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Phase-transition oscillations induced by a strongly focused laser beam
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We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears
in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-
methyl-meth-acrylate (PMMA)–3-octanone, which has an upper critical solution temperature at Tc = 306.6 K
and volume fraction φc = 12.8% [Crauste et al., arXiv:1310.6720, 2013]. We describe the dynamical properties
of the oscillations, which are produced by a competition between various effects: the local accumulation of
PMMA produced by the laser beam, thermophoresis, and nonlinear diffusion. We show that the main properties
of this kind of oscillations can be reproduced in the Landau theory for a binary mixture in which a local driving
mechanism, simulating the laser beam, is introduced.
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I. INTRODUCTION

Phase transitions in binary mixtures are still a widely
studied subject, specifically near the critical point where
several interesting and not completely understood phenomena
may appear, such as critical Casimir forces [1,2], confinement
effects [3,4], and out-of-equilibrium dynamics after a quench.
The perturbation of the binary mixtures by means of external
fields is also an important subject of investigation [5]. For
example, a laser can induce interesting phenomena in demixing
binary mixtures because the radiation pressure can deform the
interface between the two phases [6].

In Ref. [7] a focused infrared laser beam heated the medium
initially in the homogeneous phase and caused a separation in
the low critical solution temperature system. The local heating
may induce thermophoretic forces which attract towards the
laser beam one of the binary-mixture components [8]. Other
forces like electrostriction can also be involved [9].

In this article, we report a phenomenon which consists in an
oscillating phase transition induced by a constant illumination
from an infrared laser beam in the heterogeneous region of
an upper critical solution temperature (UCST) binary mixture.
Oscillation phenomena in phase transition have already been
reported in slow cooling UCST [10,11] but, as far as we
know, never induced by a stationary laser illumination. After
describing our experimental setup, we will present the results.
Then we will show that a model, based on the Landau approach
for binary mixture, reproduces this oscillatory phenomenon
when a local pumping mechanism is introduced. The paper is
organized as follows: in Sec. II we present the experimental
setup. In Sec. III we describe the oscillatory phenomenon, and
we discuss the possible physical mechanisms at the origin of
this time-dependent behavior. In Sec. IV the model based on
the mean field theory of phase transition is presented with the
numerical results. We conclude in Sec. V.

II. EXPERIMENTAL SETUP

The medium is a binary mixture of poly-methyl-meth-
acrylate (PMMA; Fluka, analytical standard for GPC) with
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a molecular weight Mw = 55900 g/mol and a polydisper-
sity Mw/Mn = 1.035 and 3-octanone (sup. 98%; both pur-
chased from Sigma-Aldrich). This binary mixture presents
an UCST [12] measured in Ref. [13] around Tc = 306.6 K
and at the critical PMMA volume fraction φc = 12.8%.
The phase diagram volume fraction-temperature presents a
high-temperature homogeneous region and a low-temperature
two-phase region with a polymer-rich and a polymer-poor
phase. We prepare the sample, under a laminar flow hood,
at different volume fractions by weighting the polymer before
adding a volume of 3-octanone calculated from the density
of the polymer ρPMMA = 1.17 given by the supplier. The
solution is then mixed at 325 K over one night to ensure a
good dissolution. The measured phase diagram (temperature
T versus the volume fraction φ) of the PMMA–3-octanone
mixture [13] is reproduced in Fig. 1. The simplest way to
describe the coexistence curve T (φo) is to fit it by a parabolic
curve T (φo) = Tc − b0

a0
(φo − φc)2, where b0 and a0 are system-

dependent constants. This is equivalent to modeling the system
using the Gizburg-Landau theory of phase transitions. For
the polymer-solvent mixture this is not the more appropriate
theory [14], but it is the simplest approximation and will be
used in Sec. V to give more insight into the role of a local
forcing on a phase transition.

The cell containing the sample is composed of a 1-mm-thick
glass plate and by a cover slip separated by a 100 μm-thick
polycarbonate sheet and glued with NOA 81 under UV light.
The top glass plate has two apertures connected with two filling
metallic tubes. To fill the cell, we heat all the materials (syringe,
needle, cell) and the medium to avoid demixing during the
filling. Then we close the two openings with a small amount
of wax. Two metallic tubes prevent wax to be directly in contact
with the mixture. We leave the cell for several hours at room
temperature to let the medium demix properly. We obtained
a cell containing two phases with typical size of the regions
being around 20 μm to 200 μm. The filled cell is inserted in
a microscope. Then the samples are left for several hours at
room temperature to let the medium have a proper demixing.
They are placed in glass cells inserted in a Leica microscope.
A laser beam (λ = 1064 nm) is focused on each sample [15].
A white light source is also used to illuminate the sample; this
light is collected by the ×63 objective, and the sample is
observed with a fast camera (Mikrotron MC1310). The optics
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FIG. 1. (Color online) PMMA-octanone coexistence diagram
obtained from cloud point measurements [13] performed at different
fixed concentration φo by decreasing the temperature at various rates.
The parabolic fit Teq (φo) is done using the data obtained at the two
slowest ramp rates.

of the setup is given in Ref. [14]. The laser power is calibrated
by measuring the power of the laser beam just before the
objective. Thus, it is not exactly the value of the intensity in
the cell. The attenuation of the microscope objective is about
70% at 1064 nm. At room temperature, the mixture at PMMA
volume fraction φ = φc = 12.8% is in the two-phase region.
So we can see droplets of one phase in the other one. After a
long time, these droplets coalesce. Nevertheless, the medium
is thin enough to avoid the segregation of the two phases due
to gravity. At φ = 12.8%, these droplets are steady.

III. OSCILLATORY PHENOMENON

When the laser is switched on, a droplet of one phase
appears at the focal point of the laser (see Fig. 2). This
droplet size increases until a maximum radius is reached,
and then it decreases. When the droplet disappears, another
one appears close to the vanishing one, and another cycle of
growth and decrease begins. This phenomenon could persist
for several oscillations (between 1 and 20). When it stops,
we observe some dense PMMA aggregates on the bottom of
the cell. Sometimes the phenomenon stops because we place
the laser too close to an existing droplet, and the created one
coalesces with an existing one. The oscillatory phenomenon
appears also in a sample at φ = 2% of PMMA, that is, a
noncritical mixture. Moreover, in this solution, the number of
droplets is less important, and droplets are more mobile due
to a smaller viscosity of the sample. These mobile droplets
can be easily trapped by the focused laser beam as particles
in an optical tweezers. Thus the optical index of the droplets
is bigger than the optical index of the bulk. As the two optical
indices are nPMMA = 1.49 and noctanone = 1.415, we conclude
that the droplets are the rich phase in PMMA. Notice that this
phenomenon appears when the laser is originally focused in
the poor phase at less than 30 μm of the rich phase, probably
because one needs a transfer of PMMA materials to create
the rich droplet. If the laser is originally on a rich phase, we
sometimes observe a growth of the whole rich phase after
a transient state where complex phenomena appear (creating
interfaces, collapsing).

t=0 t=10 s t=20 s

t=30 s t=40 s t=50 s

1 µm

FIG. 2. Droplet oscillation. Images of the octanone-PMMA
sample at a volume fraction 12.8% in PMMA at room temperature
298 K. The six images have been taken at 10 s time intervals using
a microscope objective ×63; the image size is 15 μm. A droplet,
rich in PMMA, growts for the first 30 s and then it decreases.
This oscillatory phenomenon is produced by an infrared laser beam
of intensity 130 mW, which is focused inside the sample by the
objective. At the top left of each image, we can see an interface of
another PMMA-rich phase which is at equilibrium because at this
temperature, the medium is in the heterogeneous phase. The bright
point is the reflection of the laser beam.

To characterize this phenomenon, we begin by measuring
the growth velocity of droplets as a function of the laser power
in a φ = 12.8% sample. The oscillating droplets are acquired
at 20 fps with the camera. We measure the time �td needed
by a growing droplet to reach an imposed diameter d. The
mean growth velocity is given by vg = d

�td
. We plot in Fig. 3

vg as function of the laser power for two chosen diameters
d = 1.1 μm and d = 2.8 μm, for several droplets in different
positions of the cell. Below 70 mW, there are no droplets.
Above 420 mW, the scattering of the laser beam by the sample
is too big to do a correct measurement. In the measurement
region, the mean velocity vg is well approximated by a linear
function of the laser intensity, whose slope pd is a decreasing
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FIG. 3. (Color online) Growth velocity of the droplet in the first
instants of their formation as a function of the laser power. It is
measured from the time which is needed by a growing drop to reach
the diameter d . The measurement is repeated on various droplets in
different positions of the sample. The dispersion of the points in the
plot could be due to the heterogeneities of polymer concentration in
the cell.
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FIG. 4. (Color online) (a) Radius of PMMA-rich droplets as a
function of time for different detection thresholds (red: 155, green:
160, blue: 168 in gray scale over 255) of the droplet edge in the image
analysis normalized to the maximum measured radius. The collapse
of all the curves ensures that the time evolution of the radius measured
by this method correctly describes the droplet dynamics. The plotted
data have been recorded in a sample with a PMMA volume fraction
φc = 12.8% (laser beam of intensity 134 mW). (b) Droplet radius
as a function of time at two different powers (130 and 170 mW) of
the focused laser beam. The oscillation frequency is a function of the
laser power.

function of d, specifically in the figure at d = 1.1 μm, pd =
12.2 μm/s/W, and d = 2.8 μm, pd = 9.4 μm/s/W.

To characterize the oscillations, we implement a program
with ImageJ to get the edge of the droplet in each image.
We then determine the area A and the radius R = √

A/π of
the droplet. As the position of this edge is sensitive to the
chosen value of the threshold, we plot in Fig. 4(a) the value
of the radius as a function of time for several thresholds. We
check that if we rescale the curves by the maximum radius, all
curves collapse. The absolute incertitude on R is about 0.5 μm,
which is the diffraction limit. This method is not relevant for
very small droplets because we do not get the right edge for
two reasons. The first is that diffraction effects dominate. The
second is that the contrast inside the droplet changes during
the growth. Thus a fixed threshold cannot describe the edge of
the droplet at all times. Therefore we plot in Fig. 4(b) only the
dynamics for the radius above 1.5 μm.

On one oscillation, we can see that the change of regime
(from increase to decrease) is quite sudden. We succeeded in
doing at the same spot several oscillations at two different laser
intensities. Results are plotted in Fig. 4(b). An increase in laser
intensity results in an increase of the oscillation frequency and
a decrease of the maximum amplitude of the droplet. We tried
unsuccessfully to measure quantitatively this effect, because,
as we can see in Fig. 4(b), the variation of the droplet maximum
radius at fixed intensity perturbs the effect. Furthermore other
parameters, like local changes of concentration, dusts, and
aging may disturb our measurement. Nevertheless, from our
analysis at short times, we know that the larger the laser power,
the faster the droplet growth.

IV. THE PHYSICAL MECHANISMS

What is the origin of this laser-induced transition? A droplet
of PMMA-rich phase is initiated in the PMMA poor phase and
then oscillates. Where does this PMMA accumulation come
from? It can not be a simple effect of heating because this
binary mixture has an UCST, so an increase in temperature

should provoke an homogenization of the solution. But
a local heating creates gradients of temperature and then
thermophoresis. We can estimate the increase of temperature
due to the laser by measuring the absorption coefficient of the
mixture in a cell at λ = 1064 nm. To avoid light scattering, this
absorption measurement is performed by keeping the cell at
a temperature larger than Tc, when the sample is well mixed.
This gives us an estimation of the extinction coefficient of
the mixture [εPMMA] ≈ 9 m−1 and so an estimation of the
temperature increase, which is about �T ≈ 5 K at the focal
point given by the formula in Ref. [16].

A. The Soret effect

This increase should be enough to observe a thermophoretic
effect. The sign of the thermophoretic coefficient (Soret
coefficient) has been measured by applying a 10 K difference
to a PMMA-octanone mixture at working concentration in
a square cell about 5 cm high. The hot point was at the
top to avoid convection effects. The temperature of the
whole cell was above the critical point to avoid demixing
during the experiment. After 5 days, the top of the cell was
clearly less concentrated than the bottom. We performed the
same experiment at a fixed temperature for the whole cell.
This shows us that there is no segregation. In the range
of concentration that we used in the experiment it does
not change sign. In Ref. [17] they give a Soret coefficient
ST = 0.11 K−1 for PMMA/cyclohexanone, which is close to
our PMMA-octanone mixture, and a rough estimation from
our experimental setup gives us a value around ST = 0.1 K−1.
The positive sign of the thermophoretic coefficient (Soret coef-
ficient) means that the PMMA is attracted to low-temperature
regions. So this does not explain the first growth of the droplet,
but it must be an important issue in the oscillations.

B. Laser trapping and electrostriction

The presence of the focused laser beam produces a second
effect: the trapping of PMMA. We estimate the stability of
this trap, taking into account that the radius of gyration of
the polymer is about �0 = 1 nm [13]. At this size, we are in
the Rayleigh approximation for light. We calculate the ratio
between the scattering force and the gradient force on the
particle [18] R = Fscatt

Fgrad
. This ratio should be less than one to

get a stable trap. We got R = 10−7. The trap is thus stable. But
to trap correctly, the trapping force also needs to be bigger than
the thermal forces acting on the PMMA bead. To check that, we
have to estimate the Boltzmann factor exp(−U grad/kBT ) � 1
where Ugrad is the potential of the gradient force [19]. In our
case, inserting the experimental values in the equation for
U grad of Ref. [19] we obtain U grad ≈ 5 × 10−26 J, which is
much smaller than kBT ≈ 4 × 10−21 J. So even if the trap is
stable, the gradient force is not sufficient to trap the polymer.

Finally, the laser can induce electrostrictive forces through
its electric field gradient [9]. As nPMMA > noctanone, this force
results in an attraction of the polymer close to the focused
laser beam through the osmotic compression of the solute.
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C. Summary of the mechanisms

To summarize, the rich phase created by the laser is
due to an excess of polymer brought by the laser probably
by electrostrictive forces. As at this excess concentration
the polymer mixture is not thermodynamically stable, the
mixture separates spontaneously and the new phase grows
gradually with an increasing amount of PMMA. But this effect
is balanced by the thermophoretic effect which brings the
polymer toward the low-temperature region. However, this
simple explanation does not give us the reason of why the
phase should decrease at a certain point. That needs a more
precise model, which includes as activation mechanisms a
combination of the above mentioned thermophoretic effects
and electrostriction and their dependences in concentration
of PMMA. It is important to notice that we tried the same
experiments in other mixtures (for example, water-C12E5)
without observing oscillations. This can be understood because
the indexes of refraction of the two phases of water-C12E5
are very close and the accumulation rate produced by the
beam is not enough to compensate the other effects which
reduce concentration. In general, to observe oscillations in
binary mixtures, a particular combination of attraction and
repulsion parameters mentioned above is needed in a way that
the expected concentration which balance these parameters is
actually in a thermodynamically forbidden state.

V. THE MODEL

All of these physical mechanisms can be taken into account
in a full model [20], which, however, has too many parameters
to catch the simple physical mechanisms. Thus we describe
here a simplified version which contains the main ingredient
and shows that indeed local forcing may produce oscillation
in a binary mixture. We start from the model developed in
Refs. [11,21] to explain another type of oscillation phe-
nomenon in phase transitions which was observed in an UCST
transition during a slow cooling of a mixture [10,11]. This
model is based on the Landau phase transition theory, to which
a pumping term has been added [11,21]:

∂tϕ(x,t) = ∂x

[
(3ϕ2 − 1)∂xϕ

] − M2∂4
xϕ − ξϕ, (1)

where ϕ = (φ − φc)/(φ0 − φc) is the reduced volume fraction,
with φ0(T ) the equilibrium volume fraction of PMMA as a
function of temperature, which takes into account the critical
behavior of the mixture, i.e., φo − φc = ±√

ao(T − Tc)/bo,
which is equivalent to the parabola T (φo) used in in Sec. II
to fit the data of Fig. 1. In Eq. (1) the nonlinear diffusive
term ∂x[(3ϕ2 − 1)∂xϕ] and the interface term −M2∂4

xϕ are
the standard terms derived from the Landau phase transition
theory. Thus, when ξ = 0, the equation describes the standard
phase transition dynamics, where ϕ = 1 in the equilibrium-
rich phase and ϕ = −1 in the equilibrium-poor phase. When
ξ �= 0 the term ξϕ acts as a source term proportional to ϕ

via a pumping coefficient ξ that in the original model of
Refs. [11,21] was ξ ∝ ∂tφ0

φ0
. In order to take into account the

localized pumping performed by the laser in our experiment
we change this term in a time-independent very localized
source. Specifically we fix the amplitude ξ = ξ0 in a region
of size Sξ around a specific point x0 and 0 elsewhere. Notice

that this term models the ensemble of the above described
pumping mechanisms independently of their nature, and it is
used only to check whether a local pumping introduced in
the Landau theory is able to produce oscillations. We solved
numerically Eq. (1) for different values of ξ0,Sξ , and M .
The numerical integration is performed by finite difference
in space, by dividing the interval 0 � x � 1 in N points. The
integration in time is performed by a fourth-order Runge-Kutta
method. We checked that the results are independent of N by
changing it from 50 to 400. The initial conditions are ϕ = −1
in all of the points of the interval. Two types of bound-
ary conditions have been used: (1) ϕ(0) = ϕ(1) = −1 and
(2) ∂xϕ|x=0 = ∂xϕ|x=1 = 0. We mostly used the first type
because they correspond to have a good reservoir at the
extremes, but the results do not change too much using the
second. The forcing term is ξ = ξ ′

o/Sξ for (xo − Sξ/2) � x �
(xo + Sξ/2) and 0 elsewhere. Notice that there are three length

FIG. 5. (Color online) Numerical solution of Eq. (1). Mass frac-
tion ϕ as a function of time, measured at the forcing point (a) and
at xo + 0.05 at two different values of ξ (b). Regular oscillations
appear for ξ larger than a threshold value ξo � 1.5/Sξ . The bigger
ξ , the faster the oscillations are. (c) Size of the PMMA-rich phase
calculated numerically from Eq. (1). The size is estimated as the
radius of the domain in which ϕ is larger than a defined threshold
value, which is −0.9 here. The radius oscillations are smaller and
faster when the source term is bigger.
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scales in this problem: the integration domain which is set to
one, the forcing size, and M . The oscillations do no appear if
M > Sξ . The results presented in Fig. 4 have been obtained
with N = 100 and the first boundary conditions. More details
on the numerical integration of Eq. (1) and on its physical
background will be the object of a theoretical paper.

We present here the case with initial conditions ϕ = −1
everywhere, with M = 0.002 and Sξ = 0.01 in the domain
0 < x < 1 with xo = 1/2. In these conditions, we observe
that for ξo > 1.5/Sξ the local concentration oscillates in a
region around the forcing point. These oscillations can be seen
in Figs. 5(a) and 5(b), where we plot the value of the local
concentration at xo and at xo + 0.05 for two different values
of ξo.

Looking at Figs. 5(a) and 5(b) we see that the bigger
ξo is the quicker and smaller oscillations are, which is in
good agreement with experimental results [Fig. 4(b)]. We also
observe an oscillatory creation of a rich phase in the poor
one at the forcing point in Figs. 5(a) and 5(b). Following the
experimental procedure we can also estimate in the numerical
simulation the radius of the domain in which ϕ is larger than
a defined threshold value, fixed, for example, at −0.9. The
results of this estimation are plotted in Fig. 5(c) where we
see that the numerical model produces a time evolution of the
radius, which is very similar to that of the experiment.

Thus these numerical results show that it is possible to ob-
tain an oscillatory phase transition just adding a local pumping
term, with size Sξ < M , to the standard Landau theory for
binary mixtures. As we have already discussed, the physical
origin of this source term comes from thermophoresis and
electrostriction because both effects contribute to antagonist
changes of the local PMMA density. Certainly the source term
in Eq. (1) is oversimplified with respect to a full model based

on the Landau theory in which we consider a local dependence
on temperature and electric field of the coefficients [20]. One
could eventually use the Flory-Huggins theory [8,14], which
is very well suited to describe polymer-solvent interaction.
However, the model presented here has the advantage of
being simple and of describing the main effects. The use of a
three-dimensional model will not improve the description as
surface tension effects determine the drop shape, but they do
not play any role as a pumping mechanism.

VI. CONCLUSIONS

In conclusion, we have presented a local oscillating phase
transition induced by a focused laser beam. We have discussed
the physical mechanisms producing such an effect, showing
that thermophoresis and electrostriction play an important
and antagonistic role. Finally we show that a simplified
model, based on the Landau theory for phase transition and
a local forcing, contains enough ingredients to provoke a
nonlinear oscillatory behavior reproducing the main features
of the experimental observations (i.e., the dependence on the
pumping rate of the drop growth velocity and the complex
nonlinear time evolution of the radius). With this model we do
not pretend to give a full explantation of the observations but
only to point out that a local pumping may produce oscillations
in the framework of the Landau theory for binary mixture. A
more complete model will be presented elsewhere [20].
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