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Nonequilibrium structure of colloidal dumbbells under oscillatory shear
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We investigate the nonequilibrium behavior of dense, plastic-crystalline suspensions of mildly anisotropic
colloidal hard dumbbells under the action of an oscillatory shear field by employing Brownian dynamics
computer simulations. In particular, we extend previous investigations, where we uncovered nonequilibrium
phase transitions, to other aspect ratios and to a larger nonequilibrium parameter space, that is, a wider range of
strains and shear frequencies. We compare and discuss selected results in the context of scattering and rheological
experiments. Both simulations and experiments demonstrate that the previously found transitions from the plastic
crystal phase with increasing shear strain also occur at other aspect ratios. We explore the transition behavior in
the strain-frequency phase and summarize it in a nonequilibrium phase diagram. Additionally, the experimental
rheology results hint at a slowing down of the colloidal dynamics with higher aspect ratio.
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I. INTRODUCTION

The equilibrium and nonequilibrium behavior of colloidal
hard-sphere suspensions has been investigated extensively
[1–4], as it constitutes the simplest model system to gain a
better understanding of the structure and phase behavior of
colloidal suspensions in some of their fundamental aspects.
Notwithstanding that the particles interact isotropically by
excluded volume only, hard-sphere colloids show a nontrivial
phase diagram already in equilibrium and glassy behavior
above a certain volume fraction [1,5,6]. Regarding their
nonequilibrium behavior, hard-sphere suspensions subjected
to shear have been of particular interest, since shear is
one of the most common external fields [7,8]. Here, many
interesting forms of order-disorder transitions have been
observed in experiments and simulations under various shear
conditions [7,8]. These include steady shear (constant rate)
[8], oscillatory shear (fixed strain amplitude and frequency)
[7,8], and oscillatory fixed shear rate protocols [9].

In particular, various nonequilibrium states have been
identified in spherical colloids under shear and have been well
characterized up to now using a combination of scattering
methods [8], optical techniques [7,10], simulations [7], and
theoretical models [11]. Similar order-disorder transitions
of colloids under shear have been reported for clusters of
soft spheres [12] and highly charged spheres [13–15]. Most
recently, Besseling et al. combined confocal microscopy
and Brownian dynamics (BD) simulations to explore the
nonequilibrium behavior of colloidal hard spheres under
oscillatory shear [7]. Here, for small strains a face-centered
cubic (fcc) twin is found to be stable, corroborating with the
classical results [8]. At high strains the predominant structure
is found to be registered sliding of hexagonal close packed
(hcp) layers. Moreover, a dense direction of the hcp layer
prefers to be parallel to the velocity at high strain amplitudes,
whereas at low strains a dense direction is parallel to the flow

*joachim.dzubiella@helmholtz-berlin.de

direction. This behavior results in a 30◦ turn in the scattering
pattern [10]. The corresponding diffraction patterns [8,9]
show threefold symmetries. Besseling et al. have calculated
an extensive nonequilibrium state diagram for hard spheres
under oscillatory strain, which categorizes further high-strain
structures.

In general, however, colloids are anisotropic, and as such
there is a rising interest in the behavior of suspensions of
nonspherical particles for fundamental understanding [16–18]
or applications, such as constituents for novel materials [19]
or photonics [20–22]. Desirable on a fundamental level are
hard particles with slight anisotropy that weakly perturb
the isotropic interactions of spherical reference systems.
One popular experimental realization is a system of steeply
repulsive dumbbells, that is a colloidal dimer made up by
two fused equally sized hard spheres [23,24]. The equilibrium
phase diagram and the stability and nucleation processes
of (plastic) crystal phases of hard dumbbells have been
mapped out comprehensively by means of Monte Carlo (MC)
simulations [25–28]. Plastic crystal phases are characterized
by a crystalline center of mass order and a lack of long-range
order of the particles’ orientations [29–31], in which the latter
is the distinguishing attribute in comparison to a fully ordered
crystal. For the convenience of the reader, the relevant parts of
the phase diagram are replotted in Fig. 1.

Out of equilibrium, the impact of the weak anisotropy and
its accompanying translational-rotational coupling [31] on the
rheology and the structure of dispersions under shear has
been of keen interest. This aspect has been investigated by
means of mode-coupling theory [32,33], neutron scattering
[23], and rheological experiments [34,35]. A few years ago,
we presented a very neat experimental realization [36] of
monodisperse hard dumbbells (aspect ratios 0.24 and 0.30),
which matches the plastic crystal phase boundaries well in the
estimated phase diagram (Fig. 1). Employing this well-defined
experimental model system, we have, in fact, very recently
shown by a combination of rheology-scattering (rheo-SANS)
and BD simulations, that hard plastic–crystalline dumbbells
undergo nonequilibrium transitions under oscillatory shear
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FIG. 1. (Color online) Hard dumbbell phase diagram in the vol-
ume fraction φ to aspect ratio L∗ plane [27]. The state points for
dumbbells A (φ = 0.55, L∗ = 0.24), B (φ = 0.55, L∗ = 0.3), and C
(φ = 0.55, L∗ = 0.1) considered in this work are marked by symbols
(�). The state point S (•) denotes an almost hard-sphere-like reference
system (φ = 0.55, L∗ = 0.02). For better orientation, the freezing
(φHS

freeze), melting (φHS
melt), and close-packed (φHS

CP ) packing densities of
the HS system are indicated at the vertical axis.

similar to hard spheres, but the nature of the transition differs
strikingly [37]. In particular, we observed a finite orientational
correlation arising on increasing strain amplitudes [37] and a
more vigorous transition with large implications on rheology
and the yielding behavior.

In this work, we follow up on our previous work and
extend our computational work to other aspect ratios and
a wider frequency range. Our focus is thus the region of
small-to-moderate elongations (aspect ratios L∗ < 0.4) and
high volume fractions where the plastic crystal (PC) phase
predominates [38]. Furthermore, kinetics properties of the
suspensions are investigated by our simulations. We also
present rheology experiments on a second aspect ratio (0.3).
We note that the aspect ratio of 0.3 represents an anisotropy
very close to that of a nitrogen molecule, that also features a
plastic crystal phase [39,40], referred to as β phase, so one
could consider our system as colloidal nitrogen.

II. METHODS

A. Brownian dynamics

The BD simulations are carried out using Ermak’s [41]
method for interacting particles in solution with an additional
term to account for the oscillatory shear force. We neglect
hydrodynamic interactions among the particles, as the systems
under consideration are disturbed in a regime where the driving
forces are in the order of the viscous forces, i.e., the Péclet
numbers are small; see also related work [7]. The dumbbell
particles are represented by a two-segment Yukawa model, in
which the particles interact via two spherical beads constrained
at the constant distance L with a steep Yukawa potential (decay
length κ−1 = 0.05σ ) defined by

V (r) = ε
σ

r
exp {−κ(r − σ )}, (1)

TABLE I. Single-particle diffusive properties used in the simula-
tions, obtained by SHM calculations.

L∗ D‖/DS
0 D⊥/DS

0 Dr/D
S
r

0.02 (S) 0.99 0.99 0.97
0.10 (C) 0.97 0.95 0.85
0.24 (A) 0.93 0.89 0.69
0.30 (B) 0.91 0.87 0.63

where ε = kBT and σ set the energy and length scales,
respectively, and r denotes the center-to-center distance
between two beads. The parameter κ tunes the softness
of the interaction and is chosen to maintain computational
performance and resemble hard particle behavior. We employ
a forward Euler scheme in order to integrate the equations of
motion [41,42]. The time scale is set to the Brownian time
τ = σ 2/DS

0 of a single bead of diameter σ and diffusivity
DS

0 = kBT (3πηsσ )−1 with a solvent viscosity ηs . The parallel
and perpendicular center of mass (COM) coordinates are
updated according to

Rn+1
i,‖ = Rn

i,‖ + 
t
D‖
kBT

Fn
i,‖ + δri,‖un

i , (2)

Rn+1
i,⊥ = Rn

i,⊥ + 
t
D⊥
kBT

Fn
i,⊥ + δri,1en

i,1 + δri,2en
i,2, (3)

Rn+1
i = Rn+1

i,‖ + Rn+1
i,⊥ + 
tγ̇ (t)Rn

yex. (4)

The shear flow only affects the COM transport in x direction
through the last term in the equation [Eq. (4)]. The directors
are updated following

un+1
i = un

i + 
t
Dr

kBT
Tn

i × un
i + δx1en

i,1 + δx2en
i,2, (5)

where Tn
i is the total torque exerted on particle i at time

t = n
t . The single-particle diffusion coefficients parallel D‖,
perpendicular D⊥ to the long axis, and Dr for the rotation about
the short axis depend on the particle geometry; their respective
values, scaled by the respective translational and rotational
diffusion constants DS

0 and DS
r = kBT /(πηsσ

3) of spherical
colloids are listed below (Table I). The torque is comprised of
the interparticle and background-flow contributions via

Ti(t) = Tp

i (t) − kBT

Dr

{ui(t) × E(t) · ui(t)}. (6)

We impose a time-dependent linear shear flow in the
x direction such that the shear gradient is parallel to ey

and the vorticity is in the z direction. As the flow velocity
v(y) = vx(y)ex vanishes at y = 0 and depends linearly on y,
the velocity-vorticity plane is the plane of (spatially) constant
flow velocity. Hence, the sheared system retains symmetry in
this particular plane, cf. Fig. 2. Mathematically, the shear flow
is thus described by the rate-of-strain tensor

E(t) = γ̇ (t)

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠, (7)
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FIG. 2. (Color online) Sketch of the imposed shear flow and the
used coordinate system where the velocity is in x, the velocity gradient
in y, and the vorticity is along the z direction. The dumbbells’ bead
diameter is σ and the aspect ratio (elongation) is defined as L∗ =
L/σ , where L is the center-to-center distance of both beads. In the
simulations, we apply Lees-Edwards boundary conditions [43].

which may be written as a sum of symmetric and antisymmet-
ric tensors, i.e., the shear and vorticity tensors:

E(t) = 
(t) + �(t), (8)

= 1

2
γ̇ (t)

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ + 1

2
γ̇ (t)

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠. (9)

The symmetric part 
 describes the pure elongational flow,
while the antisymmetric part � describes the vorticity of
the flow. The vorticity is spatially uniform and quantifies
the solvent contribution to the rotation of the particles. The
time-dependent strain with the dimensionless amplitude γmax

imposed by the flow field on the suspension is thus given by

γ (t) = γmax sin(ωt). (10)

Hence, the linear solvent velocity profile is

vx(y,t) = γ̇ (t)y. (11)

In order to compare the driving force to the intrinsic viscous
forces, we define the Péclet numbers

Pe = 1

12
f γmaxσ

2/DS
0 = 1

12
f γmaxτ, and (12)

Per = 2πf γmax/Dr, (13)

where the latter is a definition respecting the time scale set
by the rotational Brownian motion. The maximum shear rate
γ̇max = γmax/τ sets the time scale of the driving force exerted
by the shear flow.

In order to compare the results of our simulations, the
time scales set by the diffusion constants and sizes of the
particles are important. For dumbbells with L∗ ≈ 0.24, the
parallel (D‖ = 0.93DS

0 ), perpendicular (D⊥ = 0.89DS
0 ), and

rotational (Dr = 0.69DS
r = 0.69(3DS

0 )/(2RH )2) diffusivities
have been obtained by the shell bead model method (SHM)
and matched to the experimental data described in our previous
work [36]. In Table I the reader may find the exact parameters
used for the respective systems. Thus, the rotational Brownian
time scale is τr = 0.69(2RH )2/(3DS

0 ) in this case. In length
and time units of 2RH and τ , the translational Péclet number
is defined as Pe = 1

12f γmax(2RH )2/DS
0 , where RH is the
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FIG. 3. (Color online) Out-of-equilibrium states [I: twinned fcc
(�), II: disordered (◦), III: sliding layers (�)] observed in the
frequency-strain (f τ -γmax) plane of the parameter space in our BD
simulations at state point A, cf. Fig. 1. The dashed lines are tentative
boundaries of the respective nonequilibrium states.

hydrodynamic radius of a sphere in the experimental frame
of reference.

We simulate (N = 864) dumbbell particles subjected to
Lees-Edwards [43] periodic boundary conditions. The systems
are initialized in a crystalline state and run for 100τ at the
frequencies f = 1τ−1, f = 3τ−1, and f = 5τ−1. The aver-
ages are calculated over 50 and 250 strain cycles, respectively,
in the steady state. Figure 3 shows the parameters we have
investigated in oscillatory shear conditions and the states
we have identified. For a summary of the equilibrium state
points under consideration the reader is referred to Fig. 1. The
respective results are detailed in Sec. III.

B. Trajectory analysis

1. Structure factors

The static structure factor S(qx,qz) is evaluated in the
velocity-vorticity plane at qy = 0. This reciprocal plane cor-
responds to a neutron experiment where the incident beam is
parallel to the gradient direction of the shear flow. We calculate
the structure factor directly from the COM coordinates of the
dumbbells as

S(qx,qz,0) =
〈

N∑
i=1

e−ıq·Ri

〉
, (14)

where the angle brackets denote the trajectory average, which
is taken in the steady state.

2. Scattering intensity

The scattering intensity of the suspension I (q) is the
convolution of the COM structure and the distribution of
scattering centers within each particle. The scattering ampli-
tude A(q; u) describes the scattering of a single particle with
orientation u and constant internal density at the scattering
vector q. Averaging the scattering amplitudes over all possible
orientations yields the form factor P (q). The total scattering
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intensity is calculated as

I (q) =
〈∑

j,l

A(q; ul)A(q; uj )e−ıq·(Rl−Rj )

〉
, (15)

where the scattering amplitude of a homogeneous dumbbell
tilted by the angle θ with respect to the scattering vector q is
given by [44]

A(q; u) = 4πR3
∫ 1

−L∗
dt cos(q cos θR[t + L∗]). (16)

3. Orientation

In order to analyze the orientational behavior of the
particles, a measure of the orientation respecting the geometry
of the system given is used. We plot the mean orientation with
respect to the Cartesian axes, which coincide with the velocity,
shear gradient, and vorticity axes, as〈

P α
2

〉
cycle(t) = 〈P2(cos θα)〉cycle(t), (17)

where α denotes the coordinates x,y,z and θα(t) the corre-
sponding instantaneous angles. The average 〈〉cycle denotes
sampling all time steps with the imposed strain state γ (t).

The orientational correlations with respect to the time are
investigated in terms of directional auto-correlation functions
(DACFs) in the assumed steady state. Linearizing the equation
of motion of the directors at some stationary state allows
one to define an effective rotational diffusion coefficient [45].
The DACFs Cl(t) = 〈Pl(u(t))〉, with l being the order of the
Legendre polynomial Pl , may be approximated by

Cl(t) = exp

(
−l(l + 1)

t

τr

)
. (18)

4. Center of mass order parameters

In order to distinguish crystalline structures, we use the
local bond order analysis proposed by [46]. For each particle
i a vector ql(i) is defined by the components

qlm = 1

Nb(i)

Nb(i)∑
j=1

Ylm(R̂ij ), (19)

where Ylm(R̂ij ) are the spherical harmonics for the normalized
separation vectors R̂ij , and Nb(i) is the number of the ith
particle’s neighbors:

ql(i) = 4π

2l + 1

l∑
m=−l

|qlm(i)|2, (20)

wl(i) =
(

l∑
m=−l

|qlm(i)|2
)−3/2 ∑ (

l l l

m1 m2 m3

)

× qlm1 (i)qlm2 (i)qlm3 (i), (21)

where the second sum runs over all −l � mj � l, fulfilling
m1 + m2 + m3 = 0.

We define the ensemble-averaged order parameters as

〈Ql〉 =
〈

1

N

N∑
i=1

ql(i)

〉
, and (22)

〈Wl〉 =
〈

1

N

N∑
i=1

wl(i)

〉
, (23)

where the angle brackets 〈. . . 〉 denote the time average in
the steady state. In this work the COM order is monitored
in terms of averaged local order parameters 〈Q4〉 and 〈W4〉.
These order parameters are sensitive to the configurations of
the neighborhoods of solidlike particles. In particular, fcc and
hcp structures are separated by a change of the sign of 〈W4〉.

5. Radial distribution function and Enskog collision rate

The radial distribution function (RDF) of the beads is
defined as

g(r) = 1

Nρ

〈∑
i

∑
j

δ[r − (ri − rj )]

〉
. (24)

In a homogeneous and isotropic system, the RDF depends only
on the distance r = |r|.

From a structural point of view, it is interesting to investigate
the collision probability (or rate) during the shear and the
phase transitions. It gives a rough picture of the average
configurational freedom of the dumbbells under shear. The
Enskog collision rate for hard spheres with diameter σ is given
by [47]


E = g(σ )
0, (25)

where g(σ ) is the contact value of the RDF, and 
0 is
the collision frequency in the dilute gas, which is the ratio
of the mean velocity and the free path in a suspension of
hard spheres. In the Enskog approximation, which neglects
correlated collisions, the self-diffusion coefficient is inversely
proportional to the contact value,

DE = 3kBT

2m
E

, (26)

for a particle of mass m. Since our particles have smooth
potentials, the RDF does not have its first maximum exactly
at r = σ . Therefore, we take the height of the first maximum
g(rmax) as a measure for the collision rate.

III. RESULTS AND DISCUSSION

A. Steady-state structures and transitions

We start with the discussion of BD simulated scattering
intensities for selected state points. In Fig. 4 the scattering
intensities I (q), including the scattering amplitude calculated
as defined in Eqs. (15) and (16), are shown in the velocity-
vorticity plane. The data correspond to state point B, cf. Fig. 1,
at a frequency of 5τ−1 for selected strains.

The intensity plots illustrate the transition from the low-
strain twinned crystal state (I) to the high-strain sliding layer
state (III), corroborating with earlier results on a smaller aspect
ratio [37]. In all ordered states a hexagonally ordered plane
is parallel to the velocity-vorticity plane in the shear flow
framework. A common feature of the scattering plots is the fact
that the maxima may be seen on rings of constant scattering
vector magnitude. At low strain amplitudes [Figs. 4(a) and
4(b)], a shear-twinned fcc crystal is stable, which has a densely
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FIG. 4. (Color online) Scattering intensities I (q) (250 cycles averaged) in the qy = 0 plane of sheared dumbbell suspensions (L∗ =
0.30,φ = 0.55, state point B) at frequency f = 5τ−1. From top left to bottom right: increasing strain amplitude γmax: 0.05 (a), 0.1 (b), 0.2 (c),
0.3 (d), 0.5 (e), and 1.0 (f).

packed direction perpendicular to the velocity direction, while
at high strains [Figs. 4(d)–4(f)] a dense direction parallel
to the velocity is favorable. Here, the fully ordered systems
tend to form two-dimensional hcp layers in the velocity-
vorticity plane. These planes are the most densely packed
crystallographic planes for fcc and hcp crystal structures and
their stacking sequence determines the crystallographic type.

Similar transitions had been observed in spherical systems
[7,8,11]. However, slightly anisotropic dumbbells introduce
an additional, orientational degree of freedom, and, although
weak, it leads to a more abrupt transition compared to the
spherical case, as we have previously demonstrated for a
smaller aspect ratio [37]. In equilibrium terms it could be
said the mild anisotropy qualitatively changes the transition
from being continuous to discontinuous. This phenomenon
is already present in the series of scattering intensities, as
we observe a fully molten state for intermediate states, cf.
Fig. 4(c). In contrast, for the hard spherical reference case, we
always detect order in the form of crystalline hybrids [37]. At a
strain amplitude of about γmax ≈ 0.2 the system does not show
long-range correlation and is nearly isotropic [Fig. 4(c)]. Close
to this transition an anisotropy may be observed at very small
scattering vectors in the reciprocal velocity-vorticity plane.
Above this isotropic state hexagonal layers perform a zigzag
trajectory, which is indicated by a 30◦ tilt of the scattering
pattern. In the present case we conclude, from comparison to
the idealized picture and from the reasoning concerning the
volume fractions given by Ackerson [9], that the COM motion
of the dumbbells follows strongly registered trajectories while
maintaining two-dimensional hexagonal in-plane order.

In the following, we investigate the particles’ orientational
and translational structure under the action of shear. Figure 5
summarizes the structural information in terms of averaged

0
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L∗ = 0.24 (A)
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FIG. 5. (Color online) Order parameters for state points A and
B at f = 5τ−1. (a) Averaged orientational order parameter in flow
direction 〈P x

2 〉, and (b) translational order characterized by 〈Q4〉
(filled symbols) and 〈W4〉 (open squares).
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y

(b) (c)

FIG. 6. (Color online) Simulation snapshots at prominent points in the shear cycle for γmax = 0.3,f = 1τ−1 for state point A in the twinned
fcc state I at (a) maximum, (b) zero, and (c) minimum instantaneous strain in the shear cycle. The particle radii are scaled by 1/2 for a better
view of the structure.

order parameters for state points A and B, cf. Fig. 1, at a
frequency of 5τ−1. Figure 5(a) shows that the average 〈P x

2 〉,
quantifying the average dumbbell orientation along the flow
direction, is slightly increasing with strain for both aspect ratios
in the fcc state until it drops to zero in the disordered state
and is nonzero again in the high-strain regime. In Fig. 5(b)
the translational order, described by 〈Q4〉, is shown for the
dumbbells compared to the nearly hard-sphere reference case
(S). Thus, the nonmonotonicity of the orientational measure
with respect to the strain amplitude is due to the loss of long-
range order. The latter is not preserved in the transition region
for sufficiently high aspect ratios, at which neighboring layers
of different orientation cannot pass smoothly anymore. The
behavior at the transition clearly shows that the orientational
and translational order changes abruptly in a discontinuous
fashion for dumbbells, while, in contrast, the transition in
suspension of hard spheres has a continuous character. This
behavior is retained for dumbbells with a slender elongation
of L∗ = 0.10 (system C), which show an ordered state at
all investigated strain amplitudes. The average 〈P x

2 〉 for state
point C shows a slight increase at low strain amplitudes as
well, approaching a plateau value of about 0.02 in a rather
monotonous fashion beyond γmax � 0.3. This corresponds
well to our previous finding that long-time stress correlations
do become important for dumbbells above approximately
L∗ = 0.15 [48]. Additionally, the negative 〈W4〉 in state I
indicates fcc-dominated structure; in state III this parameter
vanishes on average, indicating loss of fcc order.

Moreover, the steady-state structures and transitions depend
on the shear frequency, which is summarized in the nonequi-
librium phase diagram in Fig. 3. The diagram shows the phases
depicted for various strain amplitudes γmax versus frequency
f for state point A. In our simulations, state III does not
appear at f = 1/τ , whereas state I is stable up to γmax ≈ 0.30.
For higher frequencies f = 3/τ and f = 5/τ , we observe the
ordered state III above an amplitude of approximately 0.3,
moving slightly to lower strains on increasing frequencies,
which is sketched by the dashed lines in Fig. 3.

Let us now characterize the respective nonequilibrium
states in more structural detail.

Twinned-FCC regime (I). At low strain amplitudes, a shear-
twinned fcc-dominated structure is observed in the steady state.
Figure 6 shows a series of snapshots taken at distinctive points
in the strain cycle at which the instantaneous strain is minimal
[γ (t) = −γmax], zero [γ (t) = 0], or maximal, respectively. In
this state, particles may follow the oscillatory flow and transfer
between the triangular voids offered by neighboring layers.
These void spaces are accessible in the vicinity of the extrema
of the strain cycle; in between the particles are forced to pass
particles of adjacent layers closely, which is referred to as
bridge stacking. This behavior finds expression in the transient
orientation which is subtly coupled to the strain cycle through
particle interaction. At these low strain amplitudes, γmax < 0.1,
the orientation shows a subtle interplay between the velocity
and the vorticity axes, while the amplitude in both is very
small. This is exemplified in Fig. 7(a), where we show the
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〉 cy

cl
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0 0.1 0.2
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α = x y z

(a) (b) (c)

FIG. 7. (Color online) Time-resolved orientation within one cycle (averaged over 250 cycles) at frequency f = 5τ−1, elongation L∗ = 0.30
(state point B), volume fraction φ = 0.55, and for different strain amplitudes: (a) γmax = 0.05, (b) γmax = 0.10, and (c) γmax = 0.15.
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FIG. 8. (Color online) System (B) in the fully disordered state
II at γmax = 0.2, snapshot (a) and cycle-averaged orientational order
parameters 〈P α

2 〉cycle(tc) (b).

time-resolved orientation in one shear cycle. In approaching
the transition to the high-strain state, 0.1 � γmax � 0.2, the
amplitudes of 〈P x

2 〉cycle and 〈P z
2 〉cycle are still in the order of

the average [cf. Figs. 7(b) and 7(c)]. The shear-twinned fcc has
a signature in the structure factor [see Figs. 4(a) and 4(b)]. The
inner peaks are forbidden for equilibrium fcc crystals; in the
present case we clearly observe nonvanishing peaks on the first
ring and we see that their magnitude grows upon increasing
strain. Additionally, let it be noted that the peaks on the velocity
axis (qz = 0) are the first to rise at very low strain amplitudes.
Although the shear twin is not fully developed at strains less
than 0.2, the scattering intensity reveals that the equilibrium
crystal is disturbed sufficiently from γmax � 0.05. Let it be
noted that the present very dense systems are crystalline
in equilibrium, and it has been shown that the crystalline
state becomes stable for lower amplitudes with increasing
density [9].

Intermediate disordered state (II). While for suspensions
of hard spheres a disordered state in between the low-strain
twinned-fcc (I) and high-strain sliding layer (III) regimes is
not observed, in fact, we find stable hybrid structures upon
reduction of the anisotropy, and for sufficiently elongated
dumbbells the low-strain structure always melts fully at

x
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〉 cy
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FIG. 9. (Color online) Snapshot in the flow-gradient (x − y)
plane (a) and oriental order parameters (b) in velocity (x), gradient
(y), and vorticity (z) directions versus strain cycle at γmax = 1.00 for
state point B in the high-shear state III, where the orientations exhibit
a finite order modulated by the imposed shear.

intermediate strain amplitudes. We find neither long-range
translational order nor any orientational correlations whatso-
ever, which is confirmed considering the scattering intensities
in Fig. 4(c). A representative snapshot and cycle-averaged
orientations are shown in Fig. 8, clearly demonstrating disor-
der. Evidently, this is a distinctive behavior introduced by the
orientational degree of freedom of the particles with a sufficient
elongation.

Sliding layer regime (III). While the centers of masses
perform a zigzag motion, a tendency of the particles’ ori-
entation towards the velocity axis is observed, directly after
reaching the critical strain to assemble into velocity-oriented
layers. Figure 9 shows the cycle-averaged orientation in the
high-strain regime, where a dense direction of each layer is
aligned with the velocity direction. Here, the velocity and
gradient directions of the directors are clearly modulated by
the shear cycle, while the vorticity direction is essentially flat.
In this case, the modulus of the P x

2 cycle average is maximal at
times, when the instantaneous strain vanishes [γ (t) = 0], and
its amplitude is about 0.01 and the average 0.06. On average,
the directors slightly tend to be parallel to the velocity and
perpendicular to the gradient. This coincides with a decoupling
of the orientation from the imposed strain γ (t), where the
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FIG. 10. (Color online) (a) Orientational relaxation constants
from the decays of the C1 correlation functions for state points A, B,
and C, and (b) contact values of the radial distribution function g(r)
on increasing strain amplitude for state point A.

amplitudes of 〈P α
2 〉cycle are significantly smaller than their

respective averages.

B. Kinetic properties

Let us now turn our focus to rotational relaxation properties
and particle collision rates. Figure 10(a) shows the inverse
relaxation constant τ−1

r obtained from the exponential decays
of the orientational autocorrelation functions according to
Eq. (18) normalized by their short-time values at infinite
dilution Dr in the absence of any external field. The effective
rotational decay is enhanced in the disordered state, while it
is similar to the equilibrium case in the low-strain regime,
and a significant slowing down is observed in the high-strain
state. At small strain amplitudes the values are slightly smaller
than unity, as we expect from the analysis of the equilibrium
behavior with respect to volume fraction and elongation [48].
In the regularly structured twinned fcc regime (I), the diffusion
is basically constant with increasing strain amplitude. In the
transition region 0.2 < γmax < 0.3 we observe an elevated
orientational diffusion where it is steeply curved with respect
to the strain amplitude. On entering the high-strain regime it
jumps back to a value close to its initial value at rest. With
increasing strain amplitude the orientational diffusion then

slightly decreases. In the high-strain regime we observe a state
showing enhanced coupling of the dumbbells’ orientations in
space and time. For the higher aspect ratio (system B) we
observe similar behavior, while the peak in the disordered
state (II) at about γmax ≈ 0.25 is much less pronounced. Also,
on increasing the elongation, the normalized inverse time
scales are smaller than in the former system (A). This can
be explained considering the packing effect from our previous
study [48], where we show that packing gets important for
long-time relaxation from L∗ � 0.3. At the low aspect ratio
of state point C, which does not show a fully disordered state,
we observe essentially unhindered rotational relaxation and
virtually no influence of the shear amplitude.

The transition behavior of the rotational diffusion corre-
sponds well to the contact value analysis, allowing us to
connect structure and kinetics. Figure 10(b) shows the values
of the RDF g(r) at contact (r = rmax) of system A with L∗ =
0.24,φ = 0.55. On approaching the melting strain at about
γmax = 0.2, the contact value g(σ ) = 
E/
0 rises slightly. At
the transition from the ordered shear-twinned system (I) to the
disordered state (II), the contact value shows a distinct jump
of about 10%. A smaller jump is observed at the transition
to the ordered high-strain regime, where the contact value is
less than in the disordered state and reaches a plateau at about
g(rmax) ≈ 2.1. Following the inverse relationship of diffusion
and contact value in the Enskog approximation Eq. (26),
thus the diffusivity increases drastically in the transition
region (II).

C. Comparison to experiments

In the following we introduce experiments on the rheol-
ogy for the “colloidal nitrogen” case at L∗ = 0.3 (B). The
details on the experimental and synthesis procedures may
be obtained from our previous papers [36,37]. Comparison
to the prediction of the phase diagram in Fig. 11(b) shows
that the coexistence region (fluid/PC) shrinks with increasing
elongation and the phase boundaries of the experimental
systems fit very well. A glance at Fig. 11(a) also confirms
that the fraction of crystalline sample in the biphasic region is
linear in concentration, and, thus, the equilibrium properties of
the experimental correspondent of system B are well defined.
The yielding behavior of the hard dumbbells with L∗ ≈ 0.30
in the plastic-crystalline phase is displayed in Fig. 12(a). The
experimental data indicate kinetic differences as the rheology
of system A is retained by either the frequency or the number
of shear cycles per point. While the yielding behavior of
hard dumbbells with L∗ ≈ 0.30 in the plastic-crystalline phase
displayed in Fig. 12(a) exhibits one event under oscillatory
shear at f = 1 Hz, there are two yielding events at f = 5 Hz.
Compared with the former frequency, the number of applied
shear cycles is increased by five times within the same
measurement time for the experiment at f = 5 Hz. It is
necessary to mention that the double yielding event is observed
in the oscillatory shear field with f = 1 Hz as well when
the measurement time is prolonged by five times, as shown
in Fig. 12(b). Based on these three sets of experiments, it
is concluded that the hard dumbbells with L∗ ≈ 0.30 in the
plastic-crystalline phase can show the same double yielding
behavior as the hard dumbbells with L∗ ≈ 0.24, but the former
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FIG. 11. (Color online) Phase equilibrium (a) of hard dumbbells
at L∗ ≈ 0.3 from crystallization experiments. The experimental phase
diagram (b) [denoted by red squares (�)] is compared with the
prediction of MC simulations (solid black line (•) [27]) for L∗ = 0.24
and L∗ = 0.30.

needs more or faster oscillations to achieve the steady state.
The system of hard dumbbells with L∗ ≈ 0.30 (B) is closer to
the glassy state predicted by Zhang and Schweizer than that
with L∗ ≈ 0.24 (A) at the same volume fraction of 0.6 [32,33].
Due to the expected slowdown of the dynamics in the vicinity
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FIG. 12. (Color online) (a) Dependence of G′ and G′′ on increas-
ing γmax for hard dumbbells with L∗ ≈ 0.30 in the plastic crystal
phase under oscillatory shear at f = 1 Hz (circles) and f = 5 Hz
(squares). This measurement is performed with the default setting
(100 s/point). (b) Shear moduli versus strain amplitude γmax for
the same system phase that is measured under oscillatory shear of
f = 1 Hz with 500 s/point. The filled symbols denote G′, while
open symbols represent G′′.

(g)

(f)

(c)

(b)

(a)

(d) (e)

FIG. 13. (Color online) Yielding behavior of the hard dumbbells
with L∗ ≈ 0.30 (the DPM_b microgels) in the fully crystalline phase
(φeff = 0.60) in the oscillatory shear of 5 Hz and the corresponding
two-dimensional scattering patterns are measured by SANS. Along
the dependence of G′ and G′′ on various strains: (a) at rest (b) 16%
(Per = 0.29, the end of the linear regime), (c) 42.3% (Per = 0.75
the plateau of G′, the minimum for G′′), (d) 51.5% (Per = 0.90, the
maximum for G′′), (e) 92.6% (Per = 1.62), (f) 300% (Per = 5.37),
and (g) 1000% (Per = 17.84).

of the glass transition in the former case, stronger and longer
oscillations are required to induce the same structural change
as that with L∗ ≈ 0.30.

As detailed above, in the BD simulations at constant
frequency (f = 5τ−1) (Fig. 5) we observe the transition at
nearly the same strain amplitude for systems A and B, while
for both cases this transition clearly occurs at lower amplitudes.
Moreover, rheo-SANS experiments have been carried out to
investigate the underlying shear-induced structural evolution
that corresponds to the double yielding behavior. For a direct
compilation of scattering data and rheology, see Fig. 13. The
rheo-SANS experiments clearly demonstrate that the longer
dumbbells (B) undergo the same structural evolution to those
with L∗ ≈ 0.24 (A), corresponding to the simulation results.
With the increasing applied shear strains, fully crystallized
longer dumbbells undergo the phase transition from twinned
fcc (I) to the partially orientated sliding layer state (III), while
being disordered in between (II). The main difference in the ex-
perimental realization is that the longer dumbbells need larger
Péclet numbers Per to induce the same nonequilibrium states
as compared with hard dumbbells with L∗ ≈ 0.24, which we
summarize in Table II. It should be noted that the simulated
frequencies and, thus, the Péclet numbers are approximately
five times as high as the experimental parameters. In our
simulations, the transition from II to III occurs at nearly
the same values Per = 4.56 and 4.64 for systems A and B,
respectively.
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TABLE II. Comparison of critical Per at the formation of vorticity alignment structure, the twinned
fcc, the intermediate structure, and the partially oriented sliding layers in the hard dumbbells with
L∗ ≈ 0.24 and L∗ ≈ 0.30. Dr is obtained from (depolarized) dynamic light scattering measurements.

Sample Dr/s−1 Per (aligned) Per (twinned fcc) Per (interme-diate) Per (sliding layers)

L∗ ≈ 0.24 6.05 0.24 0.52 0.62 1.20
L∗ ≈ 0.30 17.70 0.29 0.75 0.89 1.62

IV. CONCLUSIONS

Following up on our previous study [37], here we have
provided more evidence that the mild anisotropy of dumbbell-
shaped particles leads to qualitative changes in the nature
of the nonequilibrium phase transitions of plastic crystals of
spherical colloids under oscillatory shear, in particular, that the
continuous transition observed in spherical systems transforms
into a discontinuous transition. The latter phenomenon must
be attributed to rotational-translational couplings [31], absent
in nearly spherical systems, that apparently lead to dramatic
changes in the structural and stress relaxation behavior. In
fact, we recently showed by equilibrium BD simulations that
plastic dumbbell crystals exhibit a dramatic increase of the
linear shear response for high packing fractions above a critical
aspect ratio of about 0.15 [48]. With respect to the sequence
of shear-induced states, the type and the dynamics of the

equilibrium to twinned crystal transition remains an interesting
issue which may stimulate a future study. The observed strong
transitions have substantial implications for rheology and the
yielding behavior of anisotropic colloidal crystals, as detailed
by Chu et al. [37]. The experimental results also show a
frequency and time dependency of the rheology which we
attribute to a dynamical slowing down. The present results
also demonstrate that the thermosensitive dumbbell particles
introduced before [36] serve as an excellent and versatile
model system for mildly anisotropic colloids to study their
equilibrium and nonequilibrium structural and phase behavior.
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