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Anisotropy of stress correlation in two-dimensional liquids and a pseudospin model
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Liquids are condensed matter in which atoms are strongly correlated in position and momentum. The atomic
pair density function (PDF) is used often in describing such correlation. However, elucidation of many properties
requires higher degrees of correlation than the pair correlation. For instance, viscosity depends upon the stress
correlations in space and time. In this paper, we examine the cross correlation between the stress correlation at
the atomic level and the PDF for two-dimensional liquids. We introduce the concept of the stress-resolved pair
distribution function (SRPDF) that uses the sign of atomic-level stress as a selection rule to include particles
from density correlations. The connection between SRPDFs and stress correlation function is explained through
an approximation in which the shear stress is replaced by a pseudospin. We further assess the possibility of
interpreting the long-range stress correlation as a consequence of short-range Ising-like pseudospin interactions.
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I. INTRODUCTION

In liquid atoms are strongly correlated in position and
momentum, although its structure and dynamics appear to
be random and chaotic. Therefore, hidden physics is often
unveiled through spatiotemporal correlation analysis of ther-
mally activated fluctuations. The pair distribution function
(PDF), g(�r), is a typical example of describing density
correlation. Statistically g(�r) quantifies the probability of
finding other particles at position �r with respect to a central
reference particle [1,2]. Because the liquid is isotropic without
external shear, the PDF is often denoted as g(r) where
r = |�r|. The PDF of liquids has been extensively investigated
using scattering experiments [3,4], computer simulations [5],
and theories [6], for instance through the Ornstein-Zernike
relation [1,2], and serves as one of the key parameters to
characterize atomic correlation [1,2].

In contrast to the well-studied PDF less progress has been
made in understanding the physics underlying correlation in
shear stress fluctuations, even though the temporal correlation
of macroscopic shear stress fluctuation is directly connected
to shear viscosity through the Green-Kubo formula, and a
number of works are published regarding shear viscosity
calculations based on this formula [7–12]. By decomposing
the macroscopic shear stress into the contributions from each
atom [13], it can be found that the shear viscosity is given by the
integration of spatiotemporal correlation of atomic-level shear
stresses [14]. Because the atomic-level stress depends on the
relative positions of an atom at the center and the interacting
neighbors, the atomic-level stress correlation represents a four
particle density correlation.

Based on the decomposition of the macroscopic stress
correlation into atomic-level stress correlations, Levashov
et al. [14,15] investigated the relationship between shear stress
correlations and viscosity in r space, while Furukawa and
Tanaka [16,17] approached this problem in reciprocal space.
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Both studies concluded that viscosity has a nonlocal nature
suggesting that the correlations among atomic-level shear
stresses are long ranged. However, the microscopic origin
of stress correlation in liquids and its underlying physics
remains unclear. For example, the stress correlation function
shows prominent oscillations as a function of r , reflecting the
atomic structure [14,15]. For this reason, in some studies of
amorphous solids [18–21], they use coarse-grained stress in
order to approach a continuum limit and enhance applicability
of elasticity theory [22,23]. In this study, we focus on the
relationship between these oscillations and the PDF.

Recently we demonstrated that in two-dimensional liquids
the spatial correlations among atomic- level stresses are
extended and anisotropic [24]. In this paper, we further inves-
tigate the microscopic origin of the observed stress correlation
from the perspective of cross correlation between atomic-level
stress and density fluctuations. We introduce the concept of
the stress-resolved pair distribution functions (SRPDFs) which
employ the sign of a specific stress component as a selection
rule on the particles and decomposes the isotropic PDF into the
SRPDFs. Here we use x-y shear stress as the stress component
as an example to demonstrate the concept.

This paper is organized as follows. In Sec. II, we describe
our molecular dynamics (MD) simulation setup and data
analysis methods which are used in calculating the atomic-
level stress and the SRPDFs. In Sec. III, we present the results
of the SRPDFs and analyze their anisotropy through spher-
ical harmonics expansion. We connect the stress correlation
function and SRPDFs through representing the atomic-level
stress as quantized pseudospins, and develop an Ising-like
pseudospin model with anisotropic exchange interaction to
understand stress correlation in Sec. IV. Finally we present
conclusions in Sec. V.

II. METHODS

We ran molecular dynamics simulations [25] in two dimen-
sions using the LAMMPS code [26]. We simulated monoatomic
particles interacting through the pairwise Yukawa potential
that can be expressed as V (r) = U0

σ
r

exp(−λr−σ
σ

). We used
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the Lennard-Jones (LJ) units, where the potential parameters
σ , U0, and mass of a particle m define the units of length,
energy, and mass. In all runs, U0 = 1, σ = 1, λ = 8, and m =
1. We employed a rectangular simulation box with the aspect
ratio of 2 :

√
3 and applied periodic boundary conditions in

both directions. All simulation runs of 2500 particles were
conducted under the NVT ensemble with the number density
fixed at 1.15. Under these settings, the melting temperature is
found to be around T ∗ = 0.9 and the system forms liquids at
temperatures beyond 1. For further details concerning the MD
simulation setup, we refer to Ref. [24].

We use the atomic-level stress to assess the local stress
state of each particle and further examine its fluctuations. Its
calculation follows the equation below [13]:

σ
αβ

i = 1

Ai

∑
j

dV (rij )

drij

rα
ij r

β

ij

rij

, (1)

where the subscript represents the identity of the particle and
the superscript means the corresponding Cartesian compo-
nents. For instance, rx

ij denotes the distance between particles
i and j along the x-axis direction, and Ai is the atomic area
of particle i, which could be evaluated from Voronoi analysis.
However, for the sake of convenience, we replaced it with the
average area A

N
, where A is the total area of the simulation box

and N is the total number of particles. The summation over
j is limited to particles inside a circle centered at particle i

with the radius being the cutoff distance for force evaluation.
We note that the kinetic contributions to the stress tensors are
ignored because they are negligibly small compared with the
virial terms in Eq. (1) under the conditions studied here.

We restate the definition of the spatial stress correlation
function introduced in Ref. [24]. Again we employ the
autocorrelation of x-y shear stresses, which is listed below:

C(�r) =
〈∑

i

∑j �=i

j σ
xy

i σ
xy

j δ(�r − �ri + �rj )√∑
i

(
σ

xy

i

)2
√∑

j

(
σ

xy

j

)2

〉
. (2)

We introduce the SRPDF that is based on the sign of the
atomic-level stress. Since the atomic-level stress is a tensor
quantity, various SRPDFs can be defined through different
choices of stress tensor elements. In this study, we chose the
x-y shear stress as the specific stress component and hence

g+,0(�r) =
〈

2A

N2

i∈σ
xy

i >0∑
i

j �=i∑
j

δ(�r − �ri + �rj )

〉
. (3)

The first argument in the subscript of g+,0(�r) indicates
that only the particles that have positive x-y shear stress,
i.e., σ

xy

i > 0, are selected as the reference particles, while
the second argument 0 means no selection rules are applied
to surrounding particles for correlation. Therefore, g+,0(�r)
quantifies the packing pattern of particles around a central
particle with positive x-y shear stress. In a similar manner,
the definitions of other SRPDFs, such as g−,+(�r), are also
straightforward.

III. RESULTS

In Fig. 1, we present g+,0(r,θ ), where r = |�r| and θ is
the polar angle, computed for the liquid phase at temperature
of 1. In panel (a), the result is illustrated in the form of
a two-dimensional contour plot, where the color represents
the intensity. It is first noticed that an ellipse at the center
is stretched along the x = y direction and contracted in the
other diagonal direction. This ellipse suggests that the nearest
neighbor cage around a particle with positive x-y shear stress
is noncircular. This observation is consistent with the previous
understanding that the atomic-level stress originates from the
mismatch between the sizes and shapes of a particle and its
nearest neighbor cage [13,27–31], and in the glassy state the
stress state can be modeled by the continuum elasticity theory
by Eshelby [32]. In this specific example, the nearest neighbor
cage is distorted from a circle with elongation in the x = y

direction and shrinkage in the x = −y direction, while the
shape of the central particle is circular. As a result of this
misfit between the central particle and the host cage the central

FIG. 1. (Color online) The SRPDF gxy+,0(r,θ ) calculated from a liquid at T ∗ = 1. Panel (a) shows the contour plot, while panel (b)
illustrates the intensities along three representative directions, namely, polar angle θ = 0◦ (black dot-dashed), 45◦ (blue dashed), and 135◦

(red).
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FIG. 2. (Color online) The isotropic (l = 0 mode) component of g+,0(�r) in panel (a) and the anisotropic (l = 2, m = −2 mode) component
in panel (b) acquired from spherical harmonics expansion. The isotropic component is compared against total PDF and the anisotropic
counterpart is compared with the derivate of total PDF after rescaling and phase shifting.

particle experiences a shear stress. The sign of the shear stress
is determined by the direction of distortion of the neighbor
cage. For instance, if the neighbor cage distortion is in the
opposite manner, 90◦ away, the shear stress of the central
particle should be negative.

In panel (b) of Fig. 1, we show the intensity along three
representative directions. In this representation, the distortion
of the nearest neighbor cage is reflected by the systematic
shifts of respective first peaks. For example, the first peak
of g+,0(�r) along the polar angle θ = 45◦ direction is pushed
outwards and that along the θ = 135◦ direction is contracted
inwards. It is interesting to note that the systematic shifts of
peaks are not limited to the first peaks but extend to long range.
We performed the spherical harmonics expansion on g+,0(�r)
following the standard approach listed below:

g+,0(�r) =
∑
l,m

g
l,m
+,0(r)Y l,m

( �r
|�r|

)
, (4)

where Y l,m is the spherical harmonic function of degree l and
order of m. More details concerning the spherical harmonics
expansion on the PDF are shown in the Appendix. It is

found that the relevant modes are g0
+,0(r) (isotropic) and

g
2,−2
+,0 (r)[sin(2θ ) symmetry]. We show that g0

+,0(r) is identical

to g(r) for all particles and g
2,−2
+,0 (r) is proportional to dg(r)

dr

after the second positive peak with some phase shift in panels
(a) and (b) of Fig. 2, respectively. Based on these observations,
we formulate

g+,0(�r) ≈ g(r) − a
dg(r + b)

dr
sin(2θ ), (5)

where a accounts for scaling between g
2,−2
+,0 (r) and dg(r)

dr
, while

b is for their phase shift. Both of these parameters assume
the dimension of length. At the temperature of 1, we found
a = 0.032 and b = 0.060. Since g(r) = 1

2 [g+,0(�r) + g−,0(�r)],
one can expect that g−,0(�r) ≈ g(r) + a

dg(r+b)
dr

sin(2θ ). This
relationship was indeed confirmed by our calculations.

We next further decompose g+,0(�r) by imposing a second
selection criterion on the surrounding particles based on the
signs of their atomic-level x-y shear stresses. Under this
decomposition scheme, g+,0(�r) = 1

2 [g+,+(�r) + g+,−(�r)]. We
illustrate the contour plots of g+,+(�r) and g+,−(�r) in panels
(a) and (b) of Fig. 3. We see that g+,+(�r) exhibits qualitatively

FIG. 3. (Color online) Two-dimensional contour plots of g+,+(�r) in panel (a) and g+,−(�r) in panel (b) computed from liquid phase at
T ∗ = 1.
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FIG. 4. (Color online) The comparison between isotropic components (l = 0 mode) of g+,+(�r) and g+,−(�r) in panel (a), sin(2θ ) components
(l = 2, m = −2 mode) in panel (b), and cos(4θ ) components (l = 4, m = 4 mode) in panel (c). Note g

4,4
+,−(r) = −g4,4

+,+ (r).

similar anisotropy as that of g+,0(�r), while g+,−(�r) is almost
isotropic.

Spherical harmonics expansions on g+,+(�r) indicate that
there are three relevant modes, namely, g0

+,+(r) (isotropic),

g
2,−2
+,+ (r)[sin(2θ ) symmetry], and g

4,4
+,+(r) [cos(4θ ) symmetry].

On the other hand, the nontrivial modes of g+,−(�r) are
g0

+,−(r) and g
4,4
+,−(r), because g

2,−2
+,− (r) = 0 by symmetry. The

comparisons between various modes of g+,+(�r) and g+,−(�r)
are demonstrated in Fig. 4. It is found that g2,−2

+,+ (r) = 2g
2,−2
+,0 (r)

and g
4,4
+,+(r) = −g

4,4
+,−(r). The first equality suggests that the

twofold-symmetry component of g+,0(�r) exclusively stems
from g+,+(�r) [panel (b) of Fig. 4], while the second equality is
expected because no fourfold-symmetry component is found
in the sum of g+,+(�r) and g+,−(�r) [panel (c) of Fig. 4]. It
should be noted that g0

+,+(r) is slightly different from g0
+,−(r)

as shown in panel (a) of Fig. 4. One can see that peak heights
are different up to the second peak and the long-range peaks
show minor misalignment, which is hardly discernible from
the plot.

IV. PSEUDOSPIN MODEL

In this section, we first establish a connection between the
stress correlation function C(�r) and SRPDFs by simplifying
atomic-level stresses as quantized pseudospins. Then we fur-
ther develop a simple Ising-like pseudospin model which may
help elucidate the microscopic origin of stress correlations.

As far as the anisotropy of stress correlation function
is concerned, the sign of the atomic-level stress is more
important than its absolute magnitude. This hypothesis will
find strong support from the results that are shown below.
Furthermore, Langer suggested the Ising model could describe
the mesoscopic ordering in liquids [33]. Following this idea,
we approximate atomic-level x-y shear stress as quantized Ising
pseudospins that only adopt one of two states, namely,

si =
{

1, if σ
xy

i > 0
−1, if σ

xy

i < 0
(6)

Consequently the stress correlation function C(�r) in Eq. (2)
can be approximated as

C(�r) ≈ 1

N

〈∑
i

j �=i∑
j

sisj δ(�r − �ri + �rj )

〉
, (7)

where we employed an equality that
∑

i (si)2 = N . Because
the product of si and sj equals 1 when they bear the same signs
and −1 otherwise, Eq. (7) can be further reorganized as

C(�r) ≈ N

A
�(�r), (8)

where

�(�r) = 1
4 [g+,+(�r) − g+,−(�r) + g−,−(�r) − g−,+(�r)]. (9)

It is important to note that the above derivation also relies on
the fact that statistically there are equal numbers of particles
with positive and negative x-y shear stresses. Therefore, we
see that the stress correlation function is a linear combination
of SRPDFs under the pseudospin approximation. We further
define the spherical harmonics expansion of �(�r), �l,m(r).
We present the contour plots of C(�r) calculated via Eq. (2)
and �(�r) in panels (a) and (b) of Fig. 5, respectively. The
resemblance between the two plots is remarkable. The quanti-
tative comparison is shown in Fig. 6. We compare the isotropic
mode of �(�r) versus the counterpart of C(�r) in panel (a) and
their cos(4θ ) modes in panel (b). The quantitative agreements
are superb in terms of the shapes, heights, and positions
of the peaks. Nonetheless, we see subtle deviations which
are apparently attributable to the pseudospin approximation.
We emphasize that these deviations are small but physically
important. For example, the spatial integration of �0(r) is zero
because statistically there are equal numbers of particles that
have positive and negative x-y shear stresses, while on the other
hand, the spatial integration of C0(r) is proportional to shear
modulus. This implies that the shear modulus of a liquid is
nonzero due to the deviation from pseudospin approximation.
This point will be discussed elsewhere in future publications.

The results above prove that the pseudospin approximation
is reasonable as far as the extent and anisotropy of stress
correlation are concerned. This approximation then naturally
presents a possibility to interpret the long-range stress corre-
lation as the consequence of Ising-like short-range interaction
among pseudospins. To explore this possibility, we develop
the following Ising-like pseudospin model. We assume that the
state of a pseudospin is driven by interpseudospin interaction
and thermal excitation. The nature of this interaction is
pairwise and short ranged. Under this assumption, one viable
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FIG. 5. (Color online) The contour plots of C(�r) in panel (a), and �(�r) in panel (b) computed from liquid phase at T ∗ = 1. See text for
their definitions.

form of Hamiltonian is

H = −
∑

i

j �=i,rij <rc∑
j

J2 sin 2θij (si + sj )sisj , (10)

where rc is the interaction range of pseudospins, while J2

represents the anisotropic exchange energy.
Within this framework, we carried out Monte Carlo

simulation to test the pseudospin spin model. We used MD
simulation trajectory for the positions of pseudospins. We
assumed J2 = −2.5 in the LJ unit and rc equals the position
of the first peak of the isotropic PDF, namely, rc = 0.93
at T ∗ = 1. The initial states of pseudospins were assigned
randomly and the acceptance of flipping a randomly chosen
pseudospin was based on the Metropolis method [25]. Once
the total energy reached a steady value, we computed the
pseudospin-resolved PDF (PRPDF) in the same fashion of
calculating SRPDFs. For example,

S+,+(�r) = 4A

N2

〈
si>0∑

i

j �=i,sj >0∑
j

δ(�r − �ri + �rj )

〉
. (11)

Their spherical harmonic expansions are also straightfor-
ward. We present various modes of S+,+(�r) and S+,−(�r)
at T ∗ = 1 in Fig. 7 comparing with their counterparts of
SRPDFs shown previously in Fig. 4. In the same manner
of determining the screening length from stress correlation
function introduced in Ref. [24], the magnitude of the fourfold
component of pseudospin correlation function normalized by
isotropic PDF is fitted with the screened Eshelby function,

|S4(r)|
g(r)

≈ B

r2
exp

(
− r

ξ

)
, (12)

where S4(r) = 2S4,4
+,+ (r), and B and ξ are the fitting parameters.

In Fig. 8 we show the temperature dependence of the screening
length, ξ . Again, ξ follows a power law behavior of ξ (T ∗) =
ξ0(T ∗ − T0)−α with T0 = 0.74 and α = 0.82, which are fairly
close to their counterparts from the stress correlation function,
namely, T0 = 0.48 and α = 0.72. Even though we chose the
simplest model with no account of other modes, i.e., the
isotropic exchange,

∑
i,j J0sisj , and the l = 4 interaction,∑

i,j J4 cos 4θij sisj , agreement is already reasonable. Inclu-
sion of J4 is likely to improve agreement. Nonetheless, the
important outcome is that the simple short-range anisotropic
Ising-like pseudospin interaction indeed can yield long-range

FIG. 6. (Color online) The comparisons between l = 0 modes of �(�r) and C(�r) in panel (a) and their l = 4, m = 4 modes in panel (b). A
same factor is employed to rescale the results from C(�r) for both cases.
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FIG. 7. (Color online) The comparisons between l = 0 modes of S+,+(�r) and g+,+(�r) in panel (a), their sin(2θ ) modes in panel (b), and
cos(4θ ) modes in panel (c). The same comparisons between S+,−(�r) and g+,−(�r) are shown in panels (d), (e), and (f).

correlation with the correct anisotropy. Therefore, this Ising-
like pseudospin model could be a viable option to model the
microscopic stress correlation.

V. CONCLUSION

In this paper, we examined the cross correlation between
density and stress fluctuations through stress-resolved pair
distribution functions, which employ the sign of the x-y shear
stress as the selection criteria for choosing particles before the
density correlation analysis. It is found that these SRPDFs have

FIG. 8. (Color online) The screening length determined from
|S4(r)| as a function of temperature along with a power law fitting
curve which extrapolates to diverge at T0 = 0.74.

sin(2θ ) or (and) cos(4θ ) symmetry (symmetries). Through
spherical harmonics expansion, we found that the twofold-
symmetry component exhibits a close connection with the
derivative of the isotropic PDF.

Under the pseudospin approximation, where the atomic-
level x-y shear stress is allowed to take only one of the
two quantized states, we established a connection between
the stress correlation function C(�r) and a linear combination
of SRPDFs �(�r). A strong resemblance between C(�r) and
�(�r) is observed. We further proposed an idea to interpret
the long-range stress correlation function as the manifestation
of short-range Ising-like pseudospin interaction. One feasible
form of interaction is presented and tested. In our view, this
Ising pseudospin model could be a viable method to study
stress correlation in liquids.

Although the current study focused only on the instan-
taneous spatial correlations, we can readily extend them to
incorporate dynamical information. With extended parameters
denoted as C(�r,t) and �(�r,t), we can examine the relaxation
of their isotropic and anisotropic components. One of the
key questions is whether or not these two components relax
independently. This is because the isotropic and anisotropic
modes may stem from different origins. Whereas the former is
intimately connected to the viscous phenomena of liquids, the
latter could be due to Eshelby’s inclusion effect [24,32]. Be-
cause the Eshelby field does not have an isotropic component
it does not directly contribute to viscosity. The contribution to
viscosity arises indirectly through relaxation. These subjects
will be addressed in future publications.
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APPENDIX: SPHERICAL HARMONICS
EXPANSION ON PDF

Let us start from the definition of PDF as expressed below:

g(�r) = A

N2

〈∑
i �=j

δ(�r − �rij )

〉
, (A1)

where N is the number of particle and A is the area of the
system. In three dimensions (3D), the Dirac’s delta function
can be cast as

δ(�r − �rij ) = 1

r2 sin(θ )
δ(r − rij )δ(θ − θij )δ(ϕ − ϕij ). (A2)

Nonetheless, the counterpart in 2D is different and is listed
below:

δ(�r − �rij ) = 1

r
δ(r − rij )δ(θ − θij ). (A3)

This result can be verified as follows:∫
δ(�r − �rij )d�r =

∫ 2π

0

∫ ∞

0
r dr dθ δ(�r − �rij )

=
∫ 2π

0

∫ ∞

0
r dr dθ

1

r
δ(r − rij )δ(θ − θij ) = 1.

(A4)

Next we perform spherical expansion on PDF following the
standard procedure

g(�r) =
∑
l,m

gm
l (r)Ym

l

( �r
|�r|

)
, (A5)

where Ym
l are the real spherical harmonics. To obtain an

explicit expression for gm
l (r), we multiply Ym′

l′ on both sides
of Eq. (A5) and perform integration over �:∫

Ym′
l′ (�)g(r,�)d� =

∑
l,m

gm
l (r)

∫
Ym′

l′ (�)Ym
l (�)d�. (A6)

The spherical harmonics are mutually orthogonal meaning∫
Ym′

l′ (�)Ym
l (�)d� = 4πδll′δmm′ in 3D. However, for con-

venience, we prefer
∫

Ym′
l′ (�)Ym

l (�)d� = 2πδll′δmm′ in two
dimensions (2D). Consequently, the left-hand side of Eq. (A6)
can be simplified as 2πgm′

l′ (r). As a result, we arrive at the
following relationship:

gm
l (r) = 1

2π

∫
Ym

l (�)g(r,�)d�. (A7)

Replacing Eq. (A1) in Eq. (A7) leads to

gm
l (r) = 1

2π

A

N2

〈∑
i �=j

∫
Ym

l (�)δ(�r − �rij )d�

〉
. (A8)

Next we substitute Eq. (A3) with Eq. (A8), and then we get

gm
l (r) = 1

2πr

A

N2

〈∑
i �=j

∫
Ym

l (θ )δ(r − rij )δ(θ − θij )dθ

〉
,

(A9)
and further

gm
l (r) = 1

2πr

A

N2

〈∑
i �=j

Ym
l (θij )δ(r − rij )

〉
. (A10)

Based on the general expression in Eq. (A10), we can write
explicitly that

g0
0(r) = 1

2πr

A

N2

〈∑
i �=j

δ(r − rij )

〉
, where Y 0

0 = 1, (A11)

g−2
2 (r) =

√
2

πr

A

N2

〈∑
i �=j

xij yij

r2
ij

δ(r − rij )

〉
, where Y−2

2 =
√

8
xy

r2
=

√
2 sin(2θ ), (A12)

g2
2(r) =

√
2

2πr

A

N2

〈∑
i �=j

x2
ij − y2

ij

r2
ij

δ(r − rij )

〉
, where Y 2

2 =
√

2
x2 − y2

r2
=

√
2 cos(2θ ), (A13)

g−4
4 (r) = 2

√
2

πr

A

N2

〈∑
i �=j

xij yij

(
x2

ij − y2
ij

)
r4
ij

δ(r − rij )

〉
, where Y−4

4 = 4
√

2
xy(x2 − y2)

r4
=

√
2 sin(4θ ), (A14)

g4
4(r) =

√
2

2πr

A

N2

〈∑
i �=j

x2
ij

(
x2

ij − 3y2
ij

) − y2
ij

(
3x2

ij − y2
ij

)
r4
ij

δ(r − rij )

〉
, where

Y 4
4 =

√
2
x2(x2 − 3y2) − y2(3x2 − y2)

r4
=

√
2 cos(4θ ). (A15)
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