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Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow
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We study in this work a steady shearing laminar flow with null heat flux (usually called “uniform shear flow”)
in a gas-solid suspension at low density. The solid particles are modeled as a gas of smooth hard spheres with
inelastic collisions while the influence of the surrounding interstitial fluid on the dynamics of grains is modeled
by means of a volume drag force, in the context of a rheological model for suspensions. The model is solved
by means of three different but complementary routes, two of them being theoretical (Grad’s moment method
applied to the corresponding Boltzmann equation and an exact solution of a kinetic model adapted to granular
suspensions) and the other being computational (Monte Carlo simulations of the Boltzmann equation). Unlike
in previous studies on granular sheared suspensions, the collisional moment associated with the momentum
transfer is determined in Grad’s solution by including all the quadratic terms in the stress tensor. This theoretical
enhancement allows for the detection and evaluation of the normal stress differences in the plane normal to the
laminar flow. In addition, the exact solution of the kinetic model gives the explicit form of the velocity moments
of the velocity distribution function. Comparison between our theoretical and numerical results shows in general
a good agreement for the non-Newtonian rheological properties, the kurtosis (fourth velocity moment of the
distribution function), and the velocity distribution of the kinetic model for quite strong inelasticity and not too
large values of the (scaled) friction coefficient characterizing the viscous drag force. This shows the accuracy of
our analytical results that allows us to describe in detail the flow dynamics of the granular sheared suspension.
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I. INTRODUCTION

The study of granular matter is of interest in a wide variety
of fields in fundamental and applied science: different industry
and technology sectors, biophysics, fluid mechanics, statistical
physics, and even in optics applications. As a consequence,
there is a large bibliography on granular dynamics. As it is
known, and depending on the particle density of the granular
system, its dynamics and, in consequence, its theoretical
modeling, can be very different [1].

Generically, we may differentiate the high and low density
regimes, where the latter is essentially characterized by
binary particle collisions and the former presents multiparticle
collisions or contacts. We will focus on the binary collision
regime where the system is usually called a “granular gas.”
Since particle collisions are inelastic by definition, a direct
consequence is that the low density regime can only be
maintained if there is some kind of energy input in the system.
Otherwise, if the granular gas is left to be freely cooling, it will
eventually collapse by a mechanism of clustering instabilities
[2] (that is increasingly stronger with increasing inelasticity)
[3–5].

On the other hand, although in nature granular particles are
frequently surrounded by an interstitial fluid (like the air, for
instance), the influence of the latter on the dynamic properties
of solid particles is generally neglected in most theoretical and
computational works. However, the effect of the interstitial
fluid on solid particles turns out to be significant in a wide range
of practical applications and physical phenomena [6], like for
instance species segregation (see for instance, Refs. [7–16])
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or in biophysics where active matter may be considered as a
driven granular suspension [17]. For this reason the study of
gas-solid flows has attracted the attention of engineering and
the physics community in the last few years [18].

The description of gas-solid suspensions, whose dynamics
is very complex, is a long-standing branch of classic fluid
mechanics [19]. For instance, particles suspended in a fluid
feel a lubrication force, transmitted by the surrounding fluid
but originated by the presence of another nearby particle. It is
known that this kind of interaction (usually called “hydrody-
namic interaction”) depends also on the global configuration of
the set of grains [20], giving rise to tensor-rank force equations.
The modeling of these lubrication forces is rather involved and
several approaches can be used. For this reason, there is a large
bibliography that extends for decades and that is devoted to
the study of this kind of interactions (Stokesian or Stokes
dynamics) [20–22]. Nevertheless, in the dilute suspension
limit, these hydrodynamic interactions become less relevant
[19,20] and only the isolate body resistance is retained, usually
in the form of a simple drag force. On the other hand, due
to the inherent complexity of the interaction between the
interstitial fluid and the granular particles, early kinetic theory
studies have neglected in most cases the effect of inelasticity in
suspended particle collisions [23–27]. This kind of approach
is not entirely accurate since of course in most real cases the
sizes of suspended particles are big enough to render particle
collisions inelastic (bigger than 1 μm, otherwise particles may
be considered as colloids, for which collisions are elastic
[22,28]). Therefore, inelasticity in the collisions can play a
major role in the dynamics of granular (as opposed to colloidal)
suspensions, especially in the dilute limit at high Stokes
number, where grain-grain collision effects dominate over
many particle hydrodynamic interactions [29]. However, only
more recent works have dealt with inelastic collisions in the
case of dilute [30,31] and moderately dense [32] suspensions.
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At a kinetic theory level, the description of granular
suspensions is an intricate problem since it involves two phases
(solid particles and interstitial fluid) and hence, one would need
to solve a set of two coupled kinetic equations for each one
of the velocity distribution functions of the different phases.
However, due to the mathematical difficulties embodied in this
approach and in order to gain some insight into this problem,
a usual model [18,33] for gas-solid flows is to consider a
single Boltzmann equation for the solid particles [34] where
the influence of the surrounding fluid on them is modeled by
means of an effective external force. This will be the approach
considered in the present paper.

Moreover, in the study of granular suspensions usually
only simple states have been considered, due to the inherent
complexity of the system. For instance, in a recent work
[35] the Navier-Stokes transport coefficients of monodisperse
gas-solid flows at moderate densities were obtained by solving
a model based on the Enskog kinetic equation by means of
the application of the Chapman-Enskog method [36] around
the so-called homogeneous cooling state (HCS). The external
force Fext proposed in Ref. [35] to model the effect of the
fluid phase on grains is composed by three different terms: (i)
a term proportional to the difference between the mean flow
velocities of solid U and gas Ug phases, (ii) a drag force Fdrag

proportional to the velocity of particle, and (iii) a stochastic
force Fst accounting for particle neighbor effects (Langevin
model). In the case that U = Ug , the coefficient associated
with the stochastic force vanishes and only the drag force
interaction Fdrag remains; namely, mean drag and neighbor
effects disappear in the suspension model of Ref. [35]. It is
important to remark that the above drag force model has been
also recently considered in different papers [37–41] to study
the shear rheology of frictional hard-sphere suspensions.

Nevertheless, the ranges of interest of the physics of gran-
ular gases fall frequently beyond Newtonian hydrodynamics
since the strength of the spatial gradients is large in most
situations of practical interest (for example, in steady states).
This is essentially due to the coupling between collisional
dissipation and spatial gradients that under steady states
usually yields moderately large spatial gradients [1,42,43].
In these steady states, a hydrodynamic description is still
valid but with constitutive equations more complex than the
Navier-Stokes ones [44,45]. A very neat example of this is
the simple or uniform shear flow (USF) [46], that except in
the quasielastic limit, is essentially non-Newtonian [47–52].
It is characterized by a linear velocity field (that is ∂Ux/∂y ≡
a = const), constant density n, and constant temperature T . In
particular, in the USF state the presence of shearing induces
anisotropies in the pressure tensor Pij , namely, nonzero
shear stress Pxy and normal stress differences Pxx − Pyy and
Pyy − Pzz. In addition, in the case of granular suspensions,
it may be assumed [27,32] that U = Ug and so, Fext = Fdrag.
Here, the number density n, the mean flow velocity U, and the
granular temperature T are defined, respectively, as

n(r,t) =
∫

dv f (r,v,t), (1)

U(r,t) = 1

n(r,t)

∫
dv vf (r,v,t), (2)

T (r,t) = 2

dn(r,t)

∫
dvV 2 f (r,v,t), (3)

where d is the dimensionality of the system, f (r,v,t) is the
one-particle velocity distribution function and V = v − U is
the peculiar velocity.

A detailed study of simple shear flows of granular suspen-
sions at finite Stokes numbers was carried out by Tsao and
Koch [27] and Sangani et al. [32]. In both of these works,
and like in the model used in Ref. [35], suspension dynamics
is dominated by the drag exerted by the fluid (external drag
force) and the solid-body collisions between the particles. In
the first paper [27], the authors considered a dilute gas-solid
suspension of elastic particles, thus neglecting the important
effect of inelasticity in macroscopic particles. Inelasticity
and excluded volume effects (moderated densities) were only
considered in the second paper [32] of the series. Moreover,
in the first reference [27] (elastic collisions), Tsao and Koch
solved the Boltzmann kinetic equation by means of a Grad’s
moment method approach [53] where the collisional moment
�ij of the momentum transfer [see Eq. (32) for its definition]
was evaluated by retaining all the quadratic terms in the
pressure tensor Pij (nonlinear Grad’s solution). However, for
practical applications, in their actual theoretical results only
the term proportional to the shear stress P 2

xy was retained
in the nonlinear contributions to �ij ; see Eqs. (3.14a) and
(3.14b) of [27]. Sangani et al. [32] solved first the Enskog
kinetic equation (which is an extension of the Boltzmann
equation to dense systems) by means of Grad’s method but only
linear terms in the shear rate and the pressure tensor (linear
Grad’s solution) were retained in their calculation of �ij [see
Eqs. (4.21) of [32]]. Some discrepancies were observed in
the very dilute regime for the normal stress differences. In
particular, their linear Grad’s solution yields Pyy = Pzz [see
Eq. (4.33) of [32]] which clearly disagrees with simulation
results [32].

The objective of this paper is to offer a complete study
of the USF state for dilute granular suspensions where the
effect of fluid phase on grains is taken into account by the
presence of an external drag force in the kinetic equation.
For the accomplishment of this task, we propose in this work
three different approaches: two of them are theoretical and the
third one is computational. In the first theoretical approach,
the Boltzmann equation is solved by Grad’s method where
both inelasticity and at the same time all of the nonlinear
terms in shear rate and stress tensor are retained in our
expression of the collisional moment �ij . Thus, as we will
see, interesting properties of the suspension arise from this
refinement. For instance, we are able to detect the influence
of both viscous friction and inelasticity on the normal stress
difference Pyy − Pzz. In this sense, our theory generalizes
previous analyses [27,32], these being recovered when the
appropriate simplifications are applied to our theory.

Apart from Grad’s method, we also use a second theoretical
approach based on the derivation of an exact solution to
a simplified Bhatnagar-Gross-Krook (BGK) model kinetic
equation [54] for the sheared granular suspension. This will
allow us to determine all the velocity moments of the velocity
distribution function as well as the explicit form of the
latter in terms of the shear rate a, the friction coefficient γ
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characterizing the drag force, and the coefficient of restitution
α. In particular, the rheological properties derived from the
BGK solution are the same as those obtained in linear Grad’s
solution to the Boltzmann equation.

As a third route and to gauge the accuracy of the previ-
ous analytical results, we numerically solve the Boltzmann
equation for the granular suspension by means of the direct
simulation Monte Carlo (DSMC) method [55]. This (exact)
numerical solution takes into account the real grain-grain
collisions in the context of hard sphere collision model. As we
will see, the comparison between theory and simulation shows
that both (approximate) solutions give in general accurate
results even for conditions of quite strong inelasticity (say
for instance, α � 0.5). Moreover, the theoretical predictions
for Pyy and Pzz obtained from our nonlinear Grad’s solution
agree very well with simulations (see Fig. 4), showing the
improvement of our theory with respect to the previous
analysis of Sangani et al. [32]. On the other hand, the
agreement between theory and simulation become worse as the
(scaled) friction coefficient γ ∗ increases. This means that our
theory of rapidly sheared granular flows become more reliable
as the effects of the inelastic particle collisions dominate over
viscous effects.

The plan of the paper is as follows. In Sec. II, the Boltzmann
equation of inelastic hard spheres driven by an external
drag force is introduced and the USF problem for granular
suspensions is presented. The analytical results derived in
the paper are provided in Sec. III whereas some technical
details on the DSMC method used here are briefly described in
Sec. IV. Section V deals with the comparison between theory
and simulation results. Finally, the paper is closed in Sec. V
with a brief discussion on the results reported in the present
contribution.

II. DESCRIPTION OF THE SYSTEM

A. Boltzmann kinetic equation for granular suspensions

Let us consider a set of solid particles of mass m and
diameter σ immersed in a viscous gas. As we already
commented, for big enough particles (typical size � 1 μm),
collisions between particles carry a partial loss of their kinetic
energy. Thus, the solid particles can be modeled as a gas of
smooth hard spheres (or disks, for two-dimensional systems)
with inelastic collisions. The inelasticity of collisions is
characterized by a (positive) constant coefficient of normal
restitution 0 � α � 1, where α = 1 stands for completely
elastic collisions and α = 0 for completely inelastic collisions
[1,56,57].

In the dilute limit, the corresponding Langevin equation
describing the gas-solid interaction force can be greatly
simplified [19,58]. There are several experimental results on
the dynamics of dilute particle systems immersed in a gas flow
that validate this kind of approach. For instance, this type of
system was analyzed in early experimental studies where the
corresponding flow properties were carefully measured [23].
These experimental results were later used for validation of
a hydrodynamic theory of a granular suspension immersed
in gas flow, allowing for characterization of the relevance
of grains collisions in the hydrodynamic behavior of the

turbulent suspension [24]. It has been shown more recently, in
experiments, that the turbulent gas-grain interaction can also
be described by a Langevin equation with a stochastic force
that has the form of a white noise, much in the same way as
in classic studies at lower Reynolds number [20]. Therefore,
under the above conditions one can consider the following
generalized Langevin model for the instantaneous acceleration
on a suspended grain:

m
dv
dt

= −β(U − Ug) − γ · V + Fst, (4)

where Fst is a stochastic force with the following properties
[20]: 〈

Fst
i (t)

〉 = 0,
〈
Fst

i (t)Fst
j (t ′)

〉 = 1m2ξδij δ(t − t ′). (5)

In Eq. (5), 1 is the d × d unit matrix and ξ represents the
strength of the correlation. The model described by Eq. (4)
has been recently proposed in Ref. [35] for monodisperse
gas-solid flows at moderate density. Although the coefficients
β, γ , and ξ appearing in Eqs. (4) and (5), respectively, are in
general tensors, in the case of a dilute suspension they may
be simplified as scalars [20]. Those coefficients are associated
with the instantaneous gas-solid force [35]. As we said in
the Introduction, the first term on the right-hand side of
Eq. (4) represents the portion of the drag term arising from
the mean motion of particle and solid phase, the second term
is traced to fluctuations in particle velocity (relative to its
mean value), and finally the third term is a stochastic model
for the change in particle momentum due to shear stress and
pressure contributions at the particle surface that arise from the
fluid velocity and pressure disturbances caused by neighbor
particles.

According to the model proposed in Ref. [35], at low
mean Reynolds number, the expressions of γ and ξ for dilute
suspensions of hard spheres are, respectively [35],

γ = m

τ
Rdiss(φ), (6)

ξ = 1

6
√

π

σ |
U|2

τ 2
√

T
m

, (7)

where τ = m/(3πμgσ ) is the characteristic time scale over
which the velocity of a particle of mass m and diameter σ

relaxes due to viscous forces, μg being the gas viscosity.
Moreover, φ = (π/6)nσ 3 is the solid volume fraction for
spheres,

Rdiss(φ) = 1 + 3

√
φ

2
, (8)

and 
U = U − Ug .
In the low-density regime the one-particle particle distribu-

tion function f (r,v,t) provides complete information on the
state of the system. This quantity gives the average number of
particles that at instant t are located around the point r and with
a velocity about v. In the case of an external force composed
by the three terms appearing in Eq. (4), the corresponding
Boltzmann kinetic equation for dilute granular suspensions is
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[35]

∂tf + v · ∇f − β

m

U · ∂f

∂V
− γ

m

∂

∂V
· Vf − 1

2
ξ

∂2

∂V 2
f

= J [f,f ], (9)

where the Boltzmann collision operator J [v|f,f ] is given by

J [v1|f,f ] = σd−1
∫

dv2

∫
dσ̂ �(σ̂ · g)(σ̂ · g)

× [α−2f (v′
1)f (v′

2) − f (v1)f (v2)]. (10)

Here, we recall that d is the dimensionality of the system
(d = 2 for disks and d = 3 for spheres), σ = σ σ̂ , σ̂ being a
unit vector pointing in the direction from the center of particle
1 to the center of particle 2, � is the Heaviside step function,
and g = v1 − v2 is the relative velocity. The primes on the
velocities in Eq. (10) denote the initial values {v′

1,v
′
2} that lead

to {v1,v2} following a binary collision:

v′
1 = v1 − 1

2 (1 + α−1)(σ̂ · g)σ̂ , (11a)

v′
2 = v2 + 1

2 (1 + α−1)(σ̂ · g)σ̂ . (11b)

From the Boltzmann equation (9) one can derive the
(macroscopic) hydrodynamic equations for the number density
n, the flow velocity U, and the granular temperature T . They
are given by

Dtn + n∇ · U = 0, (12)

DtU + (mn)−1∇ · P = − β

m

U, (13)

DtT + 2

dn
(∇ · q + P : ∇U) = −2T

m
γ + mξ − T ζ. (14)

Here, Dt ≡ ∂t + v · ∇ is the material derivative,

Pij = m

∫
dvViVjf (v) (15)

is the pressure tensor,

q = m

2

∫
dvV 2Vf (v) (16)

is the heat flux, and

ζ = − m

dnT

∫
dvV 2J [v|f,f ] (17)

is the cooling rate characterizing the rate of energy dissipated
due to collisions [45].

Note that in the suspension model defined by Eqs. (9) and
(10), the form of the Boltzmann collision operator J [f,f ] is
the same as for a dry granular gas and hence, the collision
dynamics does not contain any gas-phase parameter. As has
been previously discussed in several papers [27,32,59], the
above assumption requires that the mean-free time between
collisions is much less than the time taken by the fluid forces
(viscous relaxation time) to significantly affect the motion of
solid particles. Thus, the suspension model (9) is expected to
describe situations where the stresses exerted by the interstitial
fluid on particles are sufficiently small that they have a weak

influence on the dynamics of grains. However, as the density
of fluid increases (liquid flows), the above assumption could
be not reliable and hence one should take into account the
presence of fluid into the binary collisions event.

B. Steady base state: Uniform shear flow

Let us assume now that the suspension is under steady USF.
This state is macroscopically defined by a constant density n

and temperature T and the mean velocity U is

Ui = aij rj , aij = aδixδjy, (18)

where a is the constant shear rate. In addition, as usual in
uniform sheared suspensions [27,32], the average velocity of
particles follows the velocity of the fluid phase and so, U = Ug .
In this case, 
U = 0 and according to Eq. (7), ξ = 0. Thus,
the steady Boltzmann equation (9) becomes

−aVy

∂f

∂Vx

− γ

m

∂

∂V
· Vf = J [V|f,f ]. (19)

In Eq. (19) we use the USF property of spatial uniformity when
the Boltzmann equation is expressed in terms of the peculiar
velocity Vi = vi − aij rj [60]. We note that the Boltzmann
equation (19) is equivalent to the one employed by Tsao and
Koch [27] (in the case of elastic collisions) and Sangani et al.
[32].

In the USF problem, the heat flux vanishes (q = 0) and the
only relevant balance equation is that of the temperature (14).
In the steady state and for the geometry of the USF, Eq. (14)
reads

− 2

dn
Pxya = 2T

m
γ + ζT . (20)

Equation (20) implies that in the steady state the viscous
heating term (−aPxy > 0) is exactly compensated by the
cooling terms arising from collisional dissipation (ζT ) and
viscous friction (γ T /m) [43]. As a consequence, for a given
shear rate a, the (steady) temperature T is a function of
the friction coefficient γ and the coefficient of restitution
α. Note that in contrast to what happens for dry granular
gases (γ = 0), a steady state is still possible for suspensions
when the particle collisions are elastic (α = 1 and so, ζ = 0).
Moreover, the balance equation (20) also holds for flows with
uniform heat flux (the so-called LTu class of Couette flows)
[44,45,61] with no friction (γ = 0). For this class of flows, the
physical meaning of Eq. (20) is that there is an exact balance
at every point of the system between the heating (coming from
viscosity) and cooling (coming from inelasticity and friction)
terms.

The USF state is in general non-Newtonian. This can be
characterized by the introduction of generalized transport
coefficients measuring the departure of transport coefficients
from their Navier-Stokes forms. First, we define a non-
Newtonian shear viscosity coefficient η(a,γ,α) by

Pxy = −η(a,γ,α)a. (21)

In addition, while Pxx = Pyy = Pzz = nT in the Navier-
Stokes hydrodynamic order, normal stress differences are
expected to appear in the USF state (Pxx �= Pyy �= Pzz). We
are interested here in determining the (reduced) shear stress
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P ∗
xy and the (reduced) normal or diagonal elements P ∗

xx , P ∗
yy ,

and P ∗
zz, where P ∗

ij ≡ Pij /p and p = nT is the hydrostatic
pressure. With respect to the cooling rate ζ (which vanishes
for elastic collisions [27]), since this quantity is a scalar, its
most general form is

ζ = ζ0 + ζ2a
2 + · · · . (22)

The zeroth-order contribution to the cooling rate ζ0 is [62]

ζ0 = d + 2

4d
(1 − α2)ν, (23)

where ν is an effective collision frequency of hard spheres
given by

ν = 8

d + 2

π (d−1)/2

�(d/2)
nσd−1

√
T

m
. (24)

For hard spheres (d = 3), Eq. (23) is consistent with the results
derived for Sangani el al. [32] in the dilute limit (solid volume
fraction φ = 0). On the other hand, given that the latter theory
[32] only retains linear terms in the pressure tensor in the
evaluation of the collisional moment �ij [defined in Eq. (32)],
then ζ2 = 0. We calculate the second-order contribution ζ2 to
the cooling rate in Sec. III.

Equation (20) can be rewritten in dimensionless form when
one takes into account Eq. (21):

2

d
η∗a∗2 = 2γ ∗ + ζ ∗, (25)

where η∗ ≡ η/η0, a∗ ≡ a/ν, γ ∗ ≡ γ /(mν), and ζ ∗ ≡ ζ/ν.
Here, η0 = p/ν is the Navier-Stokes shear viscosity of a dilute
(elastic) gas. Since η∗ and ζ ∗ are expected to be functions of
the (reduced) shear rate a∗, the (reduced) friction coefficient
γ ∗, and the coefficient of restitution α, Eq. (25) establishes a
relation between a∗, γ ∗, and α and hence, only two of them can
be independent. Here, we will take γ ∗ and α as the relevant
(dimensionless) parameters measuring the departure of the
system from equilibrium.

Before closing this subsection, it is instructive to display the
results derived for the granular suspension in the Navier-Stokes
domain (small values of the shear rate). In this regime, the
normal stress differences are zero and the form of the shear
viscosity coefficient is [35]

ηNS = nT

νη − 1
2

(
ζ0 − 2

m
γ
) , (26)

where ζ0 is given by Eq. (23) and the collision frequency νη is
[57]

νη = 3ν

4d

(
1 − α + 2

3
d

)
(1 + α). (27)

In Eqs. (23), (26), and (27), for the sake of simplicity, we have
neglected non-Gaussian corrections (proportional to the fourth
cumulant) to ζ0, η, and νη, respectively.

C. Characteristic time scales and dimensionless numbers

As it is known, in general there is more than one indepen-
dent reduced length or time scale in a real flow problem (and
thus, more than one independent Knudsen number [55]). Thus,
let us analyze the dimensionless energy balance equation (25).

It contains three homogeneous terms; each one of them stands
for the inverse of the three relevant (dimensionless) time scales
of the USF problem, each caused by a different physical origin:
the first term is proportional to the (reduced) shear rate a∗ that,
according to its definition, is the shearing rate time scale (let
us call it τs); the second term is proportional to γ ∗, thus setting
the drag friction time scale (τd ); and finally, the third one, ζ ∗,
comes from the inelastic cooling characteristic time scale (τi).

A relevant dimensionless number in fluid suspensions is
the Stokes number St [19]. As in previous works [27,32], it
is defined as the relation between the inertia of suspended
particles and the viscous drag characteristic time scale:

St = ma

3πσμg

, (28)

where we recall that μg is the gas viscosity. According to
Eq. (6), St can be easily expressed in terms of γ ∗ and a∗ as

St = a∗

γ ∗/Rdiss
, (29)

where Rdiss = 1 for dilute suspensions (φ = 0). Note that the
Stokes number is a relevant parameter in fluid suspensions
[19] since it measures the competition between the shearing
and viscous friction mechanisms (a∗ and γ ∗) on its rheological
properties.

Since the reduced time scales (τs , τd , and τi) have been
defined with the inverse collision frequency ν−1, they may be
regarded also as the characteristic Knudsen numbers (Kn) of
the system. For this reason, it is a necessary precondition for a
Navier-Stokes hydrodynamic description of the problem (valid
only for small enough spatial gradients), that all of them are
small. In other words, as soon as one of them (just one) is close
to 1 or higher, the Navier-Stokes approximation is expected to
fail [45].

However, as said before, only two of the relevant Knudsen
numbers are actually independent since they are related
through Eq. (25). For this reason, we additionally need to
explore the relation between and τs , τd , and τi in order
to analyze the limits of a Navier-Stokes description for the
granular suspension under USF. For this, the reduced energy
balance equation (25) can be written in perhaps a more
meaningful way for granular suspensions as a function of the
Stokes number St, namely,

− 2

d
η∗a∗ + 2St−1 + ζ ∗

a∗ = 0. (30)

Once the (scaled) non-Newtonian shear viscosity η∗ and the
(scaled) cooling rate ζ ∗ are given in terms of both α and
γ ∗, one can obtain the (scaled) shear rate a∗ (or equivalently,
the reduced temperature T ∗ ≡ ν2/a2 = a∗−2) by solving the
energy equation (30). This yields a cubic equation for T ∗1/2

and has therefore three roots. A detailed study of the behavior
of these roots has been previously made by Tsao and Koch [27]
for elastic suspensions and by Sangani et al. [32] for inelastic
systems. The analysis shows that in general only one root is
real at high values of the Stokes number while the other two are
zero and negative (unphysical solution). We focus now on the
physical solution with positive temperature (that corresponds
to the ignited state of [32]) by using the more general nonlinear
Grad’s solution derived in Sec. III.
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FIG. 1. (Color online) St(α,γ ∗) surface for a dilute suspension of
granular particles. The contours for St = 6,10 have been marked in
the St = 0 plane.

In Fig. 1 we plot the surface St(α,γ ∗) verifying Eq. (30).
According to Fig. 1, it is quite evident that it is not possible
to reach a null value of the Stokes number. This is consistent
with the energy equation (30) since the latter value would
imply St−1 → ∞ and so, a balance between the different
effects would not be possible. Figures 2(a) and 2(b) are the
representation of two constant α curves of this surface, as
obtained from the nonlinear Grad’s solution (solid lines),
explained in Sec. III A, and Monte Carlo simulations (symbols)
for d = 3 (spheres). The Navier-Stokes prediction for St(γ ∗)
obtained from Eqs. (25) and (26) is also plotted (dashed lines)
for the sake of comparison. In Fig. 2(b) we have marked with
different colors three different regions: white stands for the
region with a∗ � 1, where the Navier-Stokes description is
expected to apply (or in other words, where non-Newtonian
corrections to rheological properties would not be significant),
whereas red stands for the region where the Navier-Stokes
approximation is expected to fail (a∗ � 1). The inelastic time
scale τi would keep small as long as we do not represent too
large inelasticity values. The drag time scale τd (or equivalently
γ ∗) is represented here only below 1. Thus, the only concern
would be tracking small enough values of τs (or equivalently
a∗) values. For this reason, the moderate to large Kn regions
in Fig. 2(b) are separated by the curve that follows from the
value γ ∗(α,a∗ = 1) extracted from Eq. (30). The dark green
region denotes the low St region that is not accessible for
hydrodynamics (negative solutions for T ∗1/2). As we can see
in both Figs. 2(a) and 2(b), the agreement between Grad’s
solution (which takes into account non-Newtonian corrections
to the shear viscosity) and simulations is excellent as long as
we keep in the small Kn region (both γ ∗ < 1 and a∗ < 1).

The accuracy of Grad’s solution extends deep inside the
large Kn region, especially for lower inelasticities (note the
black curve and symbols in the pale red region of Fig. 1).
On the other hand, as expected, the Navier-Stokes predic-
tion exhibits significant discrepancies with simulations when
Kn 	 1. Please note that, although this is somewhat masked
in the small range of values of γ ∗ considered in Fig. 2(b),
the Stokes number St is always a bivaluated function of the
(scaled) friction coefficient γ ∗, as can be clearly seen in Fig. 1.
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FIG. 2. (Color online) Scheme of the flow regimes as they result
from the relation (25) between the (reduced) shear rate a∗, the
(reduced) friction coefficient γ ∗ and the Stokes number St for a dilute
granular suspension under USF. Blue (symbols and lines) stands for
the case α = 0.5 and black (symbols and lines) stands for the case
α = 0.9. The solid lines correspond to the results derived from Grad’s
moment method while the dashed lines refer to the Navier-Stokes
predictions. (a) Reduced shear rate a∗ vs. γ ∗. (b) Stokes number St vs
γ ∗. In this panel the three regions commented on in the text have been
marked: a high Knudsen number region to the right of the panel (in
pale red), a low to moderate Knudsen number region (in white), and
finally, in the lower part of the panel, the forbidden small St region
(green) may be found.

Also notice from Fig. 1 that St always has a minimum with
respect to γ ∗ (at a given value of α), although for scale reasons
it is not very noticeable in Fig. 2(b).

It is important to finally remark in this section that the
need for more complex constitutive equations (namely, those
provided by the Grad’s moment method) is not a signal of
a breakdown of hydrodynamics [1,63], only a failure of the
Navier-Stokes approximation [43,64]. Also, let us note as an
important feature that St(γ ∗) has two roots for each γ ∗ value,
as we can see in Fig. 1.

III. THEORETICAL APPROACHES

A. Grad’s moment method of the Boltzmann equation

We are interested here in obtaining the explicit forms of
the relevant elements of the (scaled) pressure tensor P ∗

ij for a
dilute granular suspension in terms of a∗, γ ∗, and α. To get
it, we multiply both sides of Eq. (19) by mViVj and integrate
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over velocity. The result is

aikPkj + ajkPki + 2γ

m
Pij = �ij , (31)

where

�ij ≡
∫

dv mViVjJ [V|f,f ], (32)

and we recall that aij = aδixδjy . The exact expression of the
collision integral �ij is not known, even in the elastic case.
However, a good estimate can be expected by using Grad’s
approximation [53],

f (V) → fM(V)

(
1 + m

2nT 2
ViVj�ij

)
, (33)

where

fM(V) = n

(
m

2πT

)d/2

e−mV 2/2T (34)

is the (local) equilibrium distribution function and

�ij = Pij − pδij (35)

is the traceless part of the pressure tensor. Upon writing the
distribution function (33) we have take into account that the
heat flux is zero in the USF and we have also neglected
the contribution of the fourth-degree velocity moment to f .
This contribution has been recently considered [65] for the
calculation of the Navier-Stokes transport coefficients of a
granular fluid at moderate densities.

The collisional moment �ij can be determined when
Eq. (33) is inserted into Eq. (32). After some algebra (see
Appendix A for details), we obtain the expression of �ij for
inelastic hard spheres (d = 3),

�ij = −pν(1 + α)

[
5

12
(1 − α)δij + 3 − α

4

×
(

�∗
ij + 1

14
�∗

ik�
∗
kj

)
− 5 + 3α

672
�∗

k��
∗
k�δij

]
, (36)

where �∗
ij ≡ �ij/p. In the case of inelastic hard disks (d = 2),

the expression of �ij is

�ij = −pν
1 + α

2

[
(1 − α)δij + 7 − 3α

4
�∗

ij

+ 3

64
(1 − α)�∗

k��
∗
k�δij

]
. (37)

As we noted before, we evaluate �ij by retaining all the
quadratic terms in the tensor �∗

ij . In particular, Eq. (36) reduces
to the simpler expression obtained by Sangani et al. [32] for
d = 3 if we suppress the quadratic terms in �∗

ij . Also, if we
particularize Eq. (36) for α = 1,

�ij = −pν

[
�∗

ij + 1

14

(
�∗

ik�
∗
kj − 1

3
�∗

k��
∗
k�δij

)]
, (38)

and hence we recuperate the expression of �ij derived for
Tsao and Koch [27] for the special case of perfectly elastic
particles [see Eq. (3.7) of [27]]. Thus, our expression (36) for
the collisional moment �ij for inelastic hard spheres is more
general and can recover the results of previous bibliography.

In addition, we have also checked that the expression (36)
agrees with a previous and independent derivation of �ij for
inelastic hard spheres [66]. This shows the consistency of our
nonlinear Grad’s solution.

The nonlinear contribution ζ2 to the cooling rate [defined by
Eq. (17)] can be obtained for spheres and disks from Eqs. (36)
and (37), respectively:

ζ ∗
spheres = 5

12
(1 − α2)

(
1 + 1

40
�∗

k��
∗
k�

)
, (39)

ζ ∗
disks = (1 − α2)

2

(
1 + 3

64
�∗

k��
∗
k�

)
. (40)

Here again, this is a more general and accurate expression of
the cooling rate for dilute granular suspensions. Of course, for
elastic collisions (α = 1), we recover the limit ζ ∗ = 0 [27].
Moreover in the linear in �∗

ij approach, ζ ∗ → (5/12)(1 − α2)
for spheres, which agrees with the previous results [32].

The knowledge of the collisional moment �ij allows us to
get the explicit form of the relevant elements of the pressure
tensor P ∗

ij . Their forms are provided in Appendix A.

B. BGK-type kinetic model of the Boltzmann equation

Now we consider the results derived for the USF from
a BGK-type kinetic model of the Boltzmann equation [54].
In the USF problem, the steady kinetic model for the granular
suspension described by the Boltzmann equation (19) becomes

−aVy

∂f

∂Vx

− γ

m

∂

∂V
· Vf = −χ (α)ν(f − fM) + ζ0

2

∂

∂V
· Vf,

(41)
where ν is the effective collision frequency defined by Eq. (24),
fM is given by Eq. (34), ζ0 is defined by Eq. (23), and χ (α) is a
free parameter of the model chosen to optimize the agreement
with the Boltzmann results.

One of the main advantages of using the kinetic model (41)
instead of the Boltzmann equation is that it lends itself to get
an exact solution. The knowledge of the form of f (V) allows
us to determine all its velocity moments. The explicit forms
of the distribution function f (V) as well as its moments are
provided in Appendix B. In particular, the relevant elements
of the pressure tensor are given by

�∗
yy = �∗

zz = − 2̃ε

1 + 2̃ε
, �∗

xy = − ã

(1 + 2̃ε)2
, (42)

where the (dimensionless) shear rate ã obeys the equation

ã2 = dε̃(1 + 2̃ε)2. (43)

Here, ã ≡ a∗/χ , ζ̃ ≡ ζ ∗/χ , ε̃ ≡ γ̃ + ζ̃ /2, and γ̃ ≡ γ ∗/χ . The
expressions (42) and (43) are fully equivalent to linear Grad’s
predictions (A15)–(A17), except that χ is replaced by β.

IV. NUMERICAL SOLUTIONS: DIRECT SIMULATION
MONTE CARLO METHOD

As we said in the Introduction, the third method consists of
obtaining a numerical solution to the Boltzmann equation (19)
by means of the DSMC method [55] applied to inelastic hard
spheres. More concretely, the algorithm we used is analogous
to the one employed in Ref. [67] where the USF state becomes
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homogeneous in the frame moving with the flow velocity U.
Here, we have simply added the drag force coming from the
interaction between the solid particles and the surrounding
interstitial fluid. The initial state is the same for all simulations,
namely, Gaussian velocity distributions with homogeneous
density and temperature. We have observed in most of the
cases that, after a relatively short transient, a steady state
is reached. In this state, the relevant quantities of the USF
problem (nonzero elements of the pressure tensor, the kurtosis,
and the velocity distribution function) are measured.

Since the base of the algorithm has been explained in detail
in previous papers [67,68], we skip here these details and only
comment that we have performed systematic simulation series
for two different situations: (i) by varying the (scaled) friction
coefficient γ ∗ at a given value of α and, conversely, (ii) by
varying the coefficient of restitution α at a given value of γ ∗.
In addition, the series corresponding to varying γ ∗ have been
employed for graphs with varying the Stokes number St also.

The use of the DSMC method is convenient since it is con-
sidered an accurate method of solving the Boltzmann equation.
Here, the DSMC results can be considered a clean way to
assess the degree of reliability of the theoretical descriptions
we developed (Grad’s moment method and BGK-type kinetic
model). This is what we do, along with presentation of the
results, in the following section.

V. RESULTS

We devote this section to direct comparative presentation of
the results obtained from all three independent routes we have
followed for this work. Although our theoretical expressions
apply for spheres and disks, for the sake of brevity we present
only results for the physical case of a three-dimensional system
(d = 3). Given that the computational algorithm can be easily
adapted to disks, a comparison between theory and simulation
for d = 2 could be also performed.

Figure 3 shows the dependence of the (reduced) elements
P ∗

xx and P ∗
xy of the pressure tensor on the Stokes number St.

Here, we have performed simulation series by varying the
(reduced) friction coefficient γ ∗ (or equivalently, St) for three
different values of the coefficient of restitution: α = 1 (elastic
case), α = 0.9, and α = 0.7. Recall that the diagonal elements
of the pressure tensor are related as P ∗

xx + P ∗
yy + (d − 2)P ∗

zz =
d. In this graph, only the predictions given by the so-called
nonlinear Grad’s solution are plotted. The results obtained
from linear Grad’s solution are practically indistinguishable
from the latter ones for the cases considered in this plot.
The comparison between theory (solid lines) and computer
simulations (symbols) shows an excellent agreement for all
values of the Stokes number represented here, independently
of the degree of inelasticity of collisions in the granular gas.

As noted in the Introduction, one of the drawbacks of the
linear’s Grad solution is that it yields P ∗

yy = P ∗
zz and hence

the second viscometric function (proportional to P ∗
yy − P ∗

zz

[69]) vanishes. This failure of the linear Grad’s solution is also
present at moderate densities [see Eq. (4.33) of [32]]. Figure 4
shows the dependence of the normal elements P ∗

yy and P ∗
zz

on the Stokes number St as obtained from the DSMC method
(symbols) and nonlinear Grad’s solution. It is quite apparent
that both simulations and theory show that P ∗

zz > P ∗
yy . This is
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FIG. 3. (Color online) Dependence of the (reduced) elements of
the pressure tensor P ∗

xx (a) and P ∗
xy (b) on the Stokes number St

for several values of the coefficient of restitution α: α = 1 (black),
α = 0.7 (blue), and α = 0.5 (red). The solid lines are the theoretical
results obtained from nonlinear Grad’s solution while the symbols
refer to the results obtained from Monte Carlo simulations. We have
marked as vertical dotted lines the minimum allowed value for the
Stokes number St.

especially relevant in granular suspensions since we have two
different sink terms (γ ∗ and ζ ∗) in the energy balance equation
(25). And thus, the non-Newtonian effects like P ∗

yy �= P ∗
zz are

expected to be stronger. The balance of these two terms with
the viscous heating term (η∗a∗2) requires high shear rates as
can be seen in Fig. 2. We observe in Fig. 4 that our theory
captures quantitatively well the tendency of P ∗

yy (the diagonal
element of the pressure tensor in the direction of shear flow)
to become smaller than P ∗

zz, this tendency being stronger
as inelasticity increases (and disappearing completely in the
elastic limit α = 1). It is also apparent that the dependence
of both P ∗

zz and P ∗
yy on the Stokes number is qualitatively

well captured by nonlinear Grad’s solution, even for strong
collisional dissipation. Finally, regarding rheology and as a
complement of Figs. 3 and 4, Fig. 5 shows the α dependence
of the relevant elements of the pressure tensor at a given value
of the (scaled) friction coefficient γ ∗. Since the value of γ ∗
is relatively high (γ ∗ = 0.5), the results presented in Fig. 5
can be considered a stringent test for both linear and nonlinear
Grad’s solutions. Although linear Grad’s solution exhibits a
reasonably good agreement with DSMC data, we see that
nonlinear Grad’s solution mitigates in part the discrepancies
observed by using the linear approach since the former theory
correctly predicts the trend of the normal stress difference
P ∗

zz − P ∗
yy and also improves the agreement with simulations

for the elements P ∗
xx and P ∗

xy . On the other hand, since the
system is quite far from equilibrium, there are still quantitative
discrepancies between the nonlinear theory and simulations.
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FIG. 4. (Color online) Dependence of the (reduced) diagonal
elements of the pressure tensor P ∗

yy (black lines and squares) and P ∗
zz

(blue lines and triangles) on the Stokes number St for several values
of the coefficient of restitution α: α = 1 (a), α = 0.7 (b), and α = 0.5
(c). The solid lines are the theoretical results obtained from nonlinear
Grad’s solution while the symbols refer to the results obtained from
Monte Carlo simulations. As in Fig. 3, we have marked as vertical
dotted lines the minimum allowed value of the Stokes number St for
each value of α.

Next, we present results for the kurtosis or fourth order
cumulant K ≡ 〈V 4〉/〈V 4〉0 where

〈V k〉 = 1

n

∫
dVV kf (V), (44)

and

〈V k〉0 = 1

n

∫
dVV kfM(V). (45)

The dependence of the kurtosis on both γ ∗ and α can be easily
obtained from the results derived from the BGK-type kinetic
model [see Eq. (B11) for the BGK velocity moments]. Note
that 〈V k〉 = 〈V k〉0 if one uses Grad’s distribution (33), which
is a failure of Grad’s solution since K is clearly different from
1. Figure 6 shows the dependence of K on the coefficient of
restitution α for hard spheres (d = 3) and three different values
of the (reduced) friction coefficient γ ∗: γ ∗ = 0 (dry granular
gas), γ ∗ = 0.1, and γ ∗ = 0.5. In the case of elastic collisions
(α = 1), K = 1 only for γ ∗ = 0 since in this case the system
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FIG. 5. (Color online) Plot of the (reduced) nonzero elements of
the pressure tensor P ∗

xx (a), P ∗
xy (b), P ∗

yy and P ∗
zz (c) as functions of the

coefficient of restitution α for γ ∗ = 0.5. The solid and dotted lines
correspond to the results obtained from nonlinear and linear Grad’s
solution, respectively. Symbols refer to Monte Carlo simulations. In
(c), the blue solid line and triangles are for the element P ∗

zz while the
black solid line and squares are for the element P ∗

yy . Note that linear
Grad’s solution (dotted line) yields P ∗

yy = P ∗
zz.
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FIG. 6. (Color online) Plot of the kurtosis K ≡ 〈V 4〉/〈V 4〉0 vs
the coefficient of restitution α for three different values of the
(reduced) friction coefficient γ ∗: γ ∗ = 0 (black line and squares),
γ ∗ = 0.1 (blue line and circles), and γ ∗ = 0.5 (red line and triangles).
The solid lines correspond to the results obtained from the BGK-type
model while symbols refer to DSMC results. The dashed line is the
result obtained in Ref. [35] for the homogeneous cooling state.
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FIG. 7. (Color online) Logarithmic plots of the marginal distri-
bution function ϕ(+)

x (cx), as defined in Eq. (B15). Two cases are
represented here: (a) α = 0.9, γ ∗ = 0.1 and (b) α = 0.5, γ ∗ = 0.1.
The black and blue solid lines are the theoretical results derived
from the BGK model and the ME formalism, respectively, while the
symbols represent the simulation results. The red dotted lines are the
(local) equilibrium distributions.

is at equilibrium (f = fM). We have also included the result
obtained in Ref. [35] in the HCS, which is independent of
γ ∗. It is important to remark first that the simulation results
obtained independently here for γ ∗ = 0 in Fig. 6 are consistent
with those previously reported for a sheared granular gas with
no interstitial fluid [70]. For low values of γ ∗, we see that
the agreement between theory and simulation is very good
in the full range of values of inelasticities represented here.
This shows again the reliability of the BGK model to capture
the main trends observed in granular suspensions. On the
other hand, the agreement is only qualitative for relatively
high values of the friction coefficient γ ∗ since the BGK
results clearly underestimate the value of the kurtosis given
by computer simulations. These discrepancies between the
BGK-type model and DSMC for the fourth-degree velocity
moment in non-Newtonian states is not surprising since the
above kinetic model does not intend to mimic the behavior
of the true distribution function beyond the thermal velocity
region. As expected, it is apparent that the prediction for K in
the homogeneous state differs clearly from the one obtained
in the DSMC simulations at γ ∗ = 0.

Apart from the rheological properties and the high velocity
moments, the solution to the BGK-type model provides the
explicit form of the velocity distribution function f (V).
Figures 7 and 8 show the marginal distributions ϕ(+)

x (cx)
[defined by Eq. (B15)] and ϕ(+)

y (cy) [defined by Eq. (B16)],
respectively, for γ ∗ = 0.1 and two different values of the
coefficient of restitution α: α = 0.9 (moderate inelasticity)
and α = 0.5 (strong inelasticity). The black solid lines are the
results derived from the BGK model and the symbols represent
Monte Carlo simulations. For the sake of completeness, it is
interesting to use the maximum-entropy (ME) formalism [71]
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FIG. 8. (Color online) Logarithmic plots of the marginal distri-
bution function ϕ(+)

y (cy), as defined in Eq. (B16). Two cases are
represented here: (a) α = 0.9, γ ∗ = 0.1 and (b) α = 0.5, γ ∗ = 0.1.
The black and blue solid lines are the theoretical results derived
from the BGK model and the ME formalism, respectively, while the
symbols represent the simulation results. The red dotted lines are the
(local) equilibrium distributions.

to construct the distribution maximizing the functional

−
∫

dV f (V) ln f (V), (46)

subjected to the constraints of reproducing the density n and
the pressure tensor P. In the three-dimensional case, this yields

f (V) = nπ−3/2 det(Q)1/2 exp(−V · Q · V), (47)

where Q ≡ 1
2mnP−1. The ME approximation [72] was em-

ployed by Jenkins and Richman [73] in order to determine
the kinetic contributions to the pressure tensor in a sheared
granular fluid of hard disks. Moreover, in Figs. 7 and 8, as
a reference the (local) equilibrium distributions (red dotted
lines) are also represented. Although not shown in Figs. 7 and
8, Grad’s distribution (33) could lead to unphysical (negative)
values of the marginal distributions ϕ(+)

x (cx) and ϕ(+)
y (cy) for

large velocities. This is again a drawback of Grad’s solution not
shared by the BGK solution since the latter is always positive
definite for any range of velocities considered. Regarding the
comparison between the different results, since the (reduced)
shear rate is not small (see for instance, Fig. 2 for α = 0.5 and
γ ∗ = 0.1), we observe that the distortion from the Gaussian
distribution is quite apparent in the three different approaches
(BGK, ME, and DSMC). Two anisotropic features of the USF
state are seen. First, the functions ϕ(+)

x (cx) and ϕ(+)
y (cy) are

asymmetric since ϕ(+)
x (|cx |) < ϕ(+)

x (−|cx |) and ϕ(+)
y (|cy |) <

ϕ(+)
y (−|cy |). This is a physical effect induced by the shearing

since the shear stress P ∗
xy < 0. The second feature is the non-

Newtonian property ϕ(+)
x (cx) < ϕ(+)

y (cy). In fact, the marginal
distribution ϕ(+)

x (cx) is thicker than ϕ(+)
y (cy), consistent with

the result P ∗
xx − P ∗

yy > 0. The above two effects are more
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FIG. 9. (Color online) Plot of the square root of the steady
granular temperature θ1/2 as a function of St/Rdiss in the case of hard
spheres (d = 3) for φ = 0.01. Two different values of the coefficient
of restitution have been considered: α = 0.7 (a) and α = 0.5 (b). The
solid line is the Grad solution (including nonlinear contributions) to
the Boltzmann equation, the dashed (blue) line corresponds to the
BGK results (which coincide with those obtained from the linear
Grad solution), and the dotted (red) line refers to the results obtained
by Sangani et al. [32] from the Enskog equation by applying (linear)
Grad’s method. The black circles and triangles are the simulation
results obtained here by means of the DSMC method for α = 0.7
and α = 0.5, respectively, while the empty triangles are the results
obtained in Ref. [32].

pronounced for α = 0.5 than for α = 0.9. With respect to
the comparison between theory and simulation, we observe
that in general the agreement between theoretical predictions
(the BGK model and the ME formalism) and simulations data
is excellent in the region of thermal velocities (|ci | ∼ 1). It
is also apparent that while the ME approach compares better
with simulations than the BGK results for the distribution
ϕ(+)

x (cx), the opposite happens for the distribution ϕ(+)
y (cy). In

particular, in the case of α = 0.9 the BGK model (the ME
formalism) yields an excellent agreement with DSMC over
the complete range of velocities studied for the distribution
ϕ(+)

y (cy) [ϕ(+)
x (cx)]. On the other hand, for larger velocities

and strong collisional dissipation, there are quantitative dis-
crepancies between theoretical predictions and simulations.

Finally, it is quite interesting to compare the dynamic
simulation results reported in Ref. [32] in the case of very dilute
suspensions (φ = 0.01) with those carried here by means of
the DSMC method. To do it, we introduce the (steady) granular
temperature θ as

θ = 4T

mσ 2a2
= 25π

2304

1

φ2a∗2
, (48)

where we recall that φ = (π/6)nσ 3 is the volume fraction
for spheres. Figure 9 shows

√
θ versus St/Rdiss for two

different values of the coefficient of restitution: α = 0.7 and
α = 0.5. We have considered the Monte Carlo simulations
performed here for α = 0.7 and α = 0.5 and those made
in Ref. [32] in the case α = 0.5. In addition, we have also

included the theoretical results derived in [32] from the Enskog
equation. We observe first that the dynamic simulations for
finite Stokes number and the DSMC results are consistent
among themselves in the range of values of St/Rdiss explored.
This good agreement gives support to the applicability of the
model for dilute granular suspensions introduced in Eq. (19).
It is also apparent that the performance of nonlinear Grad’s
theory for the (steady) temperature is slightly better than the
remaining theories. Notice also that the agreement between
theory and computer simulations improves as we approach
the dry granular limit St/Rdiss → ∞. Thus, at α = 0.7, for
instance the discrepancies between nonlinear Grad’s theory
and DSMC results for St/Rdiss = 11.3, 22.5, 45, 60, and 90
are about 8.5%, 6.4%, 5.8%, 5.5%, and 5.4%, respectively,
while at α = 0.5 the discrepancies are about 14%, 10%, 9%,
8.6%, and 8.5%, respectively. This shows again that our Grad’s
solution compares quite well with simulations for not too large
values of the (scaled) friction coefficient γ ∗ (or equivalently,
for large values of the Stokes number St).

VI. CONCLUSIONS

In this work, we have presented a complete and compre-
hensive theoretical description of the non-Newtonian transport
properties of a dilute granular suspension under USF in
the framework of the (inelastic) Boltzmann equation. The
influence of the interstitial fluid on the dynamic properties of
grains has been modeled via a viscous drag force proportional
to the particle velocity. This type of external force has been
recently employed in different works on gas-solid flows
[37–41]. Our study has been both theoretical and compu-
tational. In the theory part, we have presented results from
two different approaches: Grad’s moment method and a
BGK-type kinetic model used previously in other granular
flow problems and now applied specifically to the model of
granular suspensions. In contrast to previous works in granular
sheared suspensions [32], we have included in Grad’s solution
quadratic terms in the pressure tensor Pij in the collisional
moment �ij associated with the momentum transport (nonlin-
ear Grad’s solution). This allows us to evaluate the normal
stress differences in the plane normal to the laminar flow
(namely, the normal stress difference P ∗

yy − P ∗
zz) and of course,

one obtains more accurate expressions of the non-Newtonian
transport properties. The inclusion of quadratic terms in Pij

in the evaluation of �ij was already considered by Tsao
and Koch [27] in an analogous system but only in the limit
of perfectly elastic collisions (α = 1). Therefore, for strictly
granular particles (i.e., beyond the elastic limit), the difference
P ∗

yy − P ∗
zz has been analytically detected and evaluated in a

theory of sheared granular suspensions. This is one of the most
relevant achievements of the present contribution. Moreover,
the development of the corresponding BGK-type model for the
dilute granular suspension under shear has allowed us also to
formally compute all velocity moments as well as the velocity
distribution function of the suspension.

Additionally, to gauge the accuracy of the above theoretical
approaches, we have presented simulation results (DSMC
method applied to the inelastic Boltzmann equation). The
comparison between theory and Monte Carlo simulations has
been done by varying both the (scaled) friction coefficient
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γ ∗ (or equivalently, the Stokes number St) characterizing the
magnitude of the drag force and the coefficient of restitution
α characterizing the inelasticity of collisions. The agreement
for the reduced shear rate [see Fig. 2(a)] and the elements
of the pressure tensor (see Figs. 3 and 4) between Monte
Carlo simulations and both theoretical solutions is excellent
(especially in the case of nonlinear Grad’s solution) for
not too large value values of γ ∗. As the magnitude of the
friction coefficient increases, the agreement between Grad’s
solution and simulations decreases (cf. Fig. 5), although the
discrepancies are smaller than 6%. This good performance of
Grad’s method has also been observed for monodisperse dry
granular gases for Couette flow sustaining a uniform heat flux
[44,45,61] and also in the case of granular binary mixtures
under USF [47,74]. Regarding high velocity moments, we
also obtain good agreement for the kurtosis K , since the
BGK results compare very well with simulations for not too
large values of γ ∗ (cf. Fig. 6). Finally, as expected, the BGK
model reproduces very well the behavior of the marginal
distributions ϕ(+)

x (cx) and ϕ(+)
y (cy) in the region of thermal

velocities (see Figs. 7 and 8), although they quantitatively
disagree with simulations for higher velocities especially for
strong collisional dissipation.

Finally, it is also important to remark that the objective
of this work has been to set a nonlinear hydrodynamic
theory for the USF, a state that as we know is necessarily
non-Newtonian [44], as a starting point for the deployment of a
more comprehensive and systematic theory for more complex
flows in this kind of system. In this context, we expect in
the near future to extend the present results to other related
flows such as the so-called LTu flows [44,61] (i.e., the more
general case of uniform but non-null heat flux) or to the more
general class of Couette flows [45]. We want also to carry out
further studies on the more realistic case of multicomponent
granular suspensions where problems like segregation can be
addressed. Work along these lines is underway.
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APPENDIX A: RESULTS FROM GRAD’S MOMENT
METHOD—RHEOLOGICAL PROPERTIES

In this Appendix we provide the approximate results
obtained from Grad’s moment method. First, we evaluate the
collisional moment �ij defined in Eq. (32) by using Grad’s
approximation (33). Before considering the trial distribution
function (33), the collision integral �ij can be written as

�ij = mσd−1
∫

dV1dV2 f (V1)f (V2)
∫

dσ̂�(σ̂ · g)

× (σ̂ · g)(V ′′
1iV

′′
1j − V1jV1j ), (A1)

where g = V1 − V2 is the relative velocity and

V′′
1 = V1 − 1 + α

2
(σ̂ · g)σ̂ . (A2)

Using Eq. (A2), Eq. (A1) becomes

�ij = mσd−1
∫

dV1dV2 f (V1)f (V2)

×
∫

dσ̂�(σ̂ · g)

[(
1 + α

2

)2

(σ̂ · g)3σ̂i σ̂j

− 1 + α

2
(σ̂ · g)2(̂σjV1i + σ̂iV1j )

]
. (A3)

To perform the angular integrations, we need the results∫
dσ̂�(σ̂ · g)(σ̂ · g)n = βng

n, (A4)∫
dσ̂�(σ̂ · g)(σ̂ · g)nσ̂ = βn+1g

n−1g, (A5)∫
dσ̂�(σ̂ · g)(σ̂ · g)nσ̂ σ̂ = βn

n + d
gn−2(ngg + g21), (A6)

where 1 is the unit tensor and

βn = π (d−1)/2 �[(n + 1)/2]

�[(n + d)/2]
. (A7)

Taking into account these integrals, the integration over σ̂ in
Eq. (A3) yields

�ij = −mσd−1β3
1 + α

2

∫
dv1

∫
dv2f (V1)f (V2)g

×
[
giGj + gjGi + 2d + 3 − 3α

2(d + 3)
gigj

− 1 + α

2(d + 3)
g2δij

]
, (A8)

where G = (V1 + V2)/2 is the center of mass velocity.
The expression (A8) is still exact. However, to compute

(A8) one has to replace the true f (V) by its Grad’s approxi-
mation (33). The result is

�ij = −pnσd−1

√
2T

m
(1 + α)β3Iij , (A9)

where Iij is the dimensionless quantity

Iij = π−d

∫
dc1

∫
dc2e

−(c2
1+c2

2)
[
(c1μc1λ + c2μc2λ)�∗

μλ

+ c1λc1μc2γ c2ν�
∗
μλ�

∗
γ ν

]
g∗

[
g∗

i G
∗
j + g∗

j G
∗
i

+ 2d + 3 − 3α

2(d + 3)
g∗

i g
∗
j − 1 + α

2(d + 3)
g∗2δij

]
. (A10)

Here, ci = vi/v0, g∗ = g/v0, G∗ = G/v0, �∗
ij = �ij/p, and

v0 = √
2T/m is the thermal velocity. The Gaussian integrals

involved in the calculation of Iij can be easily computed by
considering g∗ and G∗ as integration variables instead of c1 and
c2. The corresponding integrals can be done quite efficiently
by using a computer package of symbolic calculation. Here,
we have used Mathematica [75]. The final expressions of �ij

are given by Eq. (36) for d = 3 and Eq. (37) for d = 2.
Once the collisional moment �ij is known, the hierarchy

(31) can be solved. According to the geometry of USF, the only
nonzero elements of the pressure tensor are the off-diagonal
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element Pxy = Pyx (shear stress) and the diagonal elements
Pkk (k = x,y and also z, if d = 3). The equations defining
these elements (including the zz element that would only arise
if d = 3) can be easily obtained from Eq. (31). They are given
by

2a∗�∗
xy + 2γ ∗(1 + �∗

xx) = �∗
xx, (A11)

2γ ∗(1 + �∗
yy) = �∗

yy, (A12)

a∗(1 + �∗
yy) + 2γ ∗�∗

xy = �∗
xy, (A13)

where �∗
ij ≡ �ij/pν. Note that in the physical case d = 3, �∗

zz

can be obtained from the constraint �∗
zz = −(�∗

xx + �∗
yy).

The solution to Eqs. (A11)–(A13) gives the elements �∗
xx ,

�∗
yy , and �∗

xy as functions of the reduced shear rate a∗. Note
that a∗ is proportional to the inverse of the square root of
the (steady) temperature. In order to close the problem, we
need an extra condition to express a∗ in terms of γ ∗ and α.
This is provided by the energy balance equation (20), whose
dimensionless form is

− 2

d
�∗

xya
∗ = 2γ ∗ + ζ ∗, (A14)

where ζ ∗ is defined by Eqs. (39) and (40) for spheres and
disks, respectively. Thus, the solution to Eqs. (A11)–(A14)
provides the forms of �∗

ij in terms of the coefficient of
restitution α and the (dimensionless) friction coefficient γ ∗.
On the other hand, given that the collisional moments �∗

ij are
nonlinear functions of �∗

ij , Eqs. (A11)–(A14) must be solved
numerically (nonlinear Grad’s solution).

An analytical solution to Eqs. (A11)–(A14) can be easily
obtained when one only considers linear terms to �∗

ij in the
expressions (36) and (37) for �ij . This was the approach
considered by Sangani et al. [42] to get the kinetic contri-
butions to the pressure tensor at moderate densities. In this
linear approximation (linear Grad’s solution), the solution to
Eqs. (A11)–(A14) can be written as

�∗
yy = �∗

zz = − ζ ∗
0 + 2γ ∗

β + ζ ∗
0 + 2γ ∗ , �∗

xx = −(d − 1)�∗
yy,

(A15)

�∗
xy = − βa∗

(β + ζ ∗
0 + 2γ ∗)2

, (A16)

a∗ =
√

d(2γ ∗ + ζ ∗
0 )

2β
(β + ζ ∗

0 + 2γ ∗), (A17)

where ζ ∗
0 ≡ ζ0/ν is given by Eq. (23) and

β = 1 + α

2

[
1 − d − 1

2d
(1 − α)

]
. (A18)

In the dry granular case (γ ∗ = 0), Eqs. (A15)–(A17) are
consistent with previous results [42] obtained in the USF
problem by using Grad’s moment method. In addition, the
expressions obtained by Sangani et al. [42] agree with
Eqs. (A15)–(A17) in the limit of dilute granular suspensions.

APPENDIX B: RESULTS FROM THE BGK-LIKE KINETIC
MODEL

The exact results derived from the BGK-like kinetic
model (41) are displayed in this appendix. In terms of the
dimensionless quantities ã, ζ̃ and ε̃, the BGK equation (41)
can be rewritten as(

1 − dε̃ − ãVy

∂

∂Vx

− ε̃V · ∂

∂V

)
f (V) = fM(V). (B1)

The hydrodynamic solution to Eq. (B1) is

f (V) =
(

1 − dε̃ − ãVy

∂

∂Vx

− ε̃V · ∂

∂V

)−1

fM(V)

=
∫ ∞

0
dte−(1−dε̃)t eãtVy (∂/∂Vx ) eε̃tV·(∂/∂V)fM(V). (B2)

The action of the velocity operators eãtVy (∂/∂Vx ) and eε̃tV·(∂/∂V)

on an arbitrary function g(V) is

eãtVy (∂/∂Vx )g(V) = g(V + ãtVy x̂), (B3)

eε̃tV·(∂/∂V)g(V) = g(eε̃tV). (B4)

Taking into account these operators, the velocity distribution
function f can be written as

f (V) = n

(
m

2T

)d/2

ϕ(c), (B5)

where c ≡ (m/2T )1/2V and the (scaled) velocity distribution
function ϕ(c) is

ϕ(c) = π−d/2
∫ ∞

0
dt e−(1−dε̃)t exp[−e2̃εt (c + t ã · c)2],

(B6)
where we have introduced the tensor ãij = ãδixδjy .

Equations (B5) and (B6) provide the explicit form of the
velocity distribution function in terms of the parameter space
of the system. The knowledge of f (V) allows us to evaluate its
velocity moments. In order to accomplish it, it is convenient
to introduce the general velocity moments

Mk1,k2,k3 =
∫

dV V k1
x V k2

y V k3
z f (V). (B7)

The only nonvanishing moments correspond to even values of
k1 + k2 and k3. Insertion of Eq. (B6) yields

Mk1,k2,k3 = n

(
2T

m

)k/2

π−d/2
∫ ∞

0
dt e−(1−dε̃)t

×
∫

dc ck1
x ck2

y ck3
z eãtcy∂cx exp(−e2̃εt c2)

= n

(
2T

m

)k/2

π−d/2
∫ ∞

0
dt e−(1+kε̃)t

×
∫

dc (cx − ãtcy)k1ck2
y ck3

z e−c2
, (B8)
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where k = k1 + k2 + k3. It is now convenient to expand the
term (cx − ãtcy)k1 , so that Eq. (B8) becomes

Mk1,k2,k3 = n

(
2T

m

)k/2 k1∑
q=0

k1!

q!(k1 − q)!
〈ck1−q

x ck2+q
y ck3

z 〉L

×
∫ ∞

0
dt (−ãt)qe−(1+kε̃)t , (B9)

where〈
ck1
x ck2

y ck3
z

〉
L = π−3/2�

(
k1 + 1

2

)
�

(
k2 + 1

2

)
�

(
k3 + 1

2

)
(B10)

if k1, k2, and k3 are even, being zero otherwise. Finally, after
performing the t integration in Eq. (B9) one achieves the result

Mk1,k2,k3 = n

(
2T

m

)k/2 k1∑
q=0

k1!

q!(k1 − q)!
(−ã)q

×(1 + kε̃)−(1+q)
〈
ck1−q
x ck2+q

y ck3
z

〉
L. (B11)

In order to write more explicitly the form of the (scaled) dis-
tribution function ϕ(V), we consider here a three-dimensional
system (d = 3). In this case, the distribution ϕ can be written as

ϕ(c) = π−3/2
∫ ∞

0
dt e−(1−3̃ε)t

× exp
[ − e2̃εt (cx + ãtcy)2 − e2̃εt c2

y − e2̃εt c2
z

]
.

(B12)

To illustrate the dependence of ϕ on the parameter space of the
problem, it is convenient to introduce the following marginal
distributions:

ϕ(+)
x (cx) =

∫ ∞

0
dcy

∫ ∞

−∞
dcz ϕ(c), (B13)

ϕ(+)
y (cy) =

∫ ∞

0
dcx

∫ ∞

−∞
dcz ϕ(c). (B14)

Their explicit forms can be easily obtained from Eq. (B12):

ϕ(+)
x (cx) = 1

2
√

π

∫ ∞

0
dt

e−(1−ε̃)t

√
1 + ã2t2

exp

(
− e2̃εt c2

x

1 + ã2t2

)
× erfc

(
eε̃t ãtcx√

1 + ã2t2

)
, (B15)

ϕ(+)
y (cy) = 1

2
√

π

∫ ∞

0
dt e−(1−ε̃)t exp

( − e2̃εt c2
y

)
× erfc

(
eε̃t ãtcy

)
. (B16)

In Eqs. (B15) and (B16), erfc(x) is the complementary error
function.

So far, χ has remained free. Henceforth, to agree with the
results derived from linear Grad’s solution, we will take χ = β,
where β is defined by Eq. (A18).
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