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Coarse-grained model of conformation-dependent electrophoretic mobility
and its influence on DNA dynamics
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The electrophoretic mobility of molecules such as λ-DNA depends on the conformation of the molecule. It has
been shown that electrohydrodynamic interactions between parts of the molecule lead to a mobility that depends
on conformation and can explain some experimental observations. We have developed a new coarse-grained model
that incorporates these changes of mobility into a bead-spring chain model. Brownian dynamics simulations have
been performed using this model. The model reproduces the cross-stream migration that occurs in capillary
electrophoresis when pressure-driven flow is applied parallel or antiparallel to the electric field. The model also
reproduces the change of mobility when the molecule is stretched significantly in an extensional field. We find
that the conformation-dependent mobility can lead to a new type of unraveling of the molecule in strong fields.
This occurs when different parts of the molecule have different mobilities and the electric field is large.

DOI: 10.1103/PhysRevE.92.052301 PACS number(s): 82.45.−h, 83.10.Mj, 83.80.Rs, 82.35.Rs

I. INTRODUCTION

Electrophoresis of molecules such as DNA often occurs
in situations in which the conformation of the molecule is
disturbed from its equilibrium coiled state. This occurs in
gel electrophoresis, in electric field gradients, and when fluid
flows are simultaneously applied to the molecules [1–4].
When the coil is disturbed, it is important to include the
electrohydrodynamic interactions between segments [5]. For
example, it has been shown that these interactions lead to
migration of molecules across field lines and changes of
mobility with conformation [6–10].

There have been two main approaches to incorporate the
electrohydrodynamic interactions into theoretical and/or simu-
lation models of electrophoresis. Butler, Ladd, and co-workers
[9] developed a simulation method that includes directly the
interactions between segments of a bead-spring chain polymer
model. Lee, Larson, and co-workers [11] developed a model
that ignores the long ranged electrohydrodynamic interactions
but includes the local electrohydrodynamic interactions within
a Kuhn segment along the polymer backbone. The first
approach has been used successfully when the polymer is
weakly deformed from equilibrium. If the method is to work
accurately for large deviations from equilibrium, a large
number of springs would need to be included in the model,
increasing the computational cost. The second approach has
been used to qualitatively understand the changes of mobility
with conformation when molecules are strongly stretched
in field gradients. However, the approach assumes that the
polymer is stretched along the field direction and is therefore
not able to capture migration across field lines.

In this article, we develop and validate a coarse-grained
computational model that incorporates the change of the
polymer mobility with conformation in an efficient way
that can be used for molecules both near and far from the
equilibrium coiled state. Using this model, we show that the
stretching of molecules in strong extensional gradients can
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occur differently than is typically seen in simulations and
experiments.

II. MODEL DEVELOPMENT

A. Hydrodynamic versus electrohydrodynamic interactions

In the dynamics of dilute uncharged polymer solutions, it
is important to include hydrodynamic interactions in order
to capture many dynamical quantities such as drag on the
polymer, diffusivity, and relaxation time spectrum [12]. This is
the case both when the polymer is in an equilibrium coiled state
and when the polymer is in a highly stretched state. One way
to see this mathematically, which has been used previously in
the literature [13], is to consider a typical polymer segment
and calculate the net flow produced by the other polymer
segments. The average velocity on a typical polymer segment
is an integral of the disturbance caused by the other polymer
segments. Mathematically, this is written as

vave =
∫

G · FρdV, (1)

where ρ is the density of other polymer segments in a
region of volume dV , F is the force on the fluid by those
polymer segments, and G is the Green’s function that is
used to calculate the flow generated in the fluid by that
force. In order to understand the generic differences between
hydrodynamic interactions (HIs) and electrohydrodynamic
interactions (EHIs), we make approximations to investigate
the scaling of the integral. For example, we examine the case in
which F is a constant and so can be removed from the integral.
We also assume that ρ is approximately constant within the
region that the polymer segments occupy. The key difference
between HI and EHI is the dependence of G on angle and the
scaling with r , the separation of two polymer segments. The
Green’s function for HI is the Oseen tensor, which is given by

GHI ∝ 1

r
(r̂ r̂ + I), (2)

where r̂ is a unit vector pointing in the radial direction and I
is the identity tensor. The key features are that it scales as r−1

and has a nonzero average over angle. However, the Green’s
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function for EHI is

GEHI ∝ 1

r3
(3r̂ r̂ − I), (3)

which scales as r−3 and has a zero average over angle.
Using these approximations and the characteristics of the

Green’s functions, the average velocity in the equilibrium
coiled state for the HI and EHI cases are

vave,HI,eq ∼ F(angular average)
∫ R

�

1

r
r2dr, (4)

vave,EHI,eq ∼ F(angular average)
∫ R

�

1

r3
r2dr, (5)

where the lower limit of integration � represents the radius at
which the far field Green’s function is no longer valid and R

is the radius of the polymer coil. In the HI case, the angular
average is finite, and the radial integral has a dependence on R.
This dependence on the polymer coil size shows that long range
HI between polymer segments within the coil are important. In
the EHI case, the radial integral also has R dependence, but the
angular integral vanishes. Therefore, exactly at equilibrium,
the EHI contributions do not affect the net drag on the polymer
coil, which leads to a mobility that is independent of length in
free solution electrophoresis.

When the polymer is strongly stretched (e.g., along the
direction of F), the integral over polymer segments becomes
an integral along a line instead of throughout a sphere. The
average velocities in this stretched state then become

vave,HI,st ∼ F
∫ L

�

1

r
dr, (6)

vave,EHI,st ∼ F
∫ L

�

1

r3
dr, (7)

where L is the contour length of the stretched polymer. The
HI case again depends on the size of the polymer (the contour
length in this case). However, for large L, the EHI case no
longer depends on L.

This scaling analysis shows that long ranged HIs are
important to include both near equilibrium and in an extended
conformation. For EHIs, they cancel right at equilibrium and
long ranged interactions can be ignored for long polymers in
extended conformations. The simulation approach of Butler,
Ladd, and co-workers [9] was to include directly the long
ranged EHI in systems weakly perturbed from equilibrium.
They showed that when the angular symmetry is broken, the
EHI is important and leads to migration across field lines. One
disadvantage of the model is that if the polymer is stretched,
the long ranged interactions play a very small role. In order to
include the role of short ranged interactions, a large number of
beads would need to be included, increasing the computational
cost. In contrast, the work of Lee, Larson, and co-workers [11]
examined highly stretched chains and therefore ignored long
ranged interactions. Instead, they included the interactions
between two polymer segments within a single rod (Kuhn
length). As the polymer is stretched, the rods are oriented,
which leads to a change in the mobility. However, they did
not incorporate this change into a mobility that can be used

in dynamical simulations. In this work, we use the approach
of Lee and Larson to develop a mobility tensor, then use that
mobility tensor in dynamical simulations. This approach is
similar to Brownian dynamics simulations in which the drag
coefficient on a bead varies with the stretch of the polymer
(due to HIs), though this drag coefficient is typically taken as
a scalar instead of a tensor [14–16].

B. Conformation-dependent mobility

Our modeling approach is to consider the polymer to
be a freely jointed chain (FJC) which is coarse-grained to
a bead-spring chain model. Although double-stranded DNA
(ds-DNA) in highly extended configurations is more accurately
represented as a wormlike chain, the FJC slightly simplifies
the analysis while retaining the key qualitative features. Each
spring represents the free energy of the chain averaged over
the configurations of the rods of the polymer that the spring
represents. We also assign to that spring an electrophoretic
mobility tensor which is derived by considering the mobilities
of the underlying rods. Following the approach of Lee and
Larson [11], consider a rod which represents a Kuhn length in
the FJC model with unit vector u along its axis. This rod has
an electrophoretic mobility tensor M, which can be written as

M = M‖uu + M⊥(I − uu), (8)

where I is the identity tensor. If we only had a single rod in an
electric field, this mobility would determine the velocity of the
rod for which the electric field and flow drag forces balance. In
a polymer, the rods are connected together so that the rods do
not move at this velocity. Their actual velocity also depends
on their hydrodynamic drag coefficient tensor Z given by

Z = ζ‖uu + ζ⊥(I − uu). (9)

Using the notation in Ref. [11], we can write M‖ = μ0 +
2μ1 and M⊥ = μ0 − μ1, where μ0 and μ1 are functions of the
charge density, Debye length, Kuhn length, solvent viscosity,
etc. If the mobility of the rod were isotropic, then μ1 = 0. If
the Kuhn length is longer than it is wide, and the Debye length
is larger than the width but smaller than the Kuhn length,
then μ1 ≈ μ0/4. Note that we are assuming that the Debye
length is small enough that the ion clouds are not disturbed by
the electric field or fluid flow. In the notation used here, the
effective mobility of the FJC is denoted by μ and was shown
by Ref. [11] to solve

〈Z〉 · μ = 〈Z · M〉, (10)

where the angle brackets denote an average over the orientation
distribution of the rods. This distribution is not isotropic and
is restricted by the extension of the chain; if the chain is near
equilibrium, the rods will be almost isotropic while if the chain
is stretched the rods will be highly aligned. The approach in
our model is to approximately determine this distribution from
the extension of a spring in the coarse-grained model, calculate
the averages over u to determine the effective mobility of the
spring μ, then use that mobility in the dynamics of the spring.

Consider a spring whose extension vector is denoted as Q
and whose maximum extension is Q0 = NkAk , where Nk is
the number of Kuhn steps that the spring represents and Ak is
the Kuhn length. The spring with extension Q represents an
average over all FJC configurations for which the end to end
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vector is Q. Therefore, the extension must be related to the
average of a rod Q = NkAk〈u〉. To simplify the notation, we
denote n ≡ 〈u〉, so that Q/Q0 = n. In this way, the stretch
of the spring determines the average of the rod orientation
vector, but does not directly determine the distribution. We
follow a similar approach as Lee and Larson and postulate
that the distribution is the one in which the rod is subject
to an external “force” f and the force is determined such
that the average over the distribution is the correct known
average. Therefore, the probability distribution of rod angles
is P (u) ∝ exp[β f (n) · u], where β = 1/(kBT ) and we have
explicitly noted that the force is a function of the average u.

This choice is only self-consistent if we calculate the
average angle and obtain n. Because of the form of this
distribution, we can calculate the average analytically. This
self-consistency requires that we choose the force as

f (n) = L−1(n)

β

n
n

, (11)

where the nonboldface n denotes the magnitude of the vector
and L−1 is the inverse Langevin function [L(x) = coth x −
1/x]. Plugging Eqs. (9) and (8) into (10) and using that u is
a unit vector gives the key equation we must solve for the
effective mobility μ,

[(ζ‖ − ζ⊥)〈uu〉 + ζ⊥ I] · μ = (ζ‖M‖ − ζ⊥M⊥)〈uu〉
+ ζ⊥M⊥ I . (12)

We must now use the Boltzmann distribution to perform the
average of the second moment of the vector u. This can also
be calculated analytically to be

〈uu〉 =
(

1 − 3n

βf

)
n̂n̂ + n

βf
I, (13)

where the hat over the vector means the unit vector in the
direction of the vector. We can see that the effective mobility
will be of the form

μ = μ‖n̂n̂ + μ⊥(I − n̂n̂). (14)

Plugging this and Eq. (13) into Eq. (12), we can solve for the
effective mobility parallel and perpendicular to the spring

μ‖ =
(ζ‖M‖ − ζ⊥M⊥)

(
1 − 2n

βf

) + ζ⊥M⊥

(ζ‖ − ζ⊥)
(
1 − 2n

βf

) + ζ⊥
, (15)

μ⊥ =
(ζ‖M‖ − ζ⊥M⊥) n

βf
+ ζ⊥M⊥

(ζ‖ − ζ⊥) n
βf

+ ζ⊥
. (16)

In summary, these two equations give the effective mobility
of a spring which represents a FJC where the ζ and M are the
drag coefficients and mobilities of a rod of the FJC. Since
Q/Q0 = n, n is the fractional extension of the spring, n̂ is a
unit vector directed along the spring, and f is given by the
self-consistency condition in Eq. (11). It is useful to point out
some important limiting cases of Eqs. (15) and (16). This will
provide physical insight into the nature of the formulas.

The first special case is M‖ = M⊥. In this limit, the rod
has an isotropic mobility, and the formulas lead to an isotropic
mobility for the spring μ‖ = μ⊥. The second special case
is ζ‖ = ζ⊥. In this limit, the drag coefficient is isotropic,

and the formulas lead to a spring mobility which is a linear
combination of the rod mobilities. If the drag coefficient is not
isotropic, the spring mobility is still a linear combination of the
rod mobilities but the drag coefficients change how strongly
the rod mobilities are weighted.

The one complication using these effective mobilities in a
bead-spring chain simulation is the inverse Langevin function
in Eq. (11). Computing this inverse for each spring at each
time step would make the method more computationally
costly. A Padé approximant has been previously developed by
Cohen to approximate the inverse Langevin function [17]. This
approximation is βf = L−1(n) ≈ (3n − n3)/(1 − n2). With
this approximation, the spring mobilities become an explicit
function of n, the fractional extension of the spring, as

μ‖ = (ζ‖M‖ − ζ⊥M⊥)
(

1+n2

3−n2

) + ζ⊥M⊥
(ζ‖ − ζ⊥)

(
1+n2

3−n2

) + ζ⊥
, (17)

μ⊥ = (ζ‖M‖ − ζ⊥M⊥)
(

1−n2

3−n2

) + ζ⊥M⊥

(ζ‖ − ζ⊥)
(

1−n2

3−n2

) + ζ⊥
. (18)

In the case of ζ‖ = ζ⊥, these simplify, respectively, to

μ‖ = (M‖ − M⊥)

(
1 + n2

3 − n2

)
+ M⊥, (19)

μ⊥ = (M‖ − M⊥)

(
1 − n2

3 − n2

)
+ M⊥. (20)

If we use the definitions M‖ = μ0 + 2μ1 and M⊥ = μ0 − μ1,
the mobilities become, respectively,

μ‖ = μ0 + 4μ1n
2

3 − n2
, (21)

μ⊥ = μ0 − 2μ1n
2

3 − n2
. (22)

C. Simulation methodology

In this work we use the standard Brownian dynamics
simulation methodology [18–22]. The polymer is modeled
as a bead-spring chain, in which the solvent and dissolved
ions are treated as a continuum that gives rise to viscous
drag, Brownian fluctuations, and HIs. In the bead-spring chain
model, the bead positions are tracked and they are the points
where the hydrodynamic and electric field forces are applied.
The stochastic equation for the change in the position of bead
i is

d r i =
⎡
⎣u∞(r i) +

Nb∑
j=1

P ij · E(rj ) + 1

kBT

Nb∑
j=1

H ij · Fj

+
Nb∑
j=1

∂

∂ rj

· Hji

⎤
⎦dt +

√
2dt

Nb∑
j=1

Bij · dW j , (23)

where Nb is the number of beads, r i is the position of bead i,
u∞ is the imposed external fluid flow evaluated at the position
of the bead, P ij is the effective electrophoretic mobility tensor
describing how fields at bead j alter the motion of bead i, E
is the external electric field evaluated at the position of bead
j , H ij is the hydrodynamic diffusion tensor, Fj is the net of
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spring forces and excluded volume forces on bead j , and dW j

is a vector of random variables with zero mean and variance
1. In order to satisfy the fluctuation-dissipation theorem, the
tensor Bij must obey

H ij =
Nb∑
k=1

Bik · BT
jk. (24)

Throughout most of the article we will utilize our new
model which only includes EHIs within a rod of the FJC and
not between rods. These mean that the mobility tensor P ij is
zero if i �= j and equals μi when i = j . The mobility of a
spring is determined as a function of the stretch of the spring
using Eqs. (21) and (22). In particular, the mobility tensor is

μ =
(

μ0 + 4μ1n
2

3 − n2

)
n̂n̂ +

(
μ0 − 2μ1n

2

3 − n2

)
(I − n̂n̂). (25)

If a bead is connected to two springs, the mobility used for
the bead is the average of the mobilities of the springs. In this
article, we do not consider HIs between polymer segments
or between the polymer segments and the channel walls.
For polymers that are relatively short, as considered here,
HI between polymer segments only have a small impact on
the nature of polymer stretching. Additionally, it has been
shown that for the conditions examined here, the migration of
polymers due to wall-mediated HI is small if the Weissenberg
number is not too large [9]. We have verified this in our
simulations (data not shown). For this approximation, the
hydrodynamic diffusion tensor is H ij = δij IkBT /ζ , where
δij is the Kronecker delta and ζ is drag coefficient on a bead.

The springs in the chain have a spring force given by the
Finitely Extensible Nonlinear Elastic (FENE) force relation
[23]

F = HQ

1 − (Q/Q0)2
, (26)

where Q is the extension of the spring, Q0 is the maximum
spring extension, and H = 3kBT /(AkQ0). This relation,
which is an approximation of the response of a FJC, is used
to be consistent with the model of electrophoretic mobility
which used a FJC. All chains in this article are chosen to
approximately represent λ-DNA, which has approximately
160 Kuhn steps in the whole chain when dyed [24]. The
beads also interact with an exclude volume potential which
represents the preference of the polymer coils represented
by the springs to not be overlapping. This potential between
beads i and j is a soft Gaussian given by [21]

Uij = 1

2
vkBT N2

k,s

(
3

4πS2
s

)3/2

exp

(−3r2
ij

4S2
s

)
, (27)

where v is the excluded volume parameter, rij is the distance
between the two beads, and S2

s = Nk,sA
2
k/6 is the squared

radius of gyration of an ideal chain consisting of Nk,s Kuhn
segments per spring.

III. RESULTS AND DISCUSSION

A. Straight channel migration

One important observation in both experiments and simula-
tions that results from conformation-dependent electrophoretic

mobility is the migration of polyelectrolytes across streamlines
in straight channels with both pressure-driven flow and electric
fields applied in a parallel manner [1,9,10]. Therefore, this acts
as an important validation of our new coarse-grained model.
The results of Ref. [9] describe a mechanism for the migration.
Specifically, the pressure-driven flow will deform the polymer
from its coiled and isotropic state. This change in conformation
changes the mobility. In particular, the major axis of the radius
of gyration tensor is tilted at an angle relative to the electric
field which leads to a migration velocity across the channel.
Our coarse-grained model can also migrate but in which the
reason for the change in mobility and the way it is captured
in the model are different. In the model of Ref. [9], the beads
which can be relatively far apart along the polymer contour
directly interact with EHIs. Instead, our model only includes
the interactions within a single rod of each Kuhn segment,
which gives a spring a mobility that depends on its extension
and orientation.

In the simulations, a parabolic fluid velocity profile u∞ is
imposed along with a constant electric field E. The fluid flow
is in the x direction and is given by u∞

x = γH (1 − (y/H )2),
where γ is the average shear rate, y is the distance from
the center of the channel, and H is the half height of the
channel. The strength of the fluid flow is quantified by a
Weissenberg number as Wi = γ τ where τ is the longest
Rouse relaxation time given by τ = ζ/{8H sin2[π/(2Nb)]}.
The electric field points parallel to the x-direction, is uniform
across the channel, and with strength quantified by an electric
Weissenberg number WiE . Because the electric field is
uniform, this is not defined using a gradient of the electric
field. Instead, it is defined such that WiE = Wi corresponds
to the condition when μ0E equals the mean fluid flow.
With this definition, WiE = 3μ0Eτ/(2H ). The experiments
and simulations in Ref. [1,9] correspond to Wi = 0.9 and
WiE = ±1.9254.

We have simulated dumbbell, five-bead chain, and ten-bead
chain using our new model in the straight channels. In addition
to simulating with our new coarse-grained mobility model, we
also performed simulations with a five-bead chain including
explicit EHI between beads as in the model in Ref. [9] to verify
the new model. The simulation data represents an average of
50 trajectories, with initial conformations for each obtained
from long-time equilibrium runs. Each trajectory is simulated
for 20 wall diffusion times [where the wall diffusion time is
NbζH 2/(kBT )], which is sufficient to obtain accurate steady-
state profiles.

Figure 1 shows the normalized probability distributions
across the channel of the polymer center of mass for cocurrent
and countercurrent conditions. Similar to experiments and
previous simulations, we find migration to the channel center
in cocurrent operation and migration to the channel walls in
countercurrent operation. The distributions for our model with
different numbers of beads are qualitatively similar and appear
to be approaching a limiting profile for large numbers of beads.
This is typical when examining a series of coarse-grained
models with different numbers of beads. In a dumbbell model
the drag is only exerted on two beads instead of along the
entire contour. The figure also compares our new model with a
five-bead chain that uses explicit EHI between beads instead of
a mobility of a spring that varies with stretch of the spring. In
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FIG. 1. (Color online) (a) Distribution of polymers across the
channel in cocurrent operation with Wi = 0.9 and WiE = 1.9254.
The results with a five-bead chain using explicit EHI are shown with
red circles. The results with our new model are shown for chains
with two beads (blue diamonds), with five beads (green squares),
and with ten beads (black triangles). (b) Distribution of polymers
across the channel in countercurrent operation with Wi = 0.9 and
WiE = −1.9254. The results with a five-bead chain using explicit
EHI are shown with red circles. The results with our new model are
shown for chains with two beads (blue diamonds), with five beads
(green squares), and with ten beads (black triangles).

both cocurrent and countercurrent cases, the two approaches
are almost quantitatively the same.

The results in this section validate the new model in
situations in which the polymer is weakly deformed from
equilibrium and show that the model can capture migration
perpendicular to the electric field. However, one of the main
advantages of the new model is that it can also easily capture
the response when the molecule is highly stretched, such as in
extensional electric field gradients, which are examined in the
next section.

B. Stretching in an electric field gradient

Electric field gradients have been used extensively to stretch
DNA in microfluidic devices. In electrostatics, the electric field

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 

 

X
/L

FIG. 2. (Color online) The visual stretch X relative to the contour
length L as a function of Hencky strain ε (dimensionless time) for
WiE = 90. The different symbols represent different molecules.

has zero curl, which can facilitate large stretching of the DNA.
Experimentally, it has been observed that DNA molecules
have different mobilities when stretched. When a molecule
is stretched in a strong extensional field, a number of folded
and kinked configurations are observed [25,26]. The work
of Ref. [11] showed that these folds and kinks can lead to
configurations that have the same visual length but a different
mobility. They developed a one-dimensional (1D) model that
explained this phenomena by writing the mobility in terms
of the average alignment of a Kuhn segment. In this section,
we show simulations of our 3D model in extensional field
gradients. The dynamics of the molecules will lead to a variety
of configurations including kinks and folds.

In the simulations we impose a planar extensional field
given by Ex = ε̇Ex, Ey = −ε̇Ey, Ez = 0 without an external
fluid flow. The electric field gradients are quantified by a
Weissenberg number WiE defined by WiE = μ0ε̇

Eτ , which
uses the nominal mobility μ0. Note that this definition is
different from the one used in the straight channels in the
previous section. Simulations are performed using a polymer
model made of 20 beads (19 springs) so that kinked and folded
configurations can be observed. The starting configurations
are taken from an equilibrium distribution, which are obtained
by running long-time no-field simulations. For each value of
WiE , 50 trajectories are simulated with independent starting
configurations.

From the equilibrium starting configurations, the exten-
sional field is imposed for a total of five Hencky strain units.
The Hencky strain is defined as ε = μ0ε̇

Et . Figure 2 shows
the stretch of individual molecules versus Hencky strain with
WiE = 90. The stretch is defined in terms of the “visual
length,” i.e., the maximum x position of a bead minus the
minimum x position of a bead. For this relatively large value
of WiE , the molecules can stretch to a significant fraction of
their contour length. The details of stretching are different
for each molecule primarily due to their different starting
configurations, which is known as “molecular individualism”
[26,27].
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FIG. 3. (Color online) (a) The mobility μE relative to μ0 as a
function of the visual stretch relative to the contour length for WiE =
3. The different symbols represent different molecules. The dashed
line is 1 + (X/L)2/[3 − (X/L)2], which is the parallel mobility of a
spring. (b) The mobility μE relative to μ0 as a function of the visual
stretch relative to the contour length for WiE = 90. The different
symbols represent different molecules.

As the molecules stretch, the mobility changes. The
mobility of a molecule is calculated from the speed of
the center of mass for a time step (from the change
in position divided by the time step) and dividing by
the magnitude of the electric field at the position of the center
of mass. For the relatively large WiE examined here, the
Brownian contribution to the motion of the center of mass is
small compared to the deterministic contribution. In general,
the mobility is a tensor, and the velocity vector and electric
field vector are not parallel. However, the “compressional axis”
of the field naturally pushes the molecule to the axis where the
velocity and electric field are approximately parallel.

Figure 3 shows the mobility of molecules as a function of
their visual stretch for WiE = 3 and WiE = 90. The value
WiE = 3 is large enough to stretch the molecules but small
enough that kinked and folded configurations are not common.
The value WiE = 90 is large enough to produce many kinked
and folded configurations. Similar to experiments [11], the
molecules show an increasing mobility relative to μ0 as
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FIG. 4. (Color online) The mobility μE relative to μ0 as a
function of the visual stretch relative to the contour length for
WiE = 90. The red × symbols are the same from Fig. 3 and use
the full model. The blue stars use a conformation-dependent mobility
that is the same for all beads. The images show the conformations of
the full model at the points with circles, with the smallest stretch at
the top and the largest stretch at the bottom.

the stretch increases. For the lower WiE , all molecules lie
essentially on a single curve. Because there are no significant
kinks or folds, the molecules all stretch qualitatively the same.
For comparison, the function 1 + (X/L)2/[3 − (X/L)2] is
shown, which represents how the mobility parallel to the field
changes with the fractional extension of a spring [see Eq. (21)
with μ1 = μ0/4].

When a molecule forms a folded or kinked configuration,
the polymer backbone is stretched and aligned with the field,
leading to an increase in mobility while the overall stretch is not
near its maximum value. This is shown in Fig. 3(a) with WiE =
90. For many trajectories, the mobility increases to a large
value when the stretch is approximately half of the contour
length. As the stretch increases further, the mobility remains
approximately constant. This corresponds to a molecule that
unfolds while remaining stretched and aligned with the field.
However, some molecules show a significantly drop and then
increase in mobility while it unfolds to near full extension.

Figure 4 shows an example of one of these trajectories
showing snapshots of the molecule configuration as it unfolds.
The width of the molecule increases and part of the molecule
points along the compressional axis. This is surprising since
one might expect the compressional field to keep the molecule
“thin” in that direction while it is stretching, and we are not
aware of single molecule visualization experiments that show
this type of unraveling. We have determined the mechanism for
this unraveling, which is due to the conformation-dependent
mobility of the chain when the molecule is in a region with a
large value of the electric field (far from the origin).

For the bead-spring chain used here, there is no external
fluid flow and explicit hydrodynamic or EHIs have not been
included. For these conditions and for the linear electric field
with E = κ · r , Eq. (23) for the dynamics of a bead becomes

d r i =
[
μi · κ · r i + 1

ζ
Fi

]
dt +

√
2kBT dt

ζ
dW i , (28)
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where μi is the mobility of bead i. By taking the difference
between the equations for i + 1 and i, we can obtain an update
equation for the vector connecting two beads Qi = r i+1 − r i .
In particular, we obtain

d Qi =
[
μi+1 · κ · Qi−(μi−μi+1) · κ · r i+ 1

ζ
(Fi+1−Fi)

]
dt

+
√

2kBT dt

ζ
(dW i+1 − dW i). (29)

The spring forces and excluded volume forces on each bead
only depend on differences between positions and hence only
depend on the spring vectors. However, in general, the electric
field terms do depend on the absolute position of the chain
because of the explicit r i even though the gradient of the
electric field is a constant (i.e., it is a “homogeneous” field).
This is because the values of μi and μi+1 are not the same.
In our model, we choose the mobility of a bead to be the
average of the mobilities of the springs connected to the bead.
Therefore, unless a dumbbell is used (a single spring), the
mobilities of neighboring beads are not equal and the dynamics
of a spring depends on the absolute position of the chain
relative to the stagnation point. It is this term which leads
to the uncommon unraveling.

In order to test this idea, we have also simulated a new type
of model. In this model, each spring still has a varying mobility
as a function of extension of the spring. However, we calculate
the average of these spring mobilities and assign that one
average value to all beads. Figure 4 shows the mobility versus
stretch for two molecules, both with the same initial condition,
but with different choices for the mobility. One molecule is
the same from Fig. 3(b) in which the mobility of a spring is
the average of the mobilities of the springs connected to it.
The other molecule assigns the same mobility to each bead as
the average of the spring mobilities. This second molecule also
produces a kinked configuration leading to a rising mobility
up to a stretch of approximately 0.5. However, the unraveling
proceeds in a different way; this second molecule retains a
high mobility as the stretch increases because it remains thin
in the compressional direction. This comparison shows that the

unique dynamics and stretching can occur when the mobility
depends on conformation and when different parts of the same
molecule have different mobilities.

IV. CONCLUSION

Polyelectrolytes that are deformed in fluid flows and electric
fields change their electrophoretic mobility depending on their
conformation. This change is due to EHIs between parts of the
polymer. There are some similarities but key differences with
how HIs lead to conformation-dependent drag. The changes
in mobility occur for even relatively short polymers, and
are approximately a local effect along the polymer backbone
when its is strongly stretched from equilibrium. In this article,
we have developed a new coarse-grained model that can be
used for dynamical simulations of polymers like ds-DNA in
combinations of fluid flows and electric fields. The model
assigns an electrophoretic mobility tensor to each bead that
is a function of the stretch and orientation of the springs that
are connected to the bead. The model has been validated in
two situations: combined electrophoresis and pressure-driven
flow in a channel with the polymer weakly deformed from
equilibrium and planar extensional electric field gradients
that stretch the polymer far from equilibrium. In capillary
electrophoresis the model captures the cross-stream migration
due to stretching of the chain at an angle to the electric field.
In strong extensional fields the model captures the folded and
kinked configurations that have a large impact on the mobility
of the chain. For large electric fields, the model shows the
chain can unravel these folds in a way not seen previously in
simulations or experiments. The unique unfolding is due to
the fact that the dynamics are dependent on the location of
the center of mass of the chain even though the electric field
gradients are uniform in the system. This coarse-grained model
will allow for rapid simulations in situations with combinations
of electric fields and fluid flows, for example in the trapping
and manipulation of molecules in microfluidic devices, which
will be shown in a subsequent article.
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