ρσ

(viscous hydrodynamic regime)

∼
(

σ t2

ρ

)1/3

,
η2

ρσ
� �

(inertial hydrodynamic regime). (1)

In Eq. (1), D denotes the diffusion coefficient; σ is the surface
tension; η is the viscosity; and ρ is the density. The diffusive
regime has been observed in many numerical studies [4–6].
The viscous hydrodynamic regime has also been observed
in many simulations. These include studies of coarse-grained
models like Model H or its variants [7–9]. However, it has

proven harder to observe the linear growth regime with
microscopic-level molecular dynamics (MD) models, where
hydrodynamic effects are naturally included. An unambiguous
confirmation of this regime has only been provided by the re-
cent MD simulations of Ahmad et al. [10]. Finally, the inertial
regime with � ∼ t2/3 has only been observed numerically in
lattice Boltzmann simulations [11,12], which are analogous
to coarse-grained models. To date, MD simulations have not
accessed the inertial growth regime as this is computationally
very demanding [10].

In this paper, we study phase separation in chemically re-
active fluid mixtures. These systems have been experimentally
realized by Tran-Cong and others, who showed that mesoscale
morphologies arise when chemical reactions are photoinduced
in segregating polymers. This group has studied two classes
of photochemical processes: intermolecular dimerization [13]
and intramolecular isomerization [14]. There have also been
some earlier numerical studies of this problem, but these have
primarily focused on the case with diffusive transport. We
will shortly review some of these works. As discussed above,
hydrodynamic effects in fluid mixtures drastically alter the late
stages of segregation kinetics. It is experimentally relevant to
ask how chemical reactions affect the crossover scenario of
phase-separating fluids. In this paper, we undertake the first
three-dimensional (3D) MD simulation of segregation with
chemical reactions. As stated earlier, MD techniques have the
advantage of naturally incorporating hydrodynamic effects.

Let us start by briefly reviewing some earlier studies of
this problem. The first studies are due to Puri and Frisch (PF)
[15,16] and Glotzer et al. [17–19]. PF modified the Cahn-
Hilliard (CH) equation for diffusion-driven phase separation
by including simple chemical reactions: A � B, AB � BB,
etc. For the reaction A � B, they formulated the following
model (in dimensionless units):

∂ψ(�r,t)
∂t

= −∇2(ψ − ψ3 + ∇2ψ) − αψ − β, (2)

where ψ(�r,t) is the order-parameter field (density difference
of A and B) as a function of space �r and time t . The
parameters α and β depend on the rates of the forward reaction
ε1 = τ−1

1 and backward reaction ε2 = τ−1
2 : α ∼ ε1 + ε2; β ∼

ε1 − ε2. For the interesting case where ε1 = ε2, we have
β = 0 in Eq. (2). PF pointed out that Eq. (2) is the same
as the model proposed and studied by Oono-Shiwa [20] and
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Oono-Bahiana [21,22] in the unrelated context of microphase
separation in block copolymers (BCPs) of the form AnBm.
In BCPs, the nonconserving term on the RHS of Eq. (2)
arises from a long-ranged repulsive interaction term in the
free energy. The coarsening BCP freezes into a microdomain
morphology dictated by the relative lengths (n : m) of the
copolymer, e.g., lamellae, gyroids, cylinders, spheres, etc. The
case of a symmetric BCP (n = m) is analogous to the case
ε1 = ε2 and results in a lamellar morphology.

The same problem was independently studied by Glotzer
et al. (GSJ) [17] via Monte Carlo (MC) simulations. GSJ
studied an Ising model with Kawasaki spin-exchange kinetics
(modeling diffusive phase separation [1]) in conjunction
with the chemical reaction A � B, with ε1 = ε2 = ε. They
showed that the coarsening system freezes into a lamellar
morphology with a length scale �eq ∼ ε−θ (θ � 0.22). In
subsequent work, Glotzer et al. (GMM) [19] studied the
linear instability and long-time kinetics of Eq. (2) in the limit
β = 0(ε1 = ε2 = ε). Again, they found that the system settles
into a lamellar morphology with �eq ∼ ε−θ , where θ � 0.33.
Notice that this exponent is the same as the Lifshitz-Slyozov
growth exponent (φ = 1/3), which characterizes diffusive
phase separation [21,22]. This result was later confirmed by
more comprehensive simulations of Eq. (2) by Christensen
et al. [23]. In this context, an interesting work is due to
Kuksenok et al. [24], who used coupled CH equations to study
phase-separating ternary mixtures with chemical reactions.

So far, we have been discussing diffusion-driven phase
separation. It is natural to query how hydrodynamics affects the
above picture, particularly as most experiments on segregation
are performed in fluid or polymer mixtures. In the absence
of chemical reactions, we have already stressed that phase-
separating fluids show a crossover in the growth exponent,
1/3 → 1 → 2/3, as in Eq. (1). An early MD simulation (in
d = 2) of phase separation with chemical reactions (A � B)
is due to Toxvaerd [25]. He argued that the coarsening system
freezes into a steady state but the velocity field destroys
the lamellar structure. However, we should stress that two-
dimensional (2D) hydrodynamics suffers from some physical
problems, e.g., several transport coefficients are divergent.
Next, we mention the study of Huo et al. (HJZ) [26], who
studied a modified version of Model H. HJZ incorporated the
chemical reaction A � B by including a long-range interaction
term (as in BCPs) in the free-energy functional. This term was
only included in the kinetic equation for ψ(�r,t) and was absent
from the Navier-Stokes equation for the velocity field �v(�r,t),
which appears to be physically inconsistent. Further, their 2D
simulation of Model H was complicated by the observation of
double phase separation. Therefore, it is unclear what reliable
statements the HJZ simulation makes about “phase separation
in fluids with chemical reactions.”

Finally, we mention a 2D lattice Boltzmann (LB) simulation
of this problem by Furtado and Yeomans (FY) [27]: the LB
model is analogous to Model H. FY solved the modified CH
equation in conjunction with the LB equations for conservation
of mass and momentum. They studied both the linear reaction
A � B and the quadratic reaction A +B � 2B [15,16]. For the
linear reaction, FY found that the lamellar structure survived in
the presence of hydrodynamics at high reaction rates. However,
regions of very high interfacial curvature are eliminated by the

flow field. FY did not make any quantitative statements about
the dependence of the steady-state domain scale on the reaction
rate.

From the above discussion, it is clear that we have a poor
understanding of segregating fluids with chemical reactions.
In this paper, we report a 3D MD simulation of this problem.
As mentioned above, the MD approach naturally incorporates
flow fields. However, MD simulations are computationally
very demanding, and this has proven an obstacle in their wide-
spread usage. This paper is organized as follows. In Sec. II,
we provide details of our MD simulations. In Sec. III, we
present comprehensive numerical results. Finally, in Sec. IV,
we conclude with a summary and discussion.

II. DETAILS OF MOLECULAR DYNAMICS SIMULATIONS

For our MD simulations, we consider a fluid mixture
with equal numbers of A and B particles (NA = NB = N/2)
confined in a volume V = (Lsσ )3 [10,28]. The particles have
equal masses (mA = mB = m = 1) and diameters (σA =σB =
σ =1). They interact via the Lennard-Jones (LJ) pairwise
potential:

VLJ(r) = 4εαβ

[(
σ

r

)12

−
(

σ

r

)6]
, (3)

where r = |�ri − �rj | and α,β = A,B. We take the energy scales
as εAA = εBB = 2εAB = ε0. This corresponds to a symmetric
binary mixture, whose equilibrium phase diagram is well
understood [29,30]. For our simulations, we use the truncated,
shifted, and force-corrected LJ potential:

U (r) = VLJ(r) − VLJ(rc) − (r − rc)
dVLJ

dr

∣∣∣∣
r=rc

, r < rc

= 0, r > rc, (4)

with the cutoff rc = 2.5σ [31,32]. We work in the high-density
liquid regime, ρ∗ = Nσ 3/V = 1, and hence the system is
incompressible. We also set ε0 = 1 and kB = 1, such that the
dimensionless MD time unit is

t0 =
(

mσ 2

ε0

)1/2

= 1. (5)

We consider a total number of N = 110 592 particles confined
in a cubic box of size 483, with periodic boundary conditions
in all directions. The MD runs were carried out using the
standard velocity Verlet algorithm [33] with a time step
�t = 0.01t0. The temperature T is maintained constant via
the Nosé-Hoover thermostat, which is known to preserve
hydrodynamics [10,33].

The homogeneous initial state for a run is prepared by
equilibrating the system at a high temperature (T = 5) for
2 × 105 MD steps. At time t = 0, the system is quenched
to T = 1.0 � 0.77Tc (Tc � 1.423 in d = 3 [29,30]). This
temperature is well separated from the gas-liquid and liquid-
solid transitions in this system. All statistical results presented
here are obtained by averaging over 10 independent runs.

The chemical reaction A � B is incorporated by randomly
choosing a particle (A or B) and changing its label, i.e., A →
B and B → A. The chemical reaction tends to mix the two
species, thereby opposing phase separation. We considered
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FIG. 1. (Color online) Evolution snapshots (upper frames) of a chemically reactive binary mixture (AB) at t = 21 000 for reaction rates
ε = 0,0.5,1.67. The A-rich and B-rich regions are marked red (black) and yellow (gray), respectively. The lower frames show the corresponding
velocity fields (vx,vy) in the (xy) plane for the layer z ∈ [4.5,6].

five different rates, namely, ε = 1/6,1/2,1,5/3, and 5. To
obtain the rate ε = 5/3, say, five particles are changed every
three MD steps. We compared the evolution for different
values of ε to the case without a reaction (ε = 0). The
quantities that characterize the evolution morphologies are (a)
the time-dependent correlation function C(�r,t) and structure
factor S(�k,t); and (b) the characteristic length scale �(t). The
structure factor is the quantity monitored in most experiments
like neutron or light scattering. If the system is characterized
by a single length scale �(t), the morphology of the domains
does not change with time, apart from a scale factor.

The order-parameter correlation function is computed as

C(�r,t) = 〈ψ( �r1,t)ψ( �r2,t)〉 − 〈ψ( �r1,t)〉〈ψ( �r2,t)〉, (6)

where �r = �r2 − �r1. The angular brackets in Eq. (6) denote sta-
tistical averaging over independent runs. (A similar definition
applies for the correlation function of the velocity field, which
we denote as Cv .) To obtain the order parameter ψ(�r,t), we use
a coarse-graining procedure which is the numerical counterpart
of the renormalization group (RG) technique [34]. Our system
is first divided into nonoverlapping boxes of size λ3 = (1.5σ )3.
We then count the total number of A and B particles in
each box, say, nA and nB . If nA > nB , we set ψ = +1. On
the other hand, if nA < nB , we set ψ = −1. However, when
nA = nB , we assign +1 or −1 randomly. This coarse-graining
procedure helps us to obtain the domain structure devoid
of thermal fluctuations. Our statistical results do not have a
sensitive dependence upon the coarse-graining scale λ. We
require λ > 1 so that each box contains a reasonable number
of particles. Further, it is convenient to choose (Lsσ )/λ as

a power of two so that we can use fast Fourier transforms
to evaluate C(�r,t) and S(�k,t). To improve the statistics, we
spherically average C(�r,t) and S(�k,t) to obtain the isotropic
functions C(r,t) and S(k,t). The average domain size �(t) is
defined as the first zero crossing of C(r,t).

III. NUMERICAL RESULTS

In Fig. 1 we present the evolution snapshots (upper
frames) of a chemically reactive fluid mixture at t = 21 000
for ε = 0,0.5,1.67. The snapshots show that the chemical
reaction slows segregation. We will shortly see that the system
settles into a steady state. However, we find no evidence
of the lamellar structures reported in the LB studies of
FY [27]. Our results show that hydrodynamic effects destroy
the lamellar structures which are observed in the diffusive
case. This should be contrasted with the closely related BCP
segregation problem, where the diffusive model is identical to
that for segregation with chemical reactions. The recent MD
simulations of BCP segregation by Singh et al. [35] show that
the steady-state lamellar morphology survives in the presence
of hydrodynamics.

The lower frames of Fig. 1 show 2D cross sections of the
corresponding velocity field. We compute the velocity field
�v(�r,t) = (vx,vy,vz) by summing over all particles in cubes
of size (1.5σ )3. The vectors in Fig. 1 denote the direction
and magnitude of (vx,vy) for z ∈ [4.5,6]. In earlier work,
Ahmad et al. [10] have stressed that the velocity field in
MD simulations of phase-separating mixtures (ε = 0 case)
is characterized by vortex or antivortex defects, but these do
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FIG. 2. (Color online) Scaling plots of density correlation func-
tions and structure factors at t = 21 000 for reaction rates ε =
0.5,1.0,1.67,5.0. The length scale � is defined as the first zero crossing
of C(r,t). The solid lines denote the corresponding data for ε = 0 (no
chemical reaction). (a) C(r,t) vs r/�; (b) �−3S(k,t) vs k�.

not show a marked coarsening. In the present study, we find
that the velocity field is not affected by the chemical reaction.
It does not show major differences for the cases with ε = 0
and ε �= 0 in Fig. 1, as we will see shortly.

For each value of ε, we have confirmed that C(r,t)
and S(k,t) obey dynamical scaling for different times. This
is checked by superposing data for C(r,t) versus r/� and
�−dS(k,t) versus k� from several different times. In the
diffusive case, dynamical scaling breaks down due to a
crossover from a bicontinuous morphology at early times
to a lamellar morphology at later times. The lamellar mor-
phology is characterized by oscillations in C(r,t) and a
marked shoulder in S(k,t) [35]. However, in the present case,
the velocity field destroys the lamellar structure. Therefore,
the chemically reacting fluid mixture is characterized by
the usual bicontinuous structure of segregating systems. This
is confirmed in Fig. 2(a), where we plot C(r,t) versus r/� at
t = 21 000 for ε = 0,0.5,1.0,1.67,5.0. The scaling function
is independent of the value of ε and is comparable to that for
ε = 0. In Fig. 2(b), we present a scaling plot of the structure
factor: �−dS(k,t) versus k� at t = 21 000 for the same values
of ε as in Fig. 2(a). Again, we see that the scaling function
is independent of ε. A notable feature of S(k,t) is the Porod
tail, S(k,t) ∼ k−(d+1), which results from scattering off sharp
interfaces.

In Fig. 3(a) we plot the correlation function of the velocity
field: Cv(r,t) versus r/�v . In this case, �v is defined as the
distance over which Cv(r,t) decays to 0.1. We present data for
several values of ε at t = 21 000. The scaling functions are
numerically coincident, confirming that the morphology and
length scale of the velocity field is independent of the chemical
reaction. The corresponding scaling plot for the structure
factor, �−d

v Sv(k,t) versus k�v , is shown in Fig. 3(b). Notice that
the tail shows a generalized Porod behavior, Sv(k,t) ∼ k−(d+n),
where n = 3 for the three-component velocity field. This was
first predicted by Bray and Puri [36] in the context of domain
growth with a vector order parameter.

Let us return to our discussion of the density field. We focus
next on the time dependence of the domain scale. In Fig. 4
we plot �(t) versus t on a log-log scale for several values of
ε, including ε = 0 (no chemical reaction) for reference. For
ε = 0, we expect a power-law domain growth: � ∼ tφ with

FIG. 3. (Color online) Scaling plots of velocity correlation func-
tions and structure factors at t = 21 000 for reaction rates ε =
0.5,1.0,1.67,5.0. The length scale �v is defined as the distance over
which Cv(r,t) falls to 0.1. The solid lines denote the corresponding
data for ε = 0. (a) Cv(r,t) vs r/�v; (b) �−3

v Sv(k,t) vs k�v .

crossovers as φ = 1/3 → 1 → 2/3. As mentioned earlier, the
t2/3-regime has yet to be observed in MD simulations as this
requires a huge computational effort [10]. Our ε = 0 data in
Fig. 4 show the t1/3 and t1 regimes clearly. At very late stages,
there is a crossover to a slower regime than t1, which may be
the first MD evidence for t2/3 inertial hydrodynamic growth.
However, this must be confirmed by longer runs with larger
system sizes. As expected, the chemical reaction slows domain
growth. There is an early-time window where the data for
ε �= 0 are comparable to that for the nonreacting mixture. This
is followed by a crossover to slower growth, with crossover
time tc ∼ ε−1. The slower growth culminates in a steady state
with a constant length scale �eq. Notice that the � values in
Fig. 4 do not exceed �max � 5, which is approximately 10% of
the lateral system size (Ls = 48). Therefore, we do not expect
finite-size effects to be relevant at these length scales [4]. In
Fig. 4 we see this freezing for ε = 1.0,1.67,5.0. We need
larger systems and longer runs, which are computationally
very expensive, to access the steady states for ε = 0.17,0.5.

In Fig. 5 we plot �−1
eq versus ε. [We approximate �eq by

�(21 000), which is an underestimate for ε = 0.17,0.5.]We do

FIG. 4. (Color online) Time dependence of the domain length
scale, �(t) vs t , for ε = 0,0.17,0.5,1.0,1.67,5.0. The lines of slope
1/3 and 1 denote the diffusive and viscous hydrodynamic regimes,
respectively.
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FIG. 5. Equilibrium length scale, �−1
eq vs ε, for the evolution

shown in Fig. 4. We approximate �eq by �(21 000). The solid line
denotes the best linear fit to the data set.

not show the data for ε = 5.0, as �eq ∼ O(1) in that case.
Thus, it is comparable to the microscopic length scale and
cannot be reliably obtained. The equilibrium length scale
suggests a power-law behavior with �−1

eq ∼ εθ , where θ � 1.0.
However, better-quality data for more values of ε are needed
for an unambiguous confirmation of this behavior. Recall
that the corresponding value of θ in the diffusive case is
θ � 0.33, which is the same as the growth exponent φ for
diffusion-driven phase separation. The identification θ = φ in
the diffusive case generalizes to the case with hydrodynamics.

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion.
We have presented results from the first 3D MD simulation of
phase-separation kinetics in chemically reacting fluid mixtures
(AB). We consider the simple reaction A � B (with equal
rates of backward and forward reactions), realized in the
experiments of Tran-Cong and others [13,14]. We find that the
hydrodynamic velocity field destroys the lamellar structures
which characterize the steady state in the diffusive case. For
this reason, the evolution morphologies in our MD simulations
are characterized by dynamical scaling. (Notice that this breaks
down in the diffusive case because of the crossover from
an early-time bicontinuous morphology to an asymptotically
lamellar morphology [35].) The equilibrium length in the
steady-state suggests a power-law scaling with the reaction
rate: �eq ∼ ε−θ with θ � 1.0.

In general, chemical reactions induced by external agents
provide a simple means of controlling the morphology of
phase-separating systems, as it is possible to adjust the
reaction rates in experiments [13,14]. A typical example of
a system undergoing the kind of reaction considered here is
the dissociation of a radioactive atom A into a daughter atom
B. We believe that the MD results presented here will motivate
further experimental and theoretical interest in this problem.
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