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Generalized transport coefficients for inelastic Maxwell mixtures under shear flow
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The Boltzmann equation framework for inelastic Maxwell models is considered to determine the transport
coefficients associated with the mass, momentum, and heat fluxes of a granular binary mixture in spatially inhomo-
geneous states close to the simple shear flow. The Boltzmann equation is solved by means of a Chapman-Enskog–
type expansion around the (local) shear flow distributions f (0)

r for each species that retain all the hydrodynamic
orders in the shear rate. Due to the anisotropy induced by the shear flow, tensorial quantities are required to describe
the transport processes instead of the conventional scalar coefficients. These tensors are given in terms of the solu-
tions of a set of coupled equations, which can be analytically solved as functions of the shear rate a, the coefficients
of restitution αrs , and the parameters of the mixture (masses, diameters, and composition). Since the reference
distribution functions f (0)

r apply for arbitrary values of the shear rate and are not restricted to weak dissipation,
the corresponding generalized coefficients turn out to be nonlinear functions of both a and αrs . The dependence
of the relevant elements of the three diffusion tensors on both the shear rate and dissipation is illustrated in the
tracer limit case, the results showing that the deviation of the generalized transport coefficients from their forms
for vanishing shear rates is in general significant. A comparison with the previous results obtained analytically for
inelastic hard spheres by using Grad’s moment method is carried out, showing a good agreement over a wide range
of values for the coefficients of restitution. Finally, as an application of the theoretical expressions derived here for
the transport coefficients, thermal diffusion segregation of an intruder immersed in a granular gas is also studied.
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I. INTRODUCTION

Granular media under rapid flow conditions are amenable
to a fruitful modelization through a gas of inelastic hard
spheres (IHS) [1]. In the simplest model, the grains are
assumed to be smooth so that the inelasticity is charac-
terized through a constant (positive) coefficient of normal
restitution α � 1 that only affects the translational degrees
of freedom of the grains. The case α = 1 corresponds to
elastic collisions. Due to the kinetic-energy dissipation in
collisions, energy must be externally injected to the granular
gas in order to maintain it in rapid flow regime (fluidlike
description). In some cases, the system is driven into the
flow through a (linear) shear field (simple or uniform shear
flow, USF) where a steady state is achieved when the energy
dissipated by collisions is balanced by the energy supplied by
shearing work. The study of the rheological properties in the
steady USF has received consequential attention in the past
years [2,3], especially in the case of monodisperse granular
gases.

The USF state is defined by a constant density n, a uniform
granular temperature T , and a linear velocity profile ux = ay,
where a is the constant shear rate. In the steady state, the system
admits a non-Newtonian description [4,5] characterized by
shear-rate dependent viscosity and normal stress differences.
An interesting problem is the analysis of momentum and heat
transport in spatially inhomogeneous states close to the USF.
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The physical situation is such that the granular gas is in a
strongly sheared state that deviates from the USF conditions
by small spatial gradients. The response of the system to
these perturbations gives rise to additional contributions to
the momentum and heat fluxes, which can be characterized
by generalized shear-rate dependent transport coefficients.
Due to the mathematical difficulties met in obtaining those
coefficients from the Boltzmann collision operator for IHS [1],
the inelastic version of the Bhatnagar-Gross-Krook (BGK)
model [6] was considered to determine the above general-
ized transport coefficients [7,8]. On the other hand, explicit
expressions for these coefficients were derived by assuming
particular perturbations where the steady state conditions of
the USF apply [7,8]. This allowed us to perform a linear
stability analysis of the hydrodynamic equations with respect
to the USF state [8] to get the conditions for instability at
long wavelengths. The results derived for IHS from the BGK
model have been then revisited by considering a mean field
version of the hard sphere system where randomly chosen
pairs of particles collide with a random impact direction. This
assumption, which yields a Boltzmann collision operator with
a collision rate independent of the relative velocity of the two
colliding particles, opens the possibility of obtaining exact
results for granular gases in the context of the Boltzmann
kinetic equation. The above interaction model is referred to
as the inelastic Maxwell model (IMM) [9–16] and it has
been widely considered by physicists and mathematicians
alike in the past few years to unveil in a clean way the
role of dissipation in granular flows. In particular, the use
of IMM allows us to analytically determine the set of
generalized transport coefficients around the USF state for
general unsteady conditions [17].

1539-3755/2015/92(5)/052202(20) 052202-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.052202
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All the above results refer to monocomponent granu-
lar gases. However, a real granular system is generally
characterized by some degree of polydispersity in density
and size (granular mixtures). Needless to say, the difficulties
for obtaining explicit expressions of the transport coefficients
increase considerably when one considers multicomponent
systems since not only the number of transport coefficients
is larger than for a single gas, but they are also functions
of more parameters such as composition, masses, sizes, and
different coefficients of restitution. In the case of states close to
the homogeneous cooling state, explicit forms of the Navier-
Stokes transport coefficients have been derived for IHS [18]
by considering the so-called first Sonine approximation while
exact expressions of these coefficients have been also obtained
for IMM [19]. In the case of far from equilibrium states, the
results for granular mixtures are more scarce. In particular,
the rheological properties (shear stress and normal stress
differences) of inelastic Maxwell mixtures under USF have
been explicitly determined in terms of the parameters of the
mixture (concentration, masses, diameters, and coefficients of
restitution) [20,21]. As in the case of monocomponent granular
gases [17], the use of the Boltzmann collision operator of
IMM allows in principle to determine the transport properties
in a strongly sheared granular mixture without introducing
additional and sometimes uncontrolled approximations. In
addition, as has been mentioned in previous papers, the results
derived for inhomogeneous states from IMM compare well
(especially in the case of low order moments) with those
obtained from IHS [19,20,22,23], showing the reliability of
IMM to assess the impact of collisional dissipation in granular
flows.

The goal of this paper is to study mass, momentum, and
heat transport in a strongly sheared binary mixture. In this
case and taking the USF state as the reference one, the set
of Boltzmann kinetic equations for the mixture is solved by
means of a Chapman-Enskog–type expansion [7] around the
distributions f (0)

r of each species. Since the above distributions
hold for arbitrary values of the shear rate [21], the different
approximations in the Chapman-Enskog method retain all the
hydrodynamic orders in a. Thus, the nonequilibrium problem
analyzed here accounts for two kinds of spatial gradients:
small gradients due to the (slight) perturbations to the USF
and arbitrarily large shear rates due to the reference shear
flow state. In this paper, we will restrict our calculations
to first order (Navier-Stokes–type hydrodynamic order) in
the spatial gradients of concentration, temperature, and flow
velocity. It is important to remark that although the form of
the zeroth-order distributions f (0)

r is not known, we only need
their second- and fourth-degree velocity moments to evaluate
transport around USF. The use of IMM instead of IHS
allows us to exactly get these moments without the explicit
knowledge of f (0)

r . This is perhaps the main advantage of
considering Maxwell models (both elastic and inelastic).

In the first order of the expansion, the mass flux is
characterized by the second-rank tensors Dij (diffusion ten-
sor), Dp,ij (pressure diffusion tensor), and DT,ij (thermal
diffusion tensor), the pressure tensor is defined in terms of
the fourth-rank viscosity tensor ηijk� while the heat flux is
given in terms of the second-rank tensors D′′

ij (Dufour tensor),
Lij (pressure energy tensor), and λij (thermal conductivity

tensor). The set of the above generalized transport coefficients
are nonlinear functions of the shear rate, the concentration, and
the mechanical parameters of the mixture (masses, sizes, and
coefficients of restitution). The determination of the equations
defining these transport coefficients is perhaps the main goal
of this contribution.

As in previous papers pertaining to IMM [21,23,24], the
velocity moments of the Boltzmann collision operator are
given in terms of a collision frequency ν0. This parameter
can be seen as a free parameter of the model that can be
chosen to optimize the agreement with the properties of
interest of the original Boltzmann equation for IHS. Thus,
in order to correctly describe the velocity dependence of the
original IHS collision rate, one usually assumes that the IMM
collision rate is proportional to T β with β = 1

2 . Here, we
take β as a generalized exponent so that different values of
β can be used to mimic different interaction potentials. We
assume that ν0 ∝ nT β , with β � 0. In the case β = 0, ν0 is
independent of temperature (model A), while when β �= 0, ν0

is a monotonically increasing function of temperature (model
B). Model A is closer to the original model of Maxwell gases
for elastic collisions [25,26] while model B with β = 1

2 is
closer to IHS. The possibility of having a general temperature
dependence of ν0(T ) for inelastic repulsive models has been
also introduced in the granular literature[13,14,27]. One of
the main features of model A is that the reduced shear
rate a∗ = a/ν0 (which is the relevant parameter measuring
the departure from the homogeneous cooling state) does not
change in time and, so, a non-Newtonian hydrodynamic regime
(where a∗ and the coefficients of restitution αrs are independent
parameters) is achieved for long times. In this regime, the
combined effect of both control parameters on the (scaled)
transport coefficients can be studied analytically for model A.
This is a bonus feature of this model that contrasts with the
results derived for model B where only analytical results can
be obtained in the steady state limit (namely, when viscous
heating and energy lost by collisions cancel each other).

Our results show that in general the generalized transport
coefficients associated with the mass, momentum, and heat
fluxes are given in terms of the solutions of a set of coupled
nonlinear differential equations. In the case of model B
(β �= 0), these equations must be numerically solved with the
appropriate boundary conditions to obtain their hydrodynamic
forms. On the other hand, for model A (β = 0), they reduce
to a set of coupled algebraic equations that can be analytically
solved. This allows us to provide explicit expressions of these
coefficients in terms of the shear rate and the parameters of
the mixture. This achievement is perhaps one of the most
relevant results of this paper since it extends to binary mixtures’
previous results obtained for monocomponent gases [17].
Nevertheless, the above expressions still involve quite a
tedious algebra due essentially to the intricate dependence
of the velocity moments of the zeroth-order distributions
f (0)

r on both the concentration and the (reduced) shear rate.
Thus, an exploration of the full parameter space, in principle
straightforward, is beyond the scope of this presentation and
a reduced problem will be addressed. Indeed, the tracer limit
(namely, a binary mixture where the concentration of one of
the species is negligible) is specifically considered to analyze
the behavior of the diffusion coefficients.
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Some results for diffusion around USF have been previously
reported by one of the authors of this paper. Thus, in the tracer
limit and for steady state conditions, explicit expressions of
the diffusion tensors Dij , Dp,ij , and DT,ij were derived for
IHS [28,29] by using Grad’s moment method [30]. In the
case of IMM, the tracer diffusion tensor Dij has been also
obtained [20] in the steady state where the (reduced) shear
rate a∗ is coupled to the coefficients of restitution αrs . The
results derived here for IMM extend to finite concentration the
previous attempts made for the diffusion tensors in the tracer
limit. In addition, given that all the previous works [20,28,29]
have been restricted to the steady state, the results reported in
this paper for model A (see Sec. V A) offers the possibility of
assessing independently the influence of both a∗ and αrs on
the diffusion of intruders in a sheared granular gas.

Finally, as an interesting application of the general results,
a segregation criterion based on the thermal diffusion factor is
derived in the tracer limit. This criterion shows the transition
between two different regions (upwards and downwards
segregation) by varying the different parameters of the system.
This study complements a previous analysis carried out for
IHS [31]. Our results show that the form of the phase diagrams
of segregation is quite similar to those obtained before for IHS.

The plan of the paper is as follows. In Sec. II, the Boltzmann
equation for inelastic Maxwell mixtures is introduced and
the USF problem is defined. The Chapman-Enskog–type
expansion around the USF state is described in Sec. III,
while Sec. IV deals with the evaluation of the generalized
transport coefficients associated with the mass, momentum,
and heat fluxes. The tracer limit is considered in Sec. V to
illustrate the dependence of the (scaled) transport coefficients
on the reduced shear rate and the coefficients of restitution.
In this limiting case, the diffusion coefficients are the relevant
transport coefficients of the mixture. The dependence of the
coefficients Dij , Dp,ij , and DT,ij on both a∗ and αrs is analyzed
for model A for general unsteady conditions, while steady state
conditions are assumed to get the form of Dij for model B
(β �= 0) in order to compare with previous results derived for
IHS [29]. Comparison shows in general good agreement even
for strong dissipation. Thermal diffusion segregation is studied
in Sec. VI, while a brief discussion of the results reported in
this paper is provided in Sec. VII.

II. INELASTIC MAXWELL MIXTURES
UNDER SHEAR FLOW

A. Inelastic Maxwell mixtures

We consider a granular binary mixture modeled as an
IMM. In the absence of external forces, the set of nonlinear
Boltzmann equations for the one-particle distribution function
fr (r,v,t) of species r (r = 1,2) reads as(

∂

∂t
+ v · ∇

)
fr (r,v; t) =

2∑
s=1

Jrs[v|fr (t),fs(t)], (1)

where the Boltzmann collision operator Jrs[v1|fr,fs] for IMM
describing the scattering of pairs of particles is

Jrs[v1|fr,fs] = ωrs

ns
d

∫
dv2

∫
dσ̂

[
α−1

rs fr (v′
1)fs(v′

2)

−fr (v1)fs(v2)
]
. (2)

Here,

nr =
∫

dv fr (v) (3)

is the number density of species r , ωrs is an effective collision
frequency for collisions of type r-s, 
d = 2πd/2/�(d/2) is
the total solid angle in d dimensions, and αrs � 1 refers to
the constant coefficient of restitution for collisions between
particles of species r with s. In addition, the primes on the
velocities denote the initial values {v′

1,v
′
2} that lead to {v1,v2}

following a binary collision:

v′
1 = v1 − μsr

(
1 + α−1

rs

)
(σ̂ · g12)σ̂ , (4a)

v′
2 = v2 + μrs

(
1 + α−1

rs

)
(σ̂ · g12)σ̂ , (4b)

where g12 = v1 − v2 is the relative velocity of the colliding
pair, σ̂ is a unit vector directed along the centers of the two
colliding spheres, and μrs = mr/(mr + ms) where mr is the
mass of a particle of species r .

Apart from nr , the relevant quantities in a binary mixture at
a hydrodynamic level are the flow velocity u and the granular
temperature T . They are defined, respectively, as

u = 1

ρ

2∑
s=1

ρsus =
2∑

s=1

∫
dv msvfs(v), (5)

nT =
2∑

s=1

nsTs =
2∑

s=1

∫
dv

ms

d
V 2fs(v). (6)

In Eqs. (5) and (6), ρr = mrnr is the mass density of species
r , n = n1 + n2 is the total number density, ρ = ρ1 + ρ2

is the total mass density, and V = v − u is the peculiar
velocity. Equations (5) and (6) also define the (mean) flow
velocity ur and the partial temperature Tr of species r . The
partial temperature Tr measures the mean kinetic energy
of species r . As confirmed by computer simulations [32],
experiments [33], and kinetic theory calculations [34], the
global granular temperature T is in general different from
the partial temperatures Tr (nonequipartition of energy).

Furthermore, the mass flux for species r is defined as

jr = mr

∫
dv V fr (v), (7)

the total pressure tensor is given by

P =
2∑

s=1

∫
dv msVV fs(v), (8)

and the total heat flux is

q =
2∑

s=1

∫
dv

1

2
msV

2V fs(v). (9)

In addition, the rate of energy dissipated due to collisions
among all the species defines the cooling rate ζ as

ζ = − 1

dnT

∑
r,s

∫
dv mrV

2Jrs[v|fr,fs]. (10)
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At a kinetic level, it is also convenient to introduce the partial
cooling rates ζr , measuring the rate of energy lost by species
r . They are defined as

ζr =
∑

s

ζrs = − 1

dnrTr

∑
s

∫
dv mrV

2Jrs[fr,fs], (11)

where the second identity defines the quantities ζrs . The total
cooling rate ζ is given by

ζ =
2∑

s=1

xsγsζs, (12)

where xr ≡ nr/n is the concentration (or mole fraction) of
species r and γr ≡ Tr/T .

As said in the Introduction, one of the main advantages
of considering IMM is that the moments of the Boltzmann
collision operator Jrs[fr,fs] defined by Eq. (2) can be
exactly evaluated in terms of the distributions fr and fs

without the explicit knowledge of both distributions [25]. This
property has been exploited to determine the second-, third-,
and fourth-degree collisional moments for a monodisperse
granular gas [35]. In the case of mixtures, only the first-,
second-, and third-degree collisional moments [19] have been
obtained. Their explicit forms can be found in the above papers.

The results obtained before apply regardless the specific
form of the effective collision frequencies ωrs . These fre-
quencies are independent of velocity but depend on space
and time through its dependence on density and temperature.
On physical grounds, ωrs ∝ ns . As in previous works on
IMM [17,21,24], we will assume that ωrs ∝ nsT

β , with
β � 0. The case β = 0 (a collision frequency independent
of temperature) will be referred as model A while the case
β �= 0 will be called model B. The collision frequencies ωrs

can be seen as free parameters in the model to optimize the
agreement with some property of interest of IHS. Here, ωrs

is chosen to get the same partial cooling rate ζrs as for IHS
(evaluated by using a Gaussian distribution for fr ). With this
choice, ωrs can be written as [19,20]

ωrs = xs

(
σrs

σ12

)d−1(
θr + θs

θrθs

)1/2

ν0, ν0 = A(β)nT β, (13)

where the value of the quantity A will be defined later (see
Sec. V B). In Eq. (13), σrs = (σr + σs)/2, and

θr = mr

γr

2∑
s=1

m−1
s . (14)

B. Uniform shear flow

We assume that the mixture is under USF. This state is
macroscopically characterized by constant partial densities, a
uniform temperature, and a linear velocity profile

u(y) = u1(y) = u2(y) = ayx̂, (15)

where a is the constant shear rate. This linear velocity profile,
in computer simulations, can conveniently be generated by the
Lees-Edwards boundary conditions [36], which are simply
periodic boundary conditions in the local Lagrange frame
moving with the flow velocity [37]. Since nr and T are here
uniform, then the mass and heat fluxes vanish and the transport

of momentum (measured by the pressure tensor) is the relevant
phenomenon. At a microscopic level, the USF is characterized
by a velocity distribution function that becomes uniform in the
local Lagrangian frame moving with the flow velocity u, i.e.,
fs(r,v,t) = fs(V,t). In that case, Eq. (1) becomes [26]

∂f1

∂t
− aVy

∂f1

∂Vx

= J11[f1,f1] + J12[f1,f2] (16)

and a similar relation for f2. The relevant balance equation in
the USF state is the balance equation for the temperature. It
can be obtained from Eq. (16) and its counterpart for species
2; it is given by

ν−1
0

∂

∂t
ln T = −ζ ∗ − 2a∗

d
P ∗

xy, (17)

where ζ ∗ ≡ ζ/ν0, a∗ ≡ a/ν0, P ∗
xy ≡ Pxy/p, p = nT being the

hydrostatic pressure. Equation (15) shows that the temperature
changes in time due to the competition of two opposite
mechanisms: viscous heating (shearing work) and energy
dissipation in collisions. It is apparent that, except for model A
(β = 0), the collision frequency ν0(T ) ∝ T β is an increasing
function of temperature, and so a∗(t) ∝ T (t)−β is a function
of time. Consequently, the (reduced) pressure tensor P ∗

xy

depends on time in the hydrodynamic regime only through
its dependence on a∗(t) [26]. Therefore, for β �= 0, after a
transient regime a steady state is achieved in the long-time limit
when both viscous heating and collisional cooling cancel each
other and the mixture autonomously seeks the temperature
at which the above balance occurs. In this steady state, the
reduced shear rate and the coefficients of restitution are not
independent parameters since they are related through the
steady state condition

a∗P ∗
xy = −d

2
ζ ∗. (18)

On the other hand, when β = 0, ∂ta
∗ = 0 so that the reduced

shear rate remains in its initial value regardless of the values
of the coefficients of restitution αrs . As a consequence, there
is no steady state [unless a∗ takes the specific value given by
the condition (18)] and a∗ and αrs are independent parameters
in the USF problem. Moreover, it must be also noted that
the results obtained in the steady simple shear flow state are
universal in the sense that they apply both for models A and
B, regardless of the specific dependence of ν0 on T . The
rheological properties for a granular binary mixture of IMM
in the steady state were obtained in Ref. [20], while a more
detailed study on the rheological properties has been carried
out in Ref. [21]. In particular, the shear stress P ∗

xy can be
written as

P ∗
xy = −η∗a∗, (19)

where η∗ is the (scaled) nonlinear shear viscosity of the
granular mixture. The dependence of η∗ on both a∗ and αrs

has been thoroughly analyzed in Ref. [21] for different systems
(see for instance, Figs. 3, 4, 5, and 7 of [21]).

Apart from the rheological properties, an interesting quan-
tity is the temperature ratio γ ≡ T1/T2, which quantifies the
lack of equipartition of the kinetic energy. Obviously, γ = 1
for any value of the shear rate and/or the coefficients of restitu-
tion in the case of mechanically equivalent particles (m1 = m2,

052202-4



GENERALIZED TRANSPORT COEFFICIENTS FOR . . . PHYSICAL REVIEW E 92, 052202 (2015)

σ1 = σ2, and α11 = α22 = α12). Beyond this limiting case, the
temperature ratio clearly differs from 1. For model A, γ is
determined from the condition

γ = x2

x1

P ∗
1,xx + (d − 1)P ∗

1,yy

P ∗
2,xx + (d − 1)P ∗

2,yy

, (20)

where P ∗
r,ij ≡ Pr,ij /p and

Pr,ij =
∫

dV mrViVjfr (V). (21)

The expressions of the partial pressure tensors Pr have been
obtained analytically for model A in Ref. [21]. For model B,
the forms of Pr must be determined after solving numerically
a nonlinear set of differential equations. On the other hand,
analytical results for Pr can be obtained in the case of model
B in the steady state (where models A and B yield the same
results). In this situation, the temperature ratio is obtained by
solving the equation [21]

γ = x2ζ
∗
2 P ∗

1,xy

x1ζ
∗
1 P ∗

2,xy

, (22)

where ζ ∗
r = ∑

s ζ ∗
rs and

ζ ∗
rs = 2ω∗

rs

d
μsr (1 + αrs)

[
1 − μsr

2
(1 + αrs)

θr + θs

θr

]
. (23)

Here, ω∗
rs ≡ ωrs/ν0. When the expressions of ζ ∗

r and P∗
r are

substituted into Eq. (22), one gets a closed nonlinear equation
for γ whose numerical solution provides the dependence of
the temperature ratio on the parameters of the problem. As
expected, the extent of equipartition violation is greater when
the mass disparity is large. Moreover, the predictions of IMM
for γ compare very well (see for, instance, Figs. 2 and 3
of Ref. [20]) with Monte Carlo simulations for IHS [38]
for conditions of practical interest. This excellent agreement
shows again the reliability of IMM to capture the main trends
observed in sheared granular flows.

III. CHAPMAN-ENSKOG–TYPE EXPANSION
AROUND USF

Let us now perturb the USF by small spatial gradients.
The response of the system to those perturbations gives rise
to contributions to the mass, momentum, and heat fluxes that
can be characterized by generalized transport coefficients. Our
objective is to determine the shear-rate dependence of these
coefficients for inelastic Maxwell mixtures.

In order to analyze this problem, we have to start from
the set of Boltzmann equations (1) with a general time and
space dependence. Let u0 = a · r be the flow velocity of
the undisturbed USF state, where the elements of the tensor
a are aij = aδixδjy . As expected [17,26], in the disturbed
state the true velocity u is in general different from u0

and, hence, u = u0 + δu, δu being a small perturbation to
u0. As a consequence, the true peculiar velocity is now
c ≡ v − u = V − δu, where V = v − u0. In the Lagrangian
frame moving with u0, the Boltzmann equations (1) can be

written as

∂f1

∂t
− aVy

∂f1

∂Vx

+ (V + u0) · ∇f1 = J11[f1,f1] + J12[f1,f2],

(24a)

∂f2

∂t
− aVy

∂f2

∂Vx

+ (V + u0) · ∇f2 = J22[f2,f2] + J21[f2,f1],

(24b)

where here the derivative ∇fr is taken at constant V. The
macroscopic balance equations for the densities of mass,
momentum, and energy associated with this disturbed USF
state are obtained from Eqs. (24a) and (24b) with the result

∂tnr + u0 · ∇nr + ∇ · (nrδu) = −∇ · jr
mr

, (25)

∂tδui + aij δuj + (u0 + δu) · ∇δui = −ρ−1∇jPij , (26)

d

2
n∂tT + d

2
n(u0 + δu) · ∇T

= −aPxy − d

2
T

2∑
s=1

∇ · js
ms

−
(
∇ · q + P : ∇δu + d

2
pζ

)
,

(27)

where the mass flux jr , the pressure tensor P, the heat flux q,
and the cooling rate are defined by Eqs. (7), (8), (9), and (10),
respectively, with the replacement V → c.

We assume that the deviations from the USF state are small.
This means that the spatial gradients of the hydrodynamic
fields are small. For elastic gases, the specific set of gradients
contributing to each flux is restricted by fluid symmetry,
Onsager relations, and the form of entropy production [39].
However, for granular gases, only fluid symmetry applies and
so there is more flexibility in the representation of the heat and
mass fluxes since they can be defined in a variety of equivalent
ways depending on the choice of hydrodynamic gradients used.
Some care is thus required in comparing transport coefficients
in different representations using different independent gra-
dients for the driving forces. Here, the concentration x1, the
pressure p, the temperature T , and the local flow velocity δu
are chosen as hydrodynamic fields.

Since the system is strongly sheared, a solution to the
set of Boltzmann equations (24a) and (24b) can be obtained
by means of a generalization of the conventional Chapman-
Enskog method [40] in which the velocity distribution function
of each species is expanded around the local version of
the shear flow distribution (reference state). This type of
Chapman-Enskog–type expansion has been already consid-
ered in the case of monocomponent granular gases to get the
set of shear-rate dependent transport coefficients of IHS [7,8]
and IMM [17]. More technical details on this method can be
found in the above references.

In the context of the Chapman-Enskog method [40], we
look for a normal solution of the form

fs(r,V,t) ≡ fs[A(r,t),V], (28)

where

A(r,t) ≡ {x1(r,t),p(r,t),T (r,t),δu(r,t)}. (29)
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This special solution expresses the fact that the space depen-
dence of the reference shear flow is completely absorbed in the
relative velocity V and all other space and time dependence
occurs entirely through a functional dependence on the fields
A(r,t). The functional dependence (28) can be made local by
an expansion of the distribution functions fs in powers of the
hydrodynamic gradients:

fs[A(r,t,V] = f (0)
s (V) + f (1)

s (V) + · · · , (30)

where the reference zeroth-order distribution function cor-
responds to the USF distribution function but taking into
account the local dependence of the concentration, pressure
and temperature, and the change V → V − δu(r,t) = c. The
successive approximations f (k)

s are of order k in the gradients
of x1, p, T , and δu but retain all the orders in the shear rate a.
Here, only the first-order approximation will be analyzed.

When the expansion (30) is substituted into the definitions
(7)–(10), one gets the corresponding expansions for the fluxes
and the cooling rate:

js = j(0)
s + j(1)

s + · · · , P = P(0) + P(1) + · · · , (31a)

q = q(0) + q(1) + · · · , ζ = ζ (0) + ζ (1) + · · · . (31b)

Finally, as in the usual Chapman-Enskog method, the time
derivative is also expanded as

∂t = ∂
(0)
t + ∂

(1)
t + ∂

(2)
t + . . . , (32)

where the action of each operator ∂
(k)
t is obtained from

the hydrodynamic equations (25)–(27). These results pro-
vide the basis for generating the Chapman-Enskog solution
to the Boltzmann equations (24a) and (24b).

A. Zeroth-order approximation

Substituting the expansions (30)–(32) into Eq. (24a), the
kinetic equation for f

(0)
1 is given by

∂
(0)
t f

(0)
1 − aVy

∂f
(0)
1

∂Vx

= J11
[
f

(0)
1 ,f

(0)
1

] + J12
[
f

(0)
1 ,f

(0)
2

]
. (33)

To lowest order in the expansion the conservation laws yield

∂
(0)
t x1 = 0, T −1∂

(0)
t T = p−1∂

(0)
t p = − 2

dp
aP (0)

xy − ζ (0),

(34)

∂
(0)
t δui + aij δuj = 0. (35)

Since f
(0)
1 is a normal solution, the time derivative in Eq. (33)

can be represented more usefully as

∂
(0)
t f

(0)
1 = ∂f

(0)
1

∂x1
∂

(0)
t x1 + ∂f

(0)
1

∂p
∂

(0)
t p + ∂f

(0)
1

∂T
∂

(0)
t T

+ ∂f
(0)
1

∂δui

∂
(0)
t δui

= −
(

2

dp
aP (0)

xy + T ζ (0)

)(
p

∂f
(0)
1

∂p
+ T

∂f
(0)
1

∂T

)

+ a δuy

∂f
(0)
1

∂cx

, (36)

where in the last step we have taken into account that
f

(0)
1 depends on δu only through the peculiar velocity c.

Substituting Eq. (36) into (33) yields the following kinetic
equation for f

(0)
1 :

−
(

2

dp
aP (0)

xy + T ζ (0)

)(
p

∂f
(0)
1

∂p
+ T

∂f
(0)
1

∂T

)
− acy

∂f
(0)
1

∂cx

= J11
[
f

(0)
1 ,f

(0)
1

] + J12
[
f

(0)
1 ,f

(0)
2

]
. (37)

A similar equation holds for f
(0)
2 . Note that Eq. (37) and its

corresponding counterpart for f
(0)
2 apply for both models A and

B. The zeroth-order solution leads to j(0)
r = q(0) = 0. Therefore,

the most relevant velocity moments of the distributions f (0)
r are

the partial pressure tensors P(0)
1 and P(0)

2 [defined by Eq. (21) by
replacing fr → f (0)

r ]. They can be obtained from Eq. (37) and
its counterpart for f

(0)
2 when one multiplies both equations by

mrcc and integrates over c. The set of coupled differential
equations defining the above partial pressure tensors have
been derived in Ref. [21] [see Eqs. (26)–(30) in this article].
These equations can be explicitly solved for general unsteady
conditions in the case of model A (β = 0) where the tensors
P(0)

1 and P(0)
2 can be expressed in terms of the parameter space

of the problem (shear rate, coefficients of restitution, masses,
diameters, and composition). In the case of model B (β �= 0),
analytic results can be only obtained in the steady state (where
we recall that the expressions of the partial pressure tensors are
the same for both models). Beyond the steady state conditions,
in order to have P(0)

1 and P(0)
2 for model B one has to solve

numerically the set of differential equations obeying these
partial pressure tensors. This task is beyond the objective of
this paper since we are mainly interested here in providing
analytic results.

As mentioned in the Introduction, the solution to Eq. (37)
has not been obtained so far (even for model A where the
collision frequencies ωrs are independent of the granular
temperature) and, hence, the precise form of the zeroth-
order distribution f (0)

r is not known. However, an indirect
information on the behavior of f (0)

r is given through its
velocity moments. As a matter of fact, only the second-
and fourth-degree velocity moments of f (0)

r are required to
determine the generalized transport coefficients associated
with the first-order solution f (1)

r . As we will show in Sec. IV,
while the partial pressure tensors P(0)

1 and P(0)
2 are involved

in the evaluation of the diffusion coefficients Dij , Dp,ij , and
DT,ij and the viscosity tensor ηijk�, the fourth-degree velocity
moments N

(0)
r,ijk� of f (0)

r [defined by Eq. (B8)] are needed to get
the coefficients D′′

ij , Lij , and λij associated with the heat flux.
Although the forms of P(0)

r (r = 1,2) are explicitly known
for granular binary mixtures [21], the moments N

(0)
r,ijk� are

only known for the special case of monodisperse granular
gases [24]. Given the difficulty of obtaining those moments
from the true Boltzmann collision operator, one could consider
a BGK-type kinetic model for granular mixtures [41] to
evaluate them.
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B. First-order approximation

The analysis to first order in the gradients is worked out in Appendix A. Only the final results are presented here. The
distribution function f

(1)
1 is of the form

f
(1)
1 = A1 · ∇x1 + B1 · ∇p + C1 · ∇T + D1 : ∇δu, (38)

where the vectors {A1,B1,C1}, and the tensor D1 are functions of the true peculiar velocity c. They are the solutions of the
following set of linear integral equations:

−
(

2

dp
aP (0)

xy + ζ (0)

)
(p∂p + T ∂T )A1 − acy

∂A1

∂cx

+ L1A1 + M1A2

= A1 +
(

2a

d

∂P (0)
xy

∂x1
+ p

∂ζ (0)

∂x1

)
B1 +

(
2aT

dp

∂P (0)
xy

∂x1
+ T

∂ζ (0)

∂x1

)
C1, (39)

−
(

2

dp
aP (0)

xy + ζ (0)

)
(p∂p + T ∂T )B1 −

(
2a

d

∂P (0)
xy

∂p
+ ζ (0) + p

∂ζ (0)

∂p

)
B1 − acy

∂B1

∂cx

+ L1B1 + M1B2

= B1 −
[

2aT

dp2

(
P (0)

xy − p
∂P (0)

xy

∂p

)
− T

p

∂ζ (0)

∂p

]
C1, (40)

−
(

2

dp
aP (0)

xy + ζ (0)

)
(p∂p + T ∂T )C1 −

(
2a

dp
P (0)

xy + ζ (0) + 2aT

dp

∂P (0)
xy

∂T
+ T

∂ζ (0)

∂T

)
C1 − acy

∂C1

∂cx

+ L1C1 + M1C2

= C1 +
(

2a

d

∂P (0)
xy

∂T
+ p

∂ζ (0)

∂T

)
B1, (41)

−
(

2

dp
aP (0)

xy + ζ (0)

)
(p∂p + T ∂T )D1,k� − acy

∂D1,k�

∂cx

− aδkyD1,x� + L1D1,k� + M1D2,k� = D1,k�. (42)

Here, A1, B1, C1, and D1,k� are defined by Eqs. (A3)–(A6),
respectively. Moreover, L1 and M1 are the linearized
Boltzmann collision operators around the reference USF state:

L1X = −(
J11

[
f

(0)
1 ,X

] + J11
[
X,f

(0)
1

] + J12
[
X,f

(0)
2

])
,

(43a)

M1X = −J12
[
f

(0)
2 ,X

]
. (43b)

A similar equation for f
(1)
2 applies by setting 1 ↔ 2. It is

important to note that for β = 1
2 , Eqs. (39)–(42) are expected

to have the same structure as that of the Boltzmann equation for
IHS, except for the explicit form of the operators Ls and Ms .

Once the form of the distributions f (1)
r is known, the first-

order corrections to the mass flux j
(1)
1,i , the pressure tensor P

(1)
ij ,

and the heat flux q
(1)
i can be obtained. They are given by

j
(1)
1,i = −m1m2n

ρ
Dij

∂x1

∂rj

− ρ

p
Dp,ij

∂p

∂rj

− ρ

T
DT,ij

∂T

∂rj

, (44)

P
(1)
ij = −ηijk�

∂δu�

∂rk

, (45)

q
(1)
i = −T 2D′′

ij

∂x1

∂rj

− Lij

∂p

∂rj

− λij

∂T

∂rj

, (46)

where

Dij = − ρ

nm2

∫
dc ci A1,j (c), (47)

Dp,ij = −pm1

ρ

∫
dc ci B1,j (c), (48)

DT,ij = −T m1

ρ

∫
dc ci C1,j (c), (49)

ηijk� =
2∑

s=1

ηs,ijk�, ηs,ijk� = −ms

∫
dc cicjDs,k�(c), (50)

D′′
ij =

2∑
s=1

D′′
s,ij , D′′

s,ij = − ms

2T 2

∫
dc c2ciAs,j (c), (51)

Lij =
2∑

s=1

Ls,ij , Ls,ij = −ms

2

∫
dc c2ciBs,j (c), (52)

λij =
2∑

s=1

λs,ij , λs,ij = −ms

2

∫
dc c2ciCs,j (c). (53)

Upon writing Eqs. (44)–(53), use has been made of the
symmetry properties of Ar , Br , Cr , and Dr,k�. In general,
the set of generalized transport coefficients defined above
are nonlinear functions of the shear rate, the coefficients of
restitution, and the parameters of the mixture (masses, sizes,
and concentration).

IV. GENERALIZED TRANSPORT COEFFICIENTS

This section is devoted to the evaluation of the generalized
transport coefficients associated with the mass, momentum,
and heat fluxes. We consider each flux separately.
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A. Mass flux

The constitutive form for the mass flux to first order in spatial gradients is given by Eq. (44). To illustrate with some detail
the evaluation of the transport coefficients of the mass flux, let us consider the diffusion coefficients Dij , defined by Eq. (47).
These coefficients can be obtained by multiplying both sides of Eq. (39) by m1cj and integrating over c. After some algebra, one
arrives at (

2a

dp
P (0)

xy + ζ (0)

)
(p∂p + T ∂T )Dij − νDDij − aikDkj

= ρ1

ρ

∂P
(0)
ij

∂x1
− ∂P

(0)
1,ij

∂x1
−

(
2a

d

∂P (0)
xy

∂x1
+ p

∂ζ (0)

∂x1

)
ρ2Dp,ij

m1m2np
−

(
2aT

dp

∂P (0)
xy

∂x1
+ T

∂ζ (0)

∂x1

)
ρ2DT,ij

m1m2nT
. (54)

In Eq. (54), use has been made of the results [19]∫
dc m1ci(L1A1,j + M1A2,j ) = −m1m2n

ρ
νDDij , (55)∫

dc m1ciA1,j = ρ1

ρ

∂P
(0)
ij

∂x1
− ∂P

(0)
1,ij

∂x1
, (56)

where

νD = ρω12

dρ2
μ21(1 + α12). (57)

In the hydrodynamic regime, the diffusion tensor can be written as Dij = D0D
∗
ij where D0 = (ρT/m1m2ν0) and D∗

ij is a
dimensionless function of the reduced shear rate a∗, the coefficients of restitution αrs , the mass ratio μ ≡ m1/m2, the ratio of
diameters σ1/σ2, and the mole fraction x1. The dependence of D∗

ij on the pressure and temperature is through the reduced shear
rate a∗ ∝ T 1−β/p. Thus,

(p∂p + T ∂T )Dij = (p∂p + T ∂T )D0D
∗
ij = (1 − β)Dij − βD0a

∗ ∂D∗
ij

∂a∗ . (58)

Consequently, in dimensionless form, Eq. (54) yields(
2a∗

d
P ∗

xy + ζ ∗
)[

(1 − β)D∗
ij − βa∗ ∂D∗

ij

∂a∗

]
− ν∗

DD∗
ij − a∗

ikD
∗
kj

= ρ1

ρ

∂P ∗
ij

∂x1
− ∂P ∗

1,ij

∂x1
−

(
2a∗

d

∂P ∗
xy

∂x1
+ ∂ζ ∗

∂x1

)
D∗

p,ij −
(

2a∗

d

∂P ∗
xy

∂x1
+ ∂ζ ∗

∂x1

)
D∗

T ,ij . (59)

Here, ζ ∗ ≡ ζ (0)/ν0, P ∗
r,ij ≡ P

(0))
r,ij /p, ν∗

D ≡ νD/ν0, a∗
ij ≡ aij /ν0, D∗

p,ij ≡ Dp,ij /Dp0, and D∗
T ,ij ≡ DT,ij /Dp0 where Dp0 =

(p/ρν0) and we recall that aij = aδixδjy . It must be noted that P ∗
r,ij and ζ ∗ depend also on x1 and a∗ through their dependence

on the temperature ratio γ ≡ T1/T2.
The equations defining the (scaled) tensors D∗

p,ij and D∗
T ,ij can be obtained by following similar steps as those made before

for D∗
ij . After some algebra, the results are

β

(
2a∗

d
P ∗

xy + ζ ∗
)(

D∗
p,ij + a∗ ∂D∗

p,ij

∂a∗

)
−

[
2a∗

d

(
P ∗

xy − a∗ ∂P ∗
xy

∂a∗

)
+ 2ζ ∗ − a∗ ∂ζ ∗

∂a∗

]
D∗

p,ij + ν∗
DD∗

p,ij + a∗
ikD

∗
p,kj

= −
(

ρ1

ρ
P ∗

ij − P ∗
1,ij

)
+ a∗

(
ρ1

ρ

∂P ∗
ij

∂a∗ − ∂P ∗
1,ij

∂a∗

)
−

(
2

d
a∗2

∂P ∗
xy

∂a∗ − ζ ∗ + a∗ ∂ζ ∗

∂a∗

)
D∗

T ,ij , (60)

β

(
2a∗

d
P ∗

xy + ζ ∗
)(

D∗
T ,ij + a∗ ∂D∗

T ,ij

∂a∗

)
−

{
2a∗

d

[
P ∗

xy + (1−β)a∗ ∂P ∗
xy

∂a∗

]
+βζ ∗ + (1−β)a∗ ∂ζ ∗

∂a∗

}
D∗

T ,ij + ν∗
DD∗

T ,ij + a∗
ikD

∗
T ,kj

= −(1 − β)a∗
(

ρ1

ρ

∂P ∗
ij

∂a∗ − ∂P ∗
1,ij

∂a∗

)
+ (1 − β)

(
2

d
a∗2

∂P ∗
xy

∂a∗ − ζ ∗ + a∗ ∂ζ ∗

∂a∗

)
D∗

p,ij . (61)

Upon writing Eqs. (60) and (61), use has been made of the identities

p∂pP
(0)
ij = p(P ∗

ij − a∗∂a∗P ∗
ij ), (62a)

T ∂T P
(0)
ij = p(1 − β)a∗∂a∗P ∗

ij , (62b)

p∂pζ (0) = ζ (0) − ν0a
∗∂a∗ζ ∗, (63a)

T ∂T ζ (0) = (β − 1)ζ (0) + (1 − β)ν0a
∗∂a∗ζ ∗. (63b)
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In the absence of shear field (a∗ = 0), P ∗
ij = δij , P ∗

r,ij = xrγrδij , and Eqs. (59)–(61) have the solutions D∗
ij = D∗δij , D∗

p,ij =
D∗

pδij , and D∗
T ,ij = D∗

T δij where

D∗ = [ν∗
D − (1 − β)ζ ∗]−1

[
γ1 + x1

∂γ1

∂x1
+ ∂ζ ∗

∂x1
(D∗

p + D∗
T )

]
, (64)

D∗
p = x1γ1

(
1 − pm1

ρT1

)[
ν∗

D + (β − 2)ζ ∗ − (β − 1)
ζ ∗2

ν∗
D

]−1

, (65)

D∗
T = (β − 1)

ζ ∗

ν∗
D

D∗
p. (66)

Equations (64)–(66) agree with the expressions derived for IMM (model B with β = 1
2 ) in the Navier-Stokes hydrodynamic

order [19]. Beyond the Navier-Stokes domain (vanishing shear rates), in general Eqs. (59)–(61) are nonlinear differential equations
that must be solved with the appropriate boundary conditions. However, in the case of model A (β = 0), Eqs. (59)–(61) become
a set of coupled algebraic equations that can be readily solved.

B. Pressure tensor

The pressure tensor is defined by Eq. (45) in terms of the coefficients ηs,ijk� [Eq. (50)]. These coefficients can be obtained
from the integral equation (42) after multiplying it by mrcicj and integrating over velocity. The result is(

2a

dp
P (0)

xy + ζ (0)

)
(p∂p + T ∂T )η1,ijk� − (aipη1,jpk� + ajpη1,ipk� − apkη1,ijp�) − (τ11η1,ijk� + τ12η2,ijk�)

= p
∂P

(0)
1,ij

∂p
δk� − (

δk�P
(0)
1,ij + δikP

(0)
1,j� + δjkP

(0)
1,i�

) + 2

dp

(
P

(0)
k� − aηxyk�

)(
p

∂P
(0)
1,ij

∂p
+ T

∂P
(0)
1,ij

∂T

)
. (67)

The corresponding equation for η2,ijk� can be obtained from Eq. (67) by changing 1 ↔ 2. Upon writing (67), use has been made
of the result [19] ∫

dc m1cicj (L1D1,k� + M1D2,k�) = −τ11η1,ijk� − τ12η2,ijk�, (68)

where

τ11 = ω11

d(d + 2)
(1 + α11)(d + 1 − α11) + 2

ω12

d
μ21(1 + α12)

[
1 − μ21(1 + α12)

d + 2

]
, (69)

τ12 = −2
ω12

d(d + 2)

ρ1

ρ2
μ2

21(1 + α12)2. (70)

The coefficients ηr,ijk� can be written as ηr,ijk� = (p/ν0)η∗
r,ijk�. The dependence of η∗

r,ijk� on p and T is through a∗ so that

(p∂p + T ∂T )ηr,ijk� = (p∂p + T ∂T )
p

ν0
η∗

r,ijk� = (1 − β)ηr,ijk� − βp

ν0
a∗ ∂η∗

r,ijk�

∂a∗ . (71)

Thus, in dimensionless form, Eq. (67) can be finally written as(
2

d
a∗P ∗

xy + ζ ∗
)[

(1 − β)η∗
1,ijk� − βa∗ ∂η∗

1,ijk�

∂a∗

]
− (a∗

ipη∗
1,jpk� + a∗

jpη∗
1,ipk� − a∗

pkη
∗
1,ijp�) − (τ ∗

11η
∗
1,ijk� + τ ∗

12η
∗
2,ijk�)

= −a∗ ∂P ∗
1,ij

∂a∗ δk� − (δikP
∗
1,j� + δjkP

∗
1,i�) + 2

d
(P ∗

k� − a∗η∗
xyk�)

(
P ∗

1,ij − βa∗ ∂P ∗
1,ij

∂a∗

)
, (72)

where τ ∗
ij ≡ τij /ν0.

In the case of mechanically equivalent particles, P ∗
1,ij /x1 = P ∗

2,ij /x2 = P ∗
ij , η∗

1,ijk�/x1 = η∗
2,ijk�/x2 = η∗

ijk�, where η∗
ijk� verifies

the differential equation(
2

d
a∗P ∗

xy + ζ ∗
)[

(1 − β)η∗
ijk� − βa∗ ∂η∗

ijk�

∂a∗

]
− (a∗

ipη∗
jpk� + a∗

jpη∗
ipk� − a∗

pkη
∗
ijp�) − ν∗

ηη∗
ijk�

= −a∗ ∂P ∗
ij

∂a∗ δk� − (δikP
∗
j� + δjkP

∗
i�) + 2

d

(
P ∗

k� − a∗η∗
xyk�

)(
P ∗

ij − βa∗ ∂P ∗
ij

∂a∗

)
, (73)

where

ν∗
η = (1 + α)(d + 1 − α)

d(d + 2)
. (74)
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Equation (73) agrees with the results derived in Ref. [17] for
a sheared monocomponent granular gas of IMM. In the limit
of vanishing shear rates (a∗ = 0), the solution to Eq. (72) can
be written as

η∗
ijk� = (η∗

1 + η∗
2)�ijk�, �ijk� = δikδj� + δjkδi� − 2

d
δij δk�,

(75)

where

η∗
1 = x1γ1[τ ∗

22 − (1 − β)ζ ∗] − x2γ2τ12

[τ11 − (1 − β)ζ ∗][τ22 − (1 − β)ζ ∗] − τ12τ21
, (76)

η∗
2 = x2γ2[τ ∗

11 − (1 − β)ζ ∗] − x1γ1τ21

[τ11 − (1 − β)ζ ∗][τ22 − (1 − β)ζ ∗] − τ12τ21
. (77)

For model B with β = 1
2 , Eqs. (75)–(77) are consistent with

those previously obtained for the Navier-Stokes shear viscosity
of an inelastic binary Maxwell mixture [19]. On the other hand,
except in the above two limit cases, Eq. (72) for η∗

1,ijk� and its
counterpart for η∗

2,ijk� can be only solved analytically for model
A (β = 0).

The evaluation of the transport coefficients associated with
the heat flux is more involved than the one carried out before for
the mass and momentum fluxes. For the sake of brevity, only
the final expressions of the differential equations defining the
coefficients D′′

ij , Lij , and λij are provided (see Appendix B).

V. TRACER LIMIT

The results obtained in the preceding section apply for
models A and B and give all the relevant information on
the influence of shear flow on the mass, momentum, and
heat transport of a granular binary mixture. According to
these results, the set of generalized (dimensionless) transport

coefficients {D∗
ij ,D

∗
p,ij ,D

∗
T ,ij ,η

∗
ijk�, . . .} are nonlinear func-

tions of the (reduced) shear rate, the concentration x1, and the
mechanical parameters of the mixture (mass and size ratios
and coefficients of restitution) without any restriction on their
values. On the other hand, the evaluation of these coefficients
(even in the case of model A where the results are analytic)
is quite tedious due essentially to the complex dependence of
the partial pressure tensors P(0)

r,ij and the temperature ratio γ

on both the mole fraction x1 and the (reduced) shear rate a∗.
Thus, for the sake of simplicity, we consider the tracer limit
(x1 → 0) where the mass flux is the relevant flux since the
momentum and heat fluxes of the system (intruder plus gas
particles) are the same as those previously obtained [17] for a
monocomponent granular gas of IMM.

It must be remarked that a nonequilibrium phase transition
has been recently [42] identified in the tracer limit for a
granular binary mixture of IMM. This transition refers to the
existence of a region (coined as the ordered phase) where
the contribution of tracer particles to the total kinetic energy of
the system is finite. However, the above (surprising) behavior
has been only analytically found when the collision frequency
ωrs is assumed to be independent of the temperature ratio
(“plain vanilla Maxwell model”) and, hence, it does not seem
to exist for the more realistic version of the IMM considered
here. The effects of the above transition on the Navier-Stokes
transport coefficients of a granular binary mixture have been
recently studied [43].

A. Model A

In the tracer limit, P(0) 
 P(0)
2 and the relevant elements

of the partial pressure tensor P(0)
1 admit simplified forms

(see Appendix C). In particular, in the tracer limit, γ1 
 γ ,
∂x1P

(0)
ij = ∂x1γ = ∂x1ζ

∗ = ∂a∗ζ ∗ = 0, and ∂x1P
(0)
1,ij = P

(0)
1,ij /x1.

Taking into account these simplifications, and for model A
(β = 0), Eqs. (59), (60), and (61) become

(
2a∗

d
P ∗

2,xy + ζ ∗
)

D∗
ij − ν∗

DD∗
ij − a∗

ikD
∗
kj = −x−1

1 P ∗
1,ij , (78)[

2a∗

d

(
P ∗

2,xy − a∗ ∂P ∗
2,xy

∂a∗

)
+ 2ζ ∗

]
D∗

p,ij − ν∗
DD∗

p,ij − a∗
ikD

∗
p,kj

= x1μP ∗
2,ij − P ∗

1,ij − x1μ a∗ ∂P ∗
2,ij

∂a∗ + a∗ ∂P ∗
1,ij

∂a∗ +
(

2a∗2

d

∂P ∗
2,xy

∂a∗ − ζ ∗
)

D∗
T ,ij , (79)

2a∗

d

(
P ∗

2,xy + a∗ ∂P ∗
2,xy

∂a∗

)
D∗

T ,ij − ν∗
DD∗

T ,ij − a∗
ikD

∗
T ,kj = x1μ a∗ ∂P ∗

2,ij

∂a∗ − a∗ ∂P ∗
1,ij

∂a∗ −
(

2a∗2

d

∂P ∗
2,xy

∂a∗ − ζ ∗
)

D∗
p,ij . (80)

Here, ζ ∗ = (1 − α2
22)/2d and ν∗

D = [ω∗
12μ21(1 + α12)]/d

where ω∗
12 ≡ ω12/ν0. Upon deriving Eq. (78), we have ne-

glected the contributions coming from the tensors D∗
p,ij and

D∗
T ,ij since both tensors are proportional to x1 (and hence,

they vanish in the tracer limit) while D∗
ij is independent of x1.

In addition, the derivatives ∂a∗P ∗
2,ij and ∂a∗P ∗

1,ij appearing in
Eqs. (78)–(80) are obtained in Appendix D.

As in the case of IHS [29], the coefficients Dij decouple
from the other ones and, hence, they can be obtained

straightforwardly. Their expressions are

D∗
ij = x−1

1

ν∗
D − 2a∗

d
P ∗

2,xy − ζ ∗

(
P ∗

1,ij − a∗
ikP

∗
1,kj

ν∗
D − 2a∗

d
P ∗

2,xy − ζ ∗

)
.

(81)

In the steady state [(2a∗/d)P ∗
2,xy + ζ ∗ = 0], Eq. (81) is

consistent with previous results derived for IMM under shear
flow [20]. The remaining coefficients D∗

p,ij and D∗
T ,ij are
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coupled and they obey the set of simple algebraic equa-
tions (79) and (80). As alluded to above, they are proportional
to the concentration x1 and thus vanish in the tracer limit.
Yet, it is of interest to normalize them by their vanishing
shear-rate counterparts (which are also proportional to x1),
to study their dependence on parameters other than x1. In
order to illustrate the shear-rate dependence of the set of
transport coefficients �ij ≡ {D∗

ij ,D
∗
p,ij ,D

∗
T ,ij }, we consider a

three-dimensional (d = 3) granular mixture. Also, to reduce
the number of independent parameters, the simplest case
of a common coefficient of restitution (α ≡ α22 = α12) is
studied. Thus, the parameter space is reduced to four quantities
{σ1/σ2,m1/m2,α,a∗}.

According to Eqs. (78)–(80), we have that �xz = �zx =
�yz = �zy = 0 in agreement with the symmetry of the linear
shear flow (15). Thus, there are five nonzero elements of
the tensors �ij : the three diagonal (�xx , �yy , and �zz) and
the two off-diagonal elements (�xy and �yx). The algebraic
equations (78)–(80) also show that the anisotropy induced by
the shear flow yields the properties �xx �= �yy = �zz and
�xy �= �yx . The equality P ∗

1,yy = P ∗
1,zz implies �yy = �zz.

This is a consequence of the interaction model considered
since �yy �= �zz for IHS [29].

The shear-rate dependence of the relevant elements of the
diffusion tensors D∗

ij , D∗
p,ij , and D∗

T ,ij has been plotted in
Figs. 1 and 2 for d = 3, σ1/σ2 = 1, m1/m2 = 2 and three
different values of the (common) coefficient of restitution.
Here, the tensors have been reduced with respect to their
values at zero shear rate, namely, D∗

ij /D
∗
0 , D∗

p,ij /D
∗
p,0, and

D∗
T ,ij /D

∗
T ,0, where

D∗
0 = γ

ν∗
D − ζ ∗ , D∗

T 0 = − ζ ∗

ν∗
D

D∗
p0, (82)

D∗
p0 = x1γ

(
1 − μ

γ

)(
ν∗

D − 2ζ ∗ + ζ ∗2

ν∗
D

)−1

. (83)

It can be seen that the influence of the shear flow on the
diffusion coefficients is in general quite important. We also
observe that the anisotropy of the system, as measured by
the difference D∗

xx − D∗
yy , grows with both the shear rate and

collisional dissipation. As expected, the shear field induces
cross effects in the diffusion of particles. This is measured by
the off-diagonal elements D∗

xy (D∗
yx), D∗

p,xy (D∗
p,yx), and D∗

T ,xy

(D∗
T ,yx). These coefficients give the mass transport along the

x (y) axis due to spatial gradients parallel to the y (x) axis.
All these coefficients are negative in the region of parameter
space explored. We see that, regardless of the value of α, the
shapes of the off-diagonal elements are quite similar: there is a
region of values of a∗ for which their magnitude increases with
increasing shear rate, while the opposite happens for larger
shear rates. With respect to the diagonal elements, they are
monotonically decreasing functions of the shear rate (shear-
thinning effect), except in the region of small shear rates. In
addition, Figs. 1 and 2 also show that, at a given value of a∗,
their values decrease with dissipation.

It is also interesting to weigh the respective importance
of the zeroth- and first-order contributions to the (nonlinear)
shear viscosity. The zeroth-order USF viscosity η∗ is defined
by Eq. (19) while its (dimensionless) first-order contribution
is given by the coefficient η∗

xyxy . In the steady state and for

FIG. 1. (Color online) (a) Shear-rate dependence of the (dimen-
sionless) coefficients D∗

xx/D
∗
0 and D∗

xy/D
∗
0 for d = 3, σ1/σ2 = 1,

m1/m2 = 2 and three different values of the (common) coefficient
of restitution α: α = 1 (solid line), α = 0.8 (dashed red line), and
α = 0.6 (dashed-dotted blue line). (b) Shear-rate dependence of
the (dimensionless) coefficients D∗

yy/D
∗
0 and D∗

yx/D
∗
0 for the same

parameter values. These results pertain to model A (β = 0).

mechanically equivalent particles, the ratio η∗
xyxy/η

∗ can be
obtained from Eq. (73) for model A (β = 0):

η∗
xyxy

η∗ = (1 + α)2

2(d + 2)

1 + 2�s

(ν∗
η − ζ ∗)(1 + 6�s)

, (84)

where ν∗
η is defined by Eq. (74) and �s = (d+2)(1−α)

2d(1+α) . Figure 3
shows the ratio η∗

xyxy/η
∗ versus the coefficient of restitution

α for spheres (d = 3) and disks (d = 2). For elastic collisions
(α = 1), a∗ = 0 in the steady state and so η∗

xyxy = η∗.
Moreover, the zeroth-order solution η∗ generically gives a
significant contribution to the total non-Newtonian shear
viscosity. Figure 3 also displays a pronounced shear thinning
effect: when α decreases, the steady state gas departs more
and more from equilibrium, and the resulting a∗ increases;
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FIG. 2. (Color online) Same as Fig. 1 for D∗
p,yy/D

∗
p,0 and

D∗
p,xy/D

∗
p,0 (a) D∗

T ,yy/D
∗
T ,0 and D∗

T ,xy/D
∗
T ,0 (b).

this in turn leads to a decrease of η∗
xyxy/η

∗. Thus, the shear
thinning effect is more marked for η∗

xyxy than for η∗. Indeed,
Ref. [21] has shown that the USF viscosity itself, η∗, exhibits
shear thinning. For further details dealing with the detailed
behavior of η∗, see Ref. [21].

B. Model B: Steady state conditions

In model B, the collision frequency ν0(T ) is an increasing
function of temperature and, hence, the (reduced) shear rate
a∗(T ) = a/ν0(T ) depends on time. Thus, in order to determine
the diffusion coefficients one would have to solve numerically
Eqs. (59)–(61) in the tracer limit, discard the kinetic stage of
the evolution, and eliminate time in favor of a∗(t) [4,24]. An
additional technical difficulty in the case of granular mixtures
is that the diffusion coefficients depend also on the temperature
ratio, that is itself time dependent through its dependence
on a∗(t). The integration of Eqs. (59)–(61) is therefore a
significantly more complex problem than for the monodisperse

FIG. 3. (Color online) Plot of the ratio η∗
xyxy/η

∗ as a function of
the coefficient of restitution α in the steady state for a monodisperse
granular gas (IMM with β = 0, model A). The solid line is the
result for a three-dimensional system (d = 3) while the dashed line
corresponds to a two-dimensional system (d = 2).

system. On the other hand, given that the results derived for the
rheological properties in a single granular gas under USF [35]
indicate that the influence of the temperature dependence on
ν0 on rheology is quite small, one can consider the steady state
solution for model B, which is at any rate of interest in its own
right. In this case, the condition (18) applies and the solution to
Eqs. (59)–(61) can be obtained analytically in the tracer limit.
Here, we focus our attention on the tracer diffusion tensor D∗

ij

whose expression in the steady state is universal since it applies
for both models A and B, regardless the specific dependence
of ν0 on T .

A previous comparison between IMM and IHS for this
tensor was carried out in Ref. [20]. However, the (approximate)
theoretical results for IHS considered in Fig. 7 of [20] were
obtained from a Grad’s solution [30] where the weight distri-
bution is Gaussian [28] instead of the shear flow distribution
(zeroth-order solution) [29]. In the comparison performed
here, we will use the latter predictions of IHS [29] which
are expected to be more reliable than the other ones [20]. In
this sense, the present comparison complements the one made
before in Ref. [20].

As in previous works on IMM [19,20,23] and in order to
compare the results between IMM and IHS, the parameter A

appearing in the definition of ν0 [see Eq. (13)] is chosen as

A = 
d√
π

σd−1
12

√
2(m1 + m2)

m1m2
. (85)

With this choice, the partial cooling rates ζr (associated with
the partial temperatures Tr ) of IMM (with β = 1

2 ) are the same
as those obtained for IHS (as evaluated in the Maxwellian
approximation) [34]. The dependence of the set of tracer
diffusion coefficients {D∗

xx,D
∗
yy,D

∗
xy,D

∗
yx} on the (common)

coefficient of restitution α is illustrated in Figs. 4 and 5
for two different systems. We observe in general a good
agreement between IMM and IHS, especially in the case of
the coefficients D∗

xx and D∗
xy . These coefficients measure mass
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FIG. 4. (Color online) Plot of the diagonal (dimensionless) coef-
ficients D∗

xx/D
∗
0 (a) and D∗

yy/D
∗
0 (b) as functions of the (common)

coefficient of restitution α in the steady USF state for d = 3 in the
cases σ1/σ2 = 1 and m1/m2 = 2 (C) and σ1/σ2 = 2 and m1/m2 = 4
(E). The solid lines correspond to the results derived here for IMM
(models A and B) while the dashed lines are the results obtained for
IHS [28,29].

transport in the flow direction (x axis). It must be pointed out
that the discrepancies between both interaction models turn
out to be more significant as the disparity of masses or sizes
increases.

VI. AN APPLICATION: SEGREGATION OF AN INTRUDER
BY THERMAL DIFFUSION

As an application of the previous results, this section is
devoted to the study of thermal diffusion segregation of an in-
truder in a sheared granular dilute gas. Segregation and mixing
of dissimilar grains is one of the most interesting problems in
granular mixtures, not only from a fundamental point of view
but also from a more practical perspective. This problem has
spawned a number of important experimental, computational,
and theoretical works in the field of granular media, especially
when the system is fluidized by vibrating walls [44]. In the
case of sheared systems, some computational and experimental
works in annular Couette cells [45] have shown that granular
materials segregate by particle size when subjected to shear. On

FIG. 5. (Color online) Same as Fig. 4 for D∗
xy/D

∗
0 (a) and

D∗
yx/D

∗
0 (b).

the other hand, in spite of the relevance of the problem, much
less is known on the theoretical description of segregation in
sheared granular systems. Previous theoretical studies [46]
on the subject for dense systems have been based on a
Chapman-Enskog expansion around Maxwellian distributions
with the same temperature for each species. As mentioned
before, the assumption of energy equipartition can be only
justified for nearly elastic gases which means small shear rates
in the steady USF state.

Thermal diffusion is caused by the relative motion of the
components of a mixture due to the presence of a temperature
gradient. As a result of this motion, a steady state is finally
reached in which the separating effect arising from thermal
diffusion is balanced by the remixing effect of ordinary
diffusion [47]. The new feature of our study is to assess the
impact of shear flow on segregation. Under these conditions,
the so-called thermal diffusion factor � characterizes the
amount of segregation parallel to the temperature gradient.
However, due to the anisotropy induced by the shear field,
a tensor � rather than a scalar � is needed to characterize
segregation in the different directions. Here, for the sake of
simplicity, we consider a situation where the temperature
gradient is orthogonal to the shear flow plane (i.e., ∂xT =
∂yT = 0, ∂zT �= 0, and ∂xuy = a ≡ const). In this case, the
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amount of segregation parallel to the thermal gradient is
measured by the diffusion factor �z defined by the relation

�z

∂ ln T

∂z
= −∂ ln x1

∂z
. (86)

If we assume that the bottom plate is hotter than the top
plate (∂zT < 0), then the intruder rises with respect to the gas
particles if �z > 0 (i.e., ∂z ln x1 > 0) while the intruder falls
with respect to the gas particles if �z < 0 (i.e., ∂z ln x1 < 0).

Our goal here is to determine �z in a steady state with
δu = 0 and x1 → 0 (tracer limit) where the spatial gradients
of T , p, and x1 point in the z direction. Under these conditions,
the balance equation (25) yields j

(1)
1,z = 0 where j

(1)
1,z is given

by

j
(1)
1,z = −m1Dzz

∂x1

∂z
− m2

T
Dp,zz

∂p

∂z
− m2n2

T
DT,zz

∂T

∂z
. (87)

According to Eq. (87), the condition j
(1)
1,z = 0 leads to

∂x1

∂z
= − m2

m1T

Dp,zz

Dzz

∂p

∂z
− m2n2

m1T

DT,zz

Dzz

∂T

∂z
. (88)

In the steady state, the momentum balance equation (26)
reduces simply to ∂zPzz = 0. The pressure tensor has the form
Pzz = pP ∗

zz(a
∗) and, hence, the identity ∂zPzz = 0 allows to

express ∂zp in terms of ∂zT . The result is

∂ ln p

∂z
= − (1 − β)a∗(∂a∗P ∗

zz)

P ∗
zz − a∗(∂a∗P ∗

zz)

∂ ln T

∂z
. (89)

Finally, the balance equation (27) for the granular temperature
yields

aP (0)
xy = −d

2
pζ (0). (90)

Upon deriving (90) we have neglected the term ∂zqz since it
is of second order in the gradients of x1, p, and T . As said in
Sec. II, Eq. (90) establishes a relation between the (reduced)
shear rate a∗ and the coefficient of restitution α22.

Use of Eq. (89) into (88) and substitution of Eq. (88) into
(86) finally leads to

�z = DT,zz − (1 − β)a∗[P ∗
zz − a∗(∂a∗P ∗

zz)]
−1Dp,zz(∂a∗P ∗

zz)

D∗
zz

,

(91)

where Dp,zz ≡ x−1
1 D∗

p,zz and DT,zz ≡ x−1
1 D∗

T ,zz. Equation
(91) provides the thermal diffusion factor �z in terms of
the diffusion coefficients D∗

zz, D∗
p,zz, and D∗

T ,zz, the (reduced)
pressure tensor P ∗

zz, and the derivative ∂a∗P ∗
zz. To evaluate those

quantities, we consider model A (β = 0) where P ∗
zz and ∂a∗P ∗

zz

are given by Eqs. (C1) and (D1), respectively. In addition, the
explicit forms of the diffusion coefficients can be found by
solving the set of algebraic equations (78)–(80) for i = j = z.
The results clearly show that, while D∗

zz > 0, the coefficients
D∗

p,zz and D∗
T ,zz do not have a definite sign.

The condition �z = 0 provides the segregation criterion
for the upwards and downwards segregation transition. Thus,
according to Eq. (91) and given that D∗

zz > 0, the marginal
segregation curve (�z = 0) separating segregation towards
the cold wall (�z > 0) from segregation towards the hot wall

FIG. 6. (Color online) Phase diagram for segregation for a three-
dimensional system (d = 3) and three different values of the
(common) coefficient of restitution α ≡ α22 = α12: α = 0.9 (solid
line), α = 0.8 (dashed line), and α = 0.7 (dotted line).

(�z < 0) is given by the condition

[P ∗
zz − a∗(∂a∗P ∗

zz)]D
∗
T ,zz = a∗(∂a∗P ∗

zz)D
∗
p,zz. (92)

Although relation (92) holds for models A and B alike, the
form of the phase diagrams for segregation (�z = 0) depends
on the interaction parameter β since the quantities ∂a∗P ∗

zz,
D∗

T ,zz, and D∗
p,zz differ in both models, even in the steady state.

On the other hand, according to the previous results derived in
the monodisperse case [17], it is expected that the influence of
β on segregation is very weak.

Before analyzing the dependence of the parameter space
on the form of the phase diagrams, it is instructive to consider
some limit situations. When the intruder and the particles of
the gas are mechanically equivalent (m1 = m2, σ1 = σ2, and
α22 = α12), the two species do not segregate. This is consistent
with Eq. (92) since then D∗

p,zz = D∗
T ,zz = 0 so that �z = 0 for

any value of the (common) coefficient of restitution. Another
interesting situation is the elastic limit [α22 = α12 = 1, which
implies a∗ = 0 in the steady state condition (90)]. In this
case, P ∗

zz = 1 and D∗
T ,zz = 0 so that Eq. (92) holds trivially

for any value of the ratios m1/m2 and σ1/σ2 (the intruder
does not segregate). Beyond the above two limiting cases, the
criterion (92) is rather complicated since it involves all the
parameter space of the problem (m1/m2, σ1/σ2, α22).

Figure 6 shows the phase diagram in the {m1/m2,σ1/σ2}
plane for d = 3 and three different values of the (common)
coefficient of restitution α22 = α12. For the sake of simplicity,
we consider model A (β = 0). All zero contours of �z pass
through the point (1,1) since when m1 = m2 and σ1 = σ2

all the species are indistinguishable for this system. We
observe that when the intruder is smaller than the gas particles
(σ1 < σ2), the main effect of collisional dissipation (or
equivalently the dimensionless shear rate a∗) is to reduce the
size of the down segregation region while the opposite happens
when σ1 > σ2. On the other hand, the impact of dissipation
on the latter case is smaller than in the former case (when
σ1 < σ2) and the curves tend to collapse into a common one
for sufficiently large values of the diameter ratio. It is also quite
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FIG. 7. Phase diagram for segregation for a three-dimensional
system (d = 3) with α22 = 0.9 and α12 = 0.7. The solid line corre-
sponds to the theoretical prediction obtained from Eq. (92) while the
symbols refer to computer simulations carried out in Ref. [48] for
IHS in the so-called LTu flow (Couette flow with uniform heat flux).

apparent that in general large intruders tend to move towards
colder regions since the upwards segregation is dominant
and occupies most of the parameter space. This conclusion
contrasts with the results obtained for vibrated dense systems
since intruders tend to move towards hotter regions as they get
larger [49]. It is also important to remark that the conclusions
drawn here for IMM agree quite well with those obtained
before for IHS (see Fig. 5 of Ref. [31]), showing again the
reliability of IMM to describe segregation in granular flows.

As a complement of Fig. 6, Fig. 7 shows a phase diagram
for α22 �= α12 (α22 = 0.9 and α12 = 0.7) in the case β = 0.
The theoretical results derived for IMM are compared here
against recent computer simulations performed in Ref. [48]
in the so-called LTu state, namely, a steady state where the
inelastic cooling is exactly balanced by viscous heating (as in
the steady USF state) resulting in a uniform heat flux [50,51]. In
the simulations, segregation is induced by a thermal gradient
parallel to the y direction (∂xT = ∂zT = 0 but ∂yT �= 0) so
that the physical situation slightly differs from the one studied
here theoretically. Nevertheless, when σ1 ≈ σ2 the agreement
with theory is good. More significant discrepancies appear
when the intruder is larger than the gas particles since in this
case the theory predicts that intruders only move towards hotter
regions (upwards segregation). This contrasts with simulation
data since they still show a small region of downwards
segregation.

VII. CONCLUSIONS

In conclusion, we have investigated the mass, momentum,
and heat fluxes for a binary mixture of inelastic grains. The
system is driven out of equilibrium by an imposed shear flow,
which injects energy while dissipative collisions between the
grains act as an energy sink. A kinetic theory description
was proposed, where the intractable Boltzmann equation is
simplified in a Maxwell model fashion. Such models are in

some cases simple enough to be amenable to a full analytical
solution, while remaining true to the key physical phenomena
under scrutiny. In this respect, our model is not the simplest
possible of the Maxwell family (the so-called “plain vanilla”
approach) since the collision frequencies ωrs are taken to be
the same as those found for IHS [see Eq. (13)]. In this equation,
a free parameter β is introduced. While β = 1

2 is the natural
choice to reproduce inelastic hard sphere phenomenology, it
also leads to a complex interplay between shear and dissipation
in the steady state. On the other hand, it is convenient to
decouple these effects, which is possible when β = 0. We
thus discriminate two submodels, referred to as models A and
B, having respectively β = 0 and β �= 0. Model A enjoys a
larger parameter space than model B, which is at the root of
the greater analytical tractability of the approach.

Perturbing the USF, we analyzed the response of the
fluid mixture, from which generalized transport coefficients
can be identified. Due to the anisotropy induced by the
shear, these quantities appear in tensorial rather than scalar
form. A Chapman-Enskog–type method around the shear
flow distribution allows to derive the nonlinear differential
equations obeying the set of generalized transport coefficients
(see Sec. IV). Hopefully, in the case of model A (β = 0), the
above equations become simple coupled algebraic equations
whose solution unveils the dependence of transport coefficients
on the key parameters (shear, dissipation, concentration, size,
and mass ratio).

To reduce the complexity of the problem and to illustrate
the impact of both shearing and collisional dissipation on
transport, we focused on the limit where species 1 has a
much smaller concentration than species 2, the so-called
tracer limit (x1 → 0). In doing so, mass transport becomes
the relevant phenomenon to address since momentum and
heat fluxes coincide with their monocomponent (inelastic)
expressions. There are then in general 15 different diffusion
transport coefficients that couple the mass flux to the gradients
of density, pressure, and temperature. The simplified model
worked out here reduces this number to 12 (two diagonal
and two off-diagonal elements for each diffusion matrix). Our
results hold for arbitrary values of the shear rate and are not
restricted to small dissipation. They show that shear driving
notably affects mass transport. In addition, good agreement
is reported between our Maxwell treatment and previously
derived inelastic hard sphere results (here, the relevant view
is that of model B, where in the steady state, dissipation
selects a unique reduced shear rate). Finally, we analyzed the
segregation phenomenon of an intruder by thermal diffusion
within our framework, which deciphers how shear impinges
on the separating effect of a thermal gradient, opposed by
the remixing action of diffusion. Our predictions are in fair
agreement with inelastic hard sphere simulations for Couette
flows sustaining a uniform heat flux.

As pointed out in the Introduction, most of the works
on granular mixtures [18,19] have been derived by taking
the so-called homogeneous cooling state as the reference
state. In this case, the mass transport is characterized by the
single scalar coefficients D, Dp, and DT [see Eqs. (64)–(66)
for IMM] instead of the tensorial quantities Dij , Dp,ij , and
DT,ij when the system is sheared. Although these scalar
coefficients cannot be directly compared with the diffusion
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FIG. 8. (Color online) Plot of the scalar diffusion coefficient
D∗(α) (relative to its elastic value) and the zero shear-rate diffusion
coefficient D∗

0 (relative to its elastic value) as functions of the
(common) coefficient of restitution α12 = α22 ≡ α in the steady state
for d = 3 and two different systems: σ1/σ2 = 2 and m1/m2 = 2 (solid
lines) and σ1/σ2 = 1 and m1/m2 = 3 (dashed lines).

tensors obtained here, it would be interesting to gauge the effect
of dissipation on diffusion in both situations (driven sheared
case and freely cooling condition). In Fig. 8, we plot the
scalar diffusion coefficient D∗ ≡ 1

3 (D∗
xx + D∗

yy + D∗
zz) (which

can be understood as a generalized diffusion coefficient in a
sheared mixture) and the zero shear-rate diffusion coefficient
D∗

0 [defined in Eq. (82)] as functions of the (common)
coefficient of restitution in the steady state (where the results
for these coefficients apply for models A and B) for x1 → 0
and d = 3. We have scaled both coefficients with respect to
their elastic values. Given that the reference states in both
descriptions (shear flow state against homogeneous cooling
state) are quite different, there are significant quantitative
differences between D∗ and D∗

0 . On the other hand, the
dependence of both coefficients on dissipation is qualitatively
similar since they increase as α decreases. This tendency is
more important in the freely cooling case than in the sheared
state, in agreement with the results obtained for IHS (see Fig. 5
of Ref. [28]).

Finally, we wish to remark that, at the expense of a further
simplification of the Maxwell model (addressing thus the
aforementioned plain vanilla treatment [42]), it is of interest to
study the impact on transport of a recently evidenced transition
taking place in the intruder limit, where the minority species
rather unexpectedly carries a finite fraction of the total system’s
energy. Work along these lines is underway.
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APPENDIX A: CHAPMAN-ENSKOG–TYPE EXPANSION

In this appendix, some technical details on the determi-
nation of the first-order approximation f

(1)
1 by means of the

Chapman-Enskog–type expansion are provided. Inserting the
expansions (30)–(32) into Eq. (24a), one gets the kinetic
equation for f

(1)
1 :

∂
(0)
t f

(1)
1 − aVy

∂f
(1)
1

∂Vx

+ L1f
(1)
1 + M1f

(1)
2

= −[
∂

(1)
t + (V + u0) · ∇]

f
(0)
1 . (A1)

The velocity dependence on the right-hand side of Eq. (A1) can
be obtained from the macroscopic balance equations (25)–(27)
to first order in the gradients. Using these balance equations in
Eq. (A1), one gets

∂
(0)
t f

(1)
1 − aVy

∂f
(1)
1

∂Vx

+ L1f
(1)
1 + M1f

(1)
2

= A1 · ∇x1 + B1 · ∇p + C1 · ∇T + D1 : ∇δu, (A2)

where

A1,i(c) = −∂f
(0)
1

∂x1
ci − 1

ρ

∂f
(0)
1

∂cj

∂P
(0)
ij

∂x1
, (A3)

B1,i(c) = −∂f
(0)
1

∂p
ci − 1

ρ

∂f
(0)
1

∂cj

∂P
(0)
ij

∂p
, (A4)

C1,i(c) = −∂f
(0)
1

∂T
ci − 1

ρ

∂f
(0)
1

∂cj

∂P
(0)
ij

∂T
, (A5)

D1,ij (c) = p
∂f

(0)
1

∂p
δij + cj

∂f
(0)
1

∂ci

+ 2

dp

(
P

(0)
ij − aηxyij

)
×

(
p

∂f
(0)
1

∂p
+ T

∂f
(0)
1

∂T

)
. (A6)

Upon writing Eq. (A6), use has been made of the identity
ζ (1) = 0 and the expression of the total pressure tensor P

(1)
ij of

the mixture

P
(1)
ij = −ηijk�

∂δuk

∂r�

, (A7)

where ηijk� is the viscosity tensor.
The solution to Eq. (A2) has the form given by Eq. (38),

where the coefficients A1, B1, C1, and D1 are functions of
the peculiar velocity and the hydrodynamic fields x1, p, T ,
and δu. The time derivative acting on these quantities can be
evaluated with the replacement

∂
(0)
t → −

(
2

dp
aP (0)

xy + ζ (0)

)(
p∂p + T ∂T

)
. (A8)

Moreover, there are contributions from ∂
(0)
t acting

on the pressure, temperature, and velocity gradients
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given by

∂
(0)
t ∇p=−∇

(
2

d
aP (0)

xy + pζ (0)

)
=−

(
2a

d

∂P (0)
xy

∂x1
+p

∂ζ (0)

∂x1

)
∇x1−

(
2a

d

∂P (0)
xy

∂p
+ζ (0)+ ∂ζ (0)

∂p

)
∇p −

(
2a

d

∂P (0)
xy

∂T
+ p

∂ζ (0)

∂T

)
∇T ,

(A9)

∂
(0)
t ∇T = −∇

(
2T

dp
aP (0)

xy + T ζ (0)

)

= −
(

2aT

dp

∂P (0)
xy

∂x1
+ T

∂ζ (0)

∂x1

)
∇x1 +

(
2aT

dp2
P (0)

xy − 2aT

dp

∂P (0)
xy

∂p
− T

∂ζ (0)

∂p

)
∇p

−
(

2a

dp
P (0)

xy + 2aT

dp

∂P (0)
xy

∂T
+ ζ (0) + T

∂ζ (0)

∂T

)
∇T , (A10)

∂
(0)
t ∇iδuj = ∇i∂

(0)
t δuj = −ajk∇iδuk. (A11)

The corresponding integral equations (39)–(41) can be obtained when one identifies coefficients of independent gradients in
Eq. (A2) and takes into account Eqs. (A9)–(A11) and the mathematical property

∂
(0)
t X = ∂X

∂p
∂

(0)
t p + ∂X

∂T
∂

(0)
t T + ∂X

∂δui

∂
(0)
t δui = −

(
2

dp
aP (0)

xy + ζ (0)

)(
p

∂X

∂p
+ T

∂X

∂T

)
+ aij δuj

∂X

∂ci

, (A12)

where in the last step it has been taken into account that X depends on δu through c = V − δu.

APPENDIX B: HEAT FLUX TRANSPORT COEFFICIENTS

The heat flux is defined by Eq. (46) in terms of the coefficients D′′
ij [Eq. (51)], Lij [Eq. (52)], and λij [Eq. (53)]. In order to

determine them, we introduce the quantities

D′′
r,ijk� = − mr

2T 2

∫
dc cicj ckAr,�(c), (B1)

Lr,ijk� = −mr

2

∫
dc cicj ckBr,�(c), (B2)

λr,ijk� = −mr

2

∫
dc cicj ckCr,�(c). (B3)

The generalized transport coefficients D′′
ij , Lij , and λij are defined as

D′′
ij =

2∑
s=1

D′′
s,kkij , Lij =

2∑
s=1

Ls,kkij , λij =
2∑

s=1

λs,kkij . (B4)

The differential equations verifying the (scaled) coefficients D∗
r,ijk� ≡ D′′

r,ijk�(m1 + m2)ν0/n, L∗
r,ijk� = Lr,ijk�(m1 + m2)ν0/T ,

and λ∗
r,ijk� = λr,ijk�(m1 + m2)ν0/p can be obtained by following similar mathematical steps as those made for the other transport

coefficients. The final results can be written as(
2a∗

d
P ∗

xy + ζ ∗
)

[2 − β(1 + a∗∂a∗ ]D∗
1,ijk� − AD∗

1,ijk� − B

[
D∗

2,ijk� − 1

2

(
δkjD

∗
2,i� + δijD

∗
2,k� + δikD

∗
2,j�

)]
−C(δkjD

∗
1,i� + δijD

∗
1,k� + δikD

∗
1,j�) − E(δkjD

∗
i� + δijD

∗
k� + δikD

∗
j�) − a∗(δixD

∗
1,jky� + δjxD

∗
1,iky� + δkxD

∗
1,ijy�)

= −(L∗
1,ijk� + λ∗

1,ijk�)

(
2a∗

d
∂x1P

∗
xy + ∂x1ζ

∗
)

− 1

T 2ν0D
′′
0

∂x1N
(0)
1,ijk� + n(m1 +m2)

ρ
(P ∗

1,kj ∂x1P
∗
i� + P ∗

1,ik∂x1P
∗
j� + P ∗

1,ij ∂x1P
∗
k�),

(B5)(
2a∗

d
P ∗

xy + ζ ∗
)[

1 − β(1 + a∗∂a∗ )
]
L∗

1,ijk� − AL∗
1,ijk� − B

[
L∗

2,ijk� − 1

2

(
δkjL

∗
2,i� + δijL

∗
2,k� + δikL

∗
2,j�

)]
−C

(
δkjL

∗
1,i� + δijL

∗
1,k� + δikL

∗
1,j�

) − E
(
δkjD

∗
p,i� + δijD

∗
p,k� + δikD

∗
p,j�

)
− a∗(δixL

∗
1,jky� + δjxL

∗
1,iky� + δkxL

∗
1,ijy�

) + L∗
1,ijk�

[
2a∗

d
(1 − a∗∂a∗ )P ∗

xy + (2 − a∗∂a∗ )ζ ∗
]
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= − 1

ν0L0
∂pN

(0)
1,ijk� + n(m1 + m2)

2ρ
[P ∗

1,kj (1 − a∗∂a∗ )P ∗
i� + P ∗

1,ik(1 − a∗∂a∗ )P ∗
j� + P ∗

1,ij (1 − a∗∂a∗ )P ∗
k�]

+ λ∗
1,ijk�

[
2a∗2

d
∂a∗P ∗

xy − (1 − a∗∂a∗ )ζ ∗
]
, (B6)(

2a∗

d
P ∗

xy + ζ ∗
)

[1 − β(1 + a∗∂a∗ )]λ∗
1,ijk� − Aλ∗

1,ijk� − B

[
λ∗

2,ijk� − 1

2

(
δkjλ

∗
2,i� + δijλ

∗
2,k� + δikλ

∗
2,j�

)]
−C(δkjλ

∗
1,i� + δijλ

∗
1,k� + δikλ

∗
1,j�) − E(δkjD

∗
T ,i� + δijD

∗
T ,k� + δikD

∗
T ,j�)

−a∗(δixλ
∗
1,jky� + δjxλ

∗
1,iky� + δkxλ

∗
1,ijy�) + λ∗

1,ijk�

[
2a∗

d
[1 + (1 − β)a∗∂∗

a ]P ∗
xy + [β + (1 − β)a∗∂a∗ ]ζ ∗

]
= − 1

ν0λ0
∂T N

(0)
1,ijk� + n(m1 + m2)

2ρ
(1 − β)a∗[P ∗

1,kj ∂a∗P ∗
i� + P ∗

1,ik∂a∗P ∗
j� + P ∗

1,ij ∂a∗P ∗
k�

]
−L∗

1,ijk�

[
2a∗2

d
(1 − β)∂∗

a P ∗
xy + (β − 1)(1 − a∗∂∗

a )ζ ∗
]
. (B7)

In Eqs. (B5)–(B7), we have introduced the fourth-degree velocity moments of the zeroth-order distribution f (0)
r ,

N
(0)
r,ijk� = mr

2

∫
dc cicj ckc�f

(0)
r (c), (B8)

and the (dimensionless) quantities

A = 3

2
ω∗

11(1 + α11)
1 + d − α11

d(d + 2)
+ 3

d
ω∗

12μ21(1 + α12)

{
1 − 2μ21(1 + α12)

d + 2

[
1 − μ21(1 + α12)

d + 4

]}
, (B9)

B = −6
ρ1

ρ2
ω∗

12
μ3

21(1 + α12)3

d(d + 2)(d + 4)
, (B10)

C = − 13 + 4d − 3α11

8d(d + 2)(d + 4)
ω∗

11(1 + α11)2 + 2
ω∗

12

d(d + 2)(d + 4)
μ2

21(1 + α12)2[3μ21(1 + α12) − (d + 4)], (B11)

E = ω∗
11

(1 − α2
11)

8d(d + 2)

γ1

μ12
(3α11 − d + 1) − ω∗

12

2d(d + 2)

x1γ1

x2μ21

{
d + 2 + 3μ21(1 + α12)[μ21(1 + α12) − 2]

+ x2γ2

x1γ1
μ21(1 + α12)[3μ21(1 + α12) − d − 2]

}
. (B12)

In Eqs. (B9)–(B12), ω∗
rs ≡ ωrs/ν0. The differential equations

for the coefficients D∗
2,ijk�, L∗

2,ijk�, and λ2,ijk� can be obtained
from Eqs. (B5)–(B7) by changing 1 ↔ 2. As in the case of
the previous transport coefficients, Eqs. (B5)–(B7) become
algebraic for model A (β = 0). Even for this model, the
solution to the above equations requires the knowledge of
the fourth-degree moments N

(0)
r,ijk� whose expressions are only

known for a monodisperse granular gas of IMM [24].

APPENDIX C: RHEOLOGICAL PROPERTIES
IN THE USF: TRACER LIMIT

The explicit forms of the (reduced) pressure tensors P ∗
2,ij ≡

P2,ij /n2T2 and P ∗
1,ij ≡ P1,ij /n2T2 of the solvent (excess) and

the solute (tracer) components, respectively, of a granular
binary mixture (in the tracer limit x1 → 0) of IMM under
USF are provided in this appendix. We consider here model
A (β = 0) where the coefficients of restitution αrs and the
(reduced) shear rate a∗ are decoupled.

The nonzero elements of P ∗
2,ij are given by [17]

P ∗
2,yy = P ∗

2,zz = 1

1 + 2�(̃a)
, P ∗

2,xx = 1 + 2d�(̃a)

1 + 2�(̃a)
, (C1)

P ∗
2,xy = − ã

[1 + 2�(̃a)]2 , (C2)

where

ã = 2(d + 2)

(1 + α22)2

a∗

ω∗
22

, (C3)

ω∗
22 ≡ ω22

ν0
=

√
2μ12

(
σ2

σ12

)d−1

, (C4)

and �(̃a) is the real root of the cubic equation

�(1 + 2�)2 = ã2

d
, (C5)

namely,

�(̃a) = 2

3
sinh2

[
1

6
cosh−1

(
1 + 27

d
ã2

)]
. (C6)

In addition, the long-time behavior of the granular temperature
T (t) 
 T2(t) is T2(t) = T2(0)eλω22t where

λ = − 2

d

P ∗
2,xya

∗

ω∗
22

− ζ ∗

ω∗
22

= (1 + α22)2

d + 2
� − 1 − α2

22

2dω∗
22

. (C7)
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Upon obtaining the second identity in (C7) use has been made
of Eq. (C2) and the result ζ ∗ = (1 − α2

22)/2d.
In the case of tracer particles, the relevant elements of P ∗

1,ij

can be written as [21]

P ∗
1,yy = P ∗

1,zz = x1

F + HP ∗
2,yy

λω∗
22 + G

, (C8)

P ∗
1,xy = x1

HP ∗
2,xy − a∗x−1

1 P ∗
1,yy

λω∗
22 + G

, (C9)

P ∗
1,xx = x1

F + HP ∗
2,xx − 2a∗x−1

1 P ∗
1,xy

λω∗
22 + G

, (C10)

where

F = ω∗
12

d + 2
μ21(μ12 + μ21γ )(1 + α12)2, (C11)

G = 2ω∗
12

d(d + 2)
μ21(1 + α12)[d + 2 − μ21(1 + α12)], (C12)

H = 2ω∗
12

d(d + 2)
μ21μ12(1 + α12)2. (C13)

Here,

ω∗
12 ≡ ω12

ν0
= √

μ12 + μ21γ , (C14)

where γ ≡ T1/T2 is the temperature ratio. The temperature
ratio is determined from the constraint

x1γ = P ∗
1,xx + (d − 1)P ∗

1,yy

d
. (C15)

Since the collision frequency ω∗
12 is a nonlinear function of

γ , one then has to numerically solve Eq. (C15) to obtain the
shear-rate dependence of the temperature ratio.

APPENDIX D: EVALUATION OF THE DERIVATIVES
OF THE PRESSURE TENSORS WITH RESPECT

TO THE SHEAR RATE: TRACER LIMIT

This appendix addresses the evaluation of the derivatives
∂a∗P ∗

2,ij and ∂a∗P ∗
1,ij for model A (β = 0) needed to determine

the tracer diffusion coefficients Dij , Dp,ij , and DT,ij in the
tracer limit. In the case of the excess component, according to
Eqs. (C1) and (C2), one has [17]

a∗ ∂P ∗
2,yy

∂a∗ = − 4�

(1 + 2�)(1 + 6�)
, (D1)

a∗ ∂P ∗
2,xx

∂a∗ = 4(d − 1)�

(1 + 2�)(1 + 6�)
, (D2)

a∗ ∂P ∗
2,xy

∂a∗ = − 1 − 2�

(1 + 2�)2(1 + 6�)
ã, (D3)

where use has been made of the identity

a∗ ∂�

∂a∗ = 2�
1 + 2�

1 + 6�
. (D4)

The calculations for the tracer particles are more intricate.
First, we derive both sides of Eq. (C8) with respect to a∗ to
obtain the result

∂P ∗
1,yy

∂a∗ = �(0)
yy + �(1)

yy

∂γ

∂a∗ , (D5)

where

�(0)
yy = x1H (∂a∗P ∗

2,yy) − P ∗
1,yyω

∗
22(∂a∗λ)

λω∗
22 + G

, (D6)

�(1)
yy = x1

λω∗
22 + G

(
F + HP ∗

2,yy − Gx−1
1 P ∗

1,yy

)
. (D7)

In Eqs. (D6) and (D7), ∂a∗λ = 1+α2

d+2 (∂a∗�) and we have
introduced the quantities

F ≡ μ21

2ω∗2
12

F + ω∗
12

μ2
21(1 + α12)2

d + 2
, (D8)

G ≡ μ21

2ω∗2
12

G, H ≡ μ21

2ω∗2
12

H. (D9)

The derivatives ∂a∗P ∗
1,xy and ∂a∗P ∗

1,xx can be also obtained from
Eqs. (C9) and (C10). Their final forms can be written as

∂P ∗
1,xy

∂a∗ = �(0)
xy + �(1)

xy

∂γ

∂a∗ , (D10)

∂P ∗
1,xx

∂a∗ = �(0)
xx + �(1)

xx

∂γ

∂a∗ , (D11)

where

�(0)
xy = x1H (∂a∗P ∗

2,xy) − P ∗
1,yy − a∗�(0)

yy − P ∗
1,xyω

∗
22(∂a∗λ)

λω∗
22 + G

,

(D12)

�(1)
xy = x1

λω∗
22 + G

(
HP ∗

2,xy − a∗x−1
1 �(1)

yy − Gx−1
1 P ∗

1,xy

)
,

(D13)

�(0)
xx = x1H (∂a∗P ∗

2,xx) − 2P ∗
1,xy − 2a∗�(0)

xy − P ∗
1,xxω

∗
22(∂a∗λ)

λω∗
22 + G

,

(D14)

�(1)
xx = x1

λω∗
22 + G

(
F +HP ∗

2,xx − 2a∗x−1
1 �(1)

xy −Gx−1
1 P ∗

1,xx

)
.

(D15)

To close the problem, it still remains to get the quantity
∂a∗γ , which can be determined from the relation (C15) by
taking the derivative with respect to a∗ in both sides of this
identity. The result can be written as

∂γ

∂a∗ = x−1
1

�(0)
xx + (d − 1)�(0)

yy

d − x−1
1 �

(1)
xx − (d − 1)x−1

1 �
(1)
yy

. (D16)
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[4] A. Santos, V. Garzó, and J. W. Dufty, Phys. Rev. E 69, 061303

(2004).

052202-19

http://dx.doi.org/10.1146/annurev.fl.22.010190.000421
http://dx.doi.org/10.1146/annurev.fl.22.010190.000421
http://dx.doi.org/10.1146/annurev.fl.22.010190.000421
http://dx.doi.org/10.1146/annurev.fl.22.010190.000421
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161114
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161114
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161114
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161114
http://dx.doi.org/10.1103/PhysRevE.69.061303
http://dx.doi.org/10.1103/PhysRevE.69.061303
http://dx.doi.org/10.1103/PhysRevE.69.061303
http://dx.doi.org/10.1103/PhysRevE.69.061303
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1476 (2002); V. Garzó and J. M. Montanero, Phys. Rev. E 68,
041302 (2003); D. Serero, I. Goldhirsch, S. H. Noskowicz, and
M.-L. Tan, J. Fluid Mech. 554, 237 (2006); V. Garzó and J. M.
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[35] V. Garzó and A. Santos, J. Phys. A: Math. Theor. 40, 14927

(2007).
[36] A. W. Lees and S. F. Edwards, J. Phys. C: Solid State Phys. 5,

1921 (1972).
[37] J. W. Dufty, A. Santos, J. J. Brey, and R. F. Rodrı́guez,

Phys. Rev. A 33, 459 (1986).
[38] J. M. Montanero and V. Garzó, Physica A (Amsterdam) 310, 17
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Phys. 86, 963 (1987).
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