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Protocol-independent granular temperature supported by numerical simulations
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A possible approach to the statistical description of granular assemblies starts from Edwards’s assumption
that all blocked states occupying the same volume are equally probable [Edwards and Oakeshott, Physica A
157, 1080 (1989)]. We performed computer simulations using two-dimensional polygonal particles excited
periodically according to two different protocols: excitation by pulses of “negative gravity” and excitation by
“rotating gravity.” The first protocol exhibits a nonmonotonous dependency of the mean volume fraction on the
pulse strength. The overlapping histogram method is used in order to test whether the volume distribution is
described by a Boltzmann-like distribution and to calculate the inverse compactivity as well as the logarithm
of the partition sum. We find that the mean volume is a unique function of the measured granular temperature,
independently of the protocol and of the branch in φ(g), and that all determined quantities are in agreement with
Edwards’s theory.
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I. INTRODUCTION

Granular materials are typically composed of thousands to
millions of individual particles (or more). Think, for example,
of the cereals for breakfast or of the sand on the shore.
These large numbers suggest that statistical methods may
be applicable and constitute a powerful tool in developing
a better theoretical understanding of these kinds of materials.
However, contrary to the situation in gases or fluids, where
the permitted phase space is explored continuously due to
chaotic molecular motion, thermal fluctuations are negligible
for granular materials. Furthermore, the particle dynamics
are dissipative. Therefore, it is not possible to carry standard
statistical mechanics over to granular assemblies. In particular,
the classical Boltzmann distribution, where the probability of
a state is inversely proportional to the exponential of its energy
(measured in units of kBT ), will not apply to these systems.

Edwards and Oakeshott [1,2] proposed that concepts from
classical statistical mechanics are applicable if one assumes
that the volume of a static, stable granulate plays the same role
in granular statistics as the energy of a microstate in classical
statistics. This means that, analogously to the classical micro-
canonical ensemble, where all states with the same energy are
equally probable, all mechanically stable configurations of the
granular assembly that occupy the same volume occur with the
same probability. The entropy of this granular microcanonical
ensemble is proportional to the logarithm of the number
of blocked states with a certain volume. By analogy with
classical statistics, one can define a temperature-like variable,
called compactivity, as the inverse of the derivative of the
Edwards entropy with respect to the volume. Later, it turned
out that for a full description of a granular system, beyond
the volume ensemble also an ensemble for the different stress
states must be introduced [3–5] and that the volume and the
stress ensembles are probably interdependent [6]. However,
it seems that expectation values of quantities that depend on
the geometrical state only and not on the stress state are well
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described by the volume ensemble [7], possibly because the
force-moment tensor can be treated as approximately constant
in the systems considered here. Therefore we focus on the
volume ensemble in most of the present paper.

Some doubts about the temperature-like interpretation of
the compactivity have been raised on the basis of equilibration
experiments performed by Puckett and Daniels [8]. They found
that in a two-component system, the compactivity did not
equilibrate, whereas the angoricity did. There are different
ways to explain this observation, some of which do not
necessitate to give up the interpretation of the compactivity
as a temperature-like variable [9].

A key assumption of standard statistical mechanics is the
equivalence of time and ensemble averages, but mechanically
stable granular configurations are static states without any
intrinsic time evolution. On the other hand, by applying
the same external excitation to the granular material again
and again (i.e., tapping [10] or shearing [11]), this external
excitation may take over the role of thermal agitation and the
concept of a time average becomes meaningful for granular
statistics as well. Some tests of the ergodicity of granular
systems are available in the literature. With systems of
frictional disks excited with flow pulses, equivalence between
time and ensemble averages was found [12]. In the case
of a vertical tapping protocol, dependency on the protocol
parameters was noted. Especially for small tapping amplitudes,
nonergodicity was observed in numerical simulations [13].
This may be related to the occurrence of irreversible branches
in tapped granular systems [10,14].

As a cautionary remark we note that athermal granular
aggregates may be in mechanical equilibrium but are typi-
cally in thermodynamically nonequilibrium states. Edwards’s
approach should not be misinterpreted as somehow turning a
nonequilibrium system into an equilibrium one. Pragmatically,
Edwards suggests a maximization principle to hold for a
quantity conveniently called entropy (by analogy with a
similar quantity in statistical mechanics), given certain side
conditions (e.g., constant mean volume in the granular analog
of the canonical ensemble). While for most nonequilibrium
systems no extremum principles are available, there are a few
even in classical statistical mechanics admitting a description
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via such a principle. Steady-state systems not too far from
equilibrium are governed by a principle of minimum entropy
production, and pattern-forming systems near a bifurcation
(i.e., a nonequilibrium phase transition) may in some cases be
described by a variational equation (the real Ginzburg-Landau
equation), derivable from minimization of a functional. When
such a principle can be applied, it greatly simplifies the
characterization of the nonequilibrium system. The utility of
Edwards’s approach is to motivate, and to provide us with, a
maximum principle for a particular kind of nonequilibrium
systems. Its applicability does not rely on equilibrium in
the thermodynamic sense, even though the analogy from
which it derives introduces a language similar to that used
in the statistical physics of equilibrium systems. It also
suggests that certain “equilibration” procedures may be used
to generate the desired nonequilibrium ensemble. However,
equilibration is not with respect to temperature but with respect
to compactivity, a variable characterizing a nonequilibrium
state in a similar way as an order parameter (analogous to a
magnetization) may characterize a nonequilibrium phase in a
pattern-forming system.

Several methods were proposed to determine the com-
pactivity from experimental or simulation data [10,15–17]
and applied to different kinds of granulates. In this work, we
employ two-dimensional discrete-element (DEM) simulations
using polygonal particles to apply two different excitation
protocols to otherwise identical granulates. This allows us to
determine whether the calculated compactivity is independent
of the specific excitation protocol (which would support the
Edwards theory) or not (which would oppose it). Recently,
some authors have addressed the issue of whether it is neces-
sary to introduce protocol-specific extensions of Edwards-like
approaches [18,19]. We briefly discuss a possible approach
in Sec. II B. At least for the two protocols considered in this
paper, we find protocol independence. Furthermore, we test
whether ideal-gas-like prediction analogies of the Edwards
theory are consistent with the simulation data and find good
qualitative agreement, which even becomes quantitative if
certain parameters are chosen by fitting.

The paper is organized as follows. In Sec. II, we give an
overview of some aspects of Edwards’s theory, relevant to
this work. In Sec. III, we introduce the simulation technique.
Section IV gives details of the applied excitation protocols and,
in Sec. V, the simulation results will be presented, evaluated,
and discussed. In Sec. VI, some limitations of the volume
ensemble are illustrated. Finally, Sec. VII gives a summary of
our findings.

II. THEORETICAL FRAMEWORK

A. The microcanonical and the canonical volume ensemble

The main assumption of the Edwards theory is the following
[1,2]: If a granular ensemble is generated by a reproducible
preparation protocol, all resulting mechanically stable con-
figurations of the granular system which occupy the same
volume will occur with the same probability on repetition of
the protocol. This means that in Edwards’s granular statistics
the volume plays the same role as the energy in ordinary
statistics. Consequently, the entropy S of the microcanonical

ensemble having a certain volume V is given as the logarithm
of the number � of stable states (in the permitted phase space)
occupying this volume.

Let a microstate of the granular ensemble, comprised of N

particles, be described by a set of variables q. The entropy of
this state is given by (see, e.g., Refs. [1,2,7]):

S(V,N ) = ln �(V,N ), (1)

�(V,N ) =
∫

{q}
dqδ[V − W (q)]. (2)

The integral runs over all stable configurations {q} and the
function W (q) gives the volume of the state q. Note that in
this context, W (q) is the granular analog of the Hamiltonian
and V is the analog of the internal energy.

By analogy with standard statistical mechanics, an inten-
sive, temperature-like variable χ can be defined, usually called
compactivity:

χ = β−1 = ∂V

∂S
. (3)

In this paper, we will, for simplicity, mostly use the “thermo-
dynamic beta,” defined as the inverse compactivity β = 1/χ ,
instead of the compactivity itself.

Note that, in general, a constant λ analogous to the Boltz-
mann constant may be introduced in Eqs. (1) and (3). Here
we use λ = 1, which means that we measure compactivity in
units of volume.

As in ordinary statistics and thermodynamics (see, e.g.,
Ref. [20]) one may switch from the microcanonical ensemble
to the canonical ensemble by a Legendre transformation.
In the corresponding canonical ensemble, the probability of
a microstate q occupying the volume W (q) is given by a
Boltzmann-like distribution:

P (q) = 1

Z
e−βW (q) (4)

with the canonical partition function [6,17,21]

Z =
∫

{q}
dqe−βW (q). (5)

Once again, the integral runs over all possible mechanically
stable states. Note that this is equivalent to a notation often
used in the literature, where the integral runs over all states and
contains an additional factor θ (q), which takes the value zero
for forbidden states and one for allowed ones, thus selecting
the permitted states.

Note that a tapping protocol does not necessarily lead to
canonical sampling of the system. A trivial example would
be tapping with so small an amplitude that the system is
trapped in the initial blocked state. A nontrivial example is the
irreversible branch for vertical tapping observed by Nowak
et al. [10]. Also, the comparison between the analytically
solvable Bowles-Ashwin model system [22] and simulations
where such a system is vertically tapped [23] exhibits devi-
ations from the canonical ensemble prediction. Note that the
Bowles-Ashwin model assumes a highly confined geometry
with much lower complexity than realistic granular systems.
Vertical tapping applied to this special system with strong
confinement may be unsuited for phase space exploration
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according to a flat probability measure. Or else the flat Edwards
measure does not hold in general. Even if that were the case, a
meaningful definition of compactivity might still be possible
as will be described now.

B. Generalized (protocol dependent) ensembles

In case it turned out that Edwards’s assumption of a
flat probability measure is not satisfied for the microcanical
ensemble, it is possible to modify the ensemble with (in
general, state and protocol dependent) weighting factors w(q)
[3,18,19]. The microcanical state density would be modified
as follows:

�G(V,N ) =
∫

{q}
dqw(q)δ[V − W (q)]. (6)

Providing we have

�G(V1 + V2,N ) = �G(V1,N1) �G(V2,N2), (7)

which is a much weaker assumption than a flat probability
measure [3], it is still possible to define a compactivity. The
canonical formulation for the volume ensemble then reads

P (q) = w(q)
1

Z
e−βW (q), (8)

ZG =
∫

{q}
dqw(q)e−βW (q). (9)

A similar approach is feasible for the force-moment and the
combined ensembles. Generalized canonical ensembles of this
kind are used in statistical genetics [24,25].

The qualitative impact of these modifications on the
resulting thermodynamics is small. Especially Eqs. (17) and
(20) remain unaffected, as long as the weighting factors are the
same for all data samples. If only one protocol is used, then it
is impossible to detect protocol dependencies in the weighting
factors. But a comparison of different protocols, applied to
the same system, may help to decide whether these factors,
if their introduction should turn out necessary, are protocol
independent.

C. Mean volume and volume fluctuations

The calculation of the mean volume and its fluctuations is
straightforward. The first derivative of the logarithm of (5) [or
(9)] with respect to β essentially is the mean volume

〈V 〉 = − ∂

∂β
ln Z = 1

Z

∫
{q}

dqW (q)e−βW (q), (10)

whereas its second derivative is the variance of the volume
distribution, i.e., a measure for the strength of fluctuations.

σ 2
V = 〈V 2〉 − 〈V 〉2 = ∂2

∂β2
ln Z, (11)

σ 2
V = − ∂

∂β
〈V 〉. (12)

Instead of the volume itself, we use the volume fraction φ,
defined as the sum of the grain volumes Vg divided by the

volume W occupied by the granulate:

φ(q) = Vg

W (q)
. (13)

The volume W (q) of a certain state can be written as a sum
of the mean volume V = 〈W 〉 and the deviation from the
mean: W = V + �V . Under the assumption that the volume
fluctuations are small compared to the mean volume, we can
write:

φ = Vg

V + �V
� Vg

V
− Vg

V 2
�V. (14)

The mean volume fraction is therefore:

φ̄ = 〈φ〉 = Vg

V
, (15)

and from Eqs. (14) and (15), together with 〈�V 2〉 = σ 2
V , we

obtain

σ 2
φ = 〈(φ − φ̄)2〉 = 〈φ〉4

V 2
g

σ 2
V . (16)

Substituting σ 2
V from Eq. (12) and reexpressing the differential

of 〈V 〉 according to d〈V 〉 = −Vg/〈V 〉2dφ̄, we find a relation
between the mean volume fraction and its fluctuations:

σ 2
φ = φ̄2

Vg

∂φ̄

∂β
. (17)

Measuring the volume fraction fluctuations as a function of the
mean volume fraction and integrating Eqs. (17) or (12), respec-
tively, is a way to calculate the compactivity up to an unknown
constant. It is used frequently, e.g., in Refs. [10,15,17]. Note
that determining the granular temperature via Eqs. (12) or (17)
is just a rule of calculation, provided by Edwards’s theory but
no proof of the theory. On the other hand, if after determining
β in some different way the relationship (17) linking it with
the volume fraction were not satisfied, a contradiction to
Edwards’s theory would have been demonstrated.

D. Overlapping histogram method

Another way to determine the inverse compactivity is the
overlapping histogram method proposed in 2003 by Dean and
Lefèvre [26]. This method may also be used as a test of whether
a distribution of blocked states is Boltzmann-like distributed.
In the original paper, the method was applied to the energy
of the Sherrington-Kirkpatrick model for spin glasses, driven
by a tappinglike mechanism, which has some similarities to
granular dynamics. The method was then frequently used to
determine the granular temperature [8,17,27,28]. Under the
assumption that Edwards’s theory holds, the probability to
measure a certain volume V in a granulate with an inverse
compactivity β0 and a fixed number of grains N is

P (V,β0,N ) =
∫

{q}
dqδ[V − W (q)]

1

Z(β0,N )
e−β0W (q)

= D(V,N )

Z(β0,N )
e−β0V , (18)

where D(V,N ) is the number of blocked states with volume
V , i.e., D(V,N ) = �(V,N ). This equation holds even for
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the generalized nonflat probability measure approach, when
Eq. (6) is used for �(V,N ).

We define the quantity Q as the logarithm of the ratio of
probability densities for the volume V to arise, on the one
hand, at an inverse compactivity β1 and, on the other hand, in
a reference system held at a different inverse compactivity β0:

Q := ln
P (V,β1,N )

P (V,β0,N )
, (19)

Q = (β0 − β1)︸ ︷︷ ︸
:=A10

V + ln
Z(β0,N )

Z(β1,N )︸ ︷︷ ︸
:=B10

. (20)

Therefore, if we measure the probability density P (V,β,N )
for different compactivities and calculate Q(V ), the resulting
function must be linear if Edwards’s theory holds. Evaluating
the slope A10 allows us to determine the inverse compactivity
up to an additive constant. Furthermore, the intercept B10 is
nothing else than the logarithm of the partition function up to
an additive constant at the corresponding inverse compactivity.
This permits testing the validity of Edwards’s assumption in
the sense that if Q(V ) were not a straight line, then neither
Eq. (4) nor Eq. (8) would describe the probability density of
the system correctly.

However, one has to be somewhat careful with the inter-
pretation of the results, as has been pointed out in Ref. [27].
Under certain circumstances, very similar results as the ones
expected from Edwards’s theory can occur if the distributions
of the samples are just Gaussian. In Appendix A, we discuss
this situation.

E. Ideal quadron solution

There are very few real ab initio predictions from Edwards’s
theory in the literature [6,21,29,30], due to some general
difficulties. In order to calculate analytical expressions for
the partition function, knowledge of an explicit expression for
the granular Hamiltonian W (q) is necessary. Of course, if all
positions, orientations and shapes of the grains are known,
the occupied volume is a function of these quantities, but in
practice it is not easy to write down an explicit equation and
even if this can be done, the integration over the permitted
blocked states is very difficult because the permitted states are
unknown in general.

Therefore, attempts to calculate the partition function were
based on standard volume tessellations, such as the Voronoi
and Delaunay tessellations [30–33]. A possible alternative
is an arch-based approach [34] which a priori takes only
stable configurations into account. Blumenfeld and Edwards
proposed a physically motivated tessellation based on the
quadron construction [5,7,29,35]. In principle, quadrons are
used as quasiparticles describing the structure of the granulate
at any arbitrary position within the system in a distinct way.
It was mentioned in the literature that the ideal quadron
tesselation fails in the presence of nonconvex voids in the
granulate [36]. However, in a system of monodisperse spheres
such nonconvex voids vanish by neglecting rattlers [37]. Even
if some nonconvex voids remain, they could be tesselated by
convex polygons which repairs the quadron tessellation, at
the price that the number of quadrons increases. As long as

nonconvex voids are the exception rather than the rule, they
will not produce significant changes to the calculations.

Under the (very rough) assumption that quadrons occupy
volumes between V0 − � and V0 + � at constant density of
states and that there are no interactions between the quadrons,
the partition function can be calculated explicitly for two-
dimensional systems (see Ref. [29]):

Z =
[

sinh(β�)

β�
e−βV0

]Nz̄

, (21)

where N is the number of particles and z̄ is the mean coordi-
nation number in the granular system. This approximation is
called the ideal quadron approximation by analogy with the
description of ideal gases in ordinary statistics. Note that the
partition function (21) is a special version of a more general
ideal-gas-like approach. If one assumes that the volume
is tesselated by a number Ñ of statistically independent,
noninteracting elementary cells and their volume is restricted
to an interval between a minimal volume V0 − � and a
maximal volume V0 + �, without any additional assumption
on the nature of these elementary cells one ends up with
Eq. (21), on replacing Nz̄ → Ñ . Contrary to the very general
ideal-gas-like approach, there are some possibilities to go
beyond the interaction-free situation in the quadron approach,
which will be considered in future work.

Using (10), the ideal quadron prediction for the mean
volume is obtained:

〈V 〉 = Nz̄

[
V0 + 1

β
− � coth(β�)

]
. (22)

For the current work, it is helpful to rewrite (22) in terms of
the volume fraction. Dividing (22) by the total grain volume
Vg results in

φ̄−1 = Nz̄V0

Vg

+ Nz̄

Vgβ
− Nz̄�

Vg

coth(β�). (23)

In order to specify the free parameters V0 and �, we assume
that the limits of φ̄−1 can be identified with the volume
fractions of random loose packing (rlp) and random close
packing (rcp) in the following way:

φ−1
rlp = lim

β→0
φ̄−1 = Nz̄V0

Vg

, (24)

φ−1
rcp = lim

β→∞
φ̄−1 = Nz̄(V0 − �)

Vg

. (25)

Now we can rewrite (23) as

φ̄−1 = φ−1
rlp + Nz̄

Vgβ
− �−1

φ coth

(
β

Vg�
−1
φ

Nz̄

)
, (26)

where �−1
φ = φ−1

rlp − φ−1
rcp . Below, Eq. (26) will be useful as a

fitting function for our simulation data.
We remark that the ideal quadron solution is a very rough

estimation, because the main difficulty in the calculation of
the partition function (5) is filtering out stable configurations.
In the ideal quadron solution, a minimal filtering is performed
in the sense that there is a minimal and a maximal volume per
quadron so configurations that are either too loose or too dense
are filtered out. However, the number of states between these
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limits may be overestimated. The arch-based approach [34]
may have the capability to overcome this issue. However, in the
current form no analytical equation such as (26) is available.
Only numerical solutions under very simplifying assumptions
are on hand, which makes a comparison of our data with this
model difficult.

Note that there is no commonly accepted definition of
the states rlp and rcp. In this paper we use these terms
in the sense of Eqs. (24) and (25). An interesting fact is that in
the framework of the ideal quadron model for β → 0, which
is the limit of very high compactivities, the mean volume per
quadron is V0, not V0 + �. States which would have a mean
volume per quadron with V̄ > V0 correspond to a population
inversion, i.e., states with negative granular temperature. It
may be speculated that these states correlate with so-called
random very loose packings states [38], which are states only
achievable with very special protocols. A verification of this
idea is beyond the scope of the present article.

III. SIMULATION METHOD

In our simulation, we extend an existing DEM code,
originally developed for the investigation of the mechanical
properties of granular piles consisting of two-dimensional
polygonal particles [39,40]. While the two-dimensionality
is certainly a restriction of our code, its implementation
of polygonal particles constitutes a gain in realism over
simulations using circular disks. The dynamics of the ith
particle’s position r i and orientation φi are described by
Newton’s and Euler’s equations of motion:

mi r̈ i =
∑
j �=i

Fij + FV
i , (27)

Jiφ̈i =
∑
j �=i

Mij . (28)

Herein, Fij is the contact force between particle i and particle
j , Mij is the corresponding torque acting on the particle
(referred to its center of mass), and FV

i is the external force
acting on the particle (e.g., gravity). The mass of particle i is
denoted by mi and its moment of inertia by Ji [41–43]. We
assume external torques to be absent.

For fast determination of potential particle contacts, the
particles are surrounded by bounding boxes and we employ
an incremental sort-and-update algorithm [39,40] to identify
overlapping bounding boxes efficiently. Whenever the bound-
ing boxes of two particles overlap, we use a closest-feature
algorithm [39,40] from virtual reality and robotics applications
[44] to calculate the polygon distance. In the worst-case
scenario, the computational complexity is O(n log n), where
n is the number of polygon features (corners and edges).
However, the typical behavior, whenever a good guess from
the last time step is available, is the calculation of the polygon
distance in constant time O(1), independently of the polygon
edge number.

Figure 1 shows a sketch of two particles in contact.
The contact point sij between two particles is defined as
the midpoint of the line between c1 and c2. For the force
calculation, we define some quantities first: the characteristic

n
n

jω ω

v

j

v

i

mi mj

r

j

i

1

c2

i

r

c

A

ijs

FIG. 1. (Color online) Sketch of two polygonal particles in con-
tact. The normal and tangential direction of a collision is determined
by the contact line (green); the contact point is defined as the middle
of the contact line.

length

l = rirj

ri + rj

(29)

(note that l is not the length of the contact line), the reduced
mass

m⊥ = mimj

mi + mj

, (30)

and the reduced tangential mass, including the moments of
inertia,

m‖ = 1

1
mi

+ 1
mj

+ r2
i

Ji
+ r2

j

Jj

. (31)

The relative tangential velocity at the contact point sij is

v‖ = [vi − vj + (r i × ωi) − (rj × ωj )] · n‖, (32)

where vi ,vj are the velocities of the particles and ωi ,ωj are
their angular velocities. Furthermore, we define the effective
penetration length as

heff = A

l
. (33)

Note that l does not change significantly during a collision,
so heff is essentially proportional to the overlap area A. The
normal component of the contact force is determined by the
equation

F⊥ = max[Eheff − γ
√

Em⊥ḣeff; 0]. (34)

Here E is the two-dimensional Young’s modulus and γ is the
dissipation strength.

The maximum function in Eq. (34) ensures that the normal
force cannot become attractive. Physically, situations where
the dissipative term overcomes the repulsive force correspond
to the case that the particles’ separation velocity is faster
than the relaxation velocity of the grain deformation, i.e.,
the contact between the particles is lost, before the overlap
of the nondeformable model particles becomes zero [45].
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Consequently, the contact force vanishes from this moment
onward.

We used the Cundall-Strack model [46] for modeling
tangential forces. At the beginning of the collision, the
Cundall-Strack force F ∗ is zero. If this force is given at the
previous time step, corresponding to time tc − �t , then the
Cundall-Strack force at the current time step at time tc is
determined by

F ∗
‖ (tc)=min

[
F ∗

‖ (tc−�t)+v‖(tc − �t)�t 2
7E; μF⊥(tc)

]
.

(35)

One may visualize this model as a spring between the contact
points being established when a new contact appears and the
length of the spring being limited by the value of Coloumb
friction (Coulomb condition). If this value is reached, then
the points of attachment of the spring start to slide, so the
spring length remains constant. In this way, the Cundall-Strack
model mimics sticking and sliding friction. In order to avoid
unrealistic oscillations, a damping term proportional to the
velocity is added to the Cundall-Strack force, which also
satisfies the Coloumb conditions. The complete trangential
force then is

F‖(tc) = min

[
F ∗

‖ (tc) + v‖

√
2

7
Em‖; μF⊥(tc)

]
. (36)

With (34) and (36), all the contact forces and the resulting
torques between the particles and between particles and
walls (which are treated as particles with fixed position and
orientation) are defined. The equations of motion (27) and
(28) are then solved numerically using a sixth-order Gear
predictor-corrector method [47].

IV. EXCITATION PROTOCOLS AND PARAMETERS

Inspired by former experimental studies [15–17], we
implemented two protocols for exciting the granular matter
periodically. In both protocols, an excitation period in which
the phase space is explored alternates with a relaxation period
in which the grains come to rest completely. Both protocols
are characterized by a control parameter, which we call the
tapping parameter.

In all simulations, we used a bidisperse mixture of 1184
regular decagons, composed of 544 particles with radius r1 =
9 mm and 640 particles with radius r2 = 6.36 mm. Young’s
modulus was set to E = 1000 N/m and the simulation time
step was chosen as �t = 5 × 10−5 s. The Coulomb friction
coefficent was taken to be μ = 0.6 and for the normal friction
coefficent γ = 0.5 was used. The particles mass density
was ρ = 0.001 g/mm2 and was the same for big and small
particles.

With both protocols, the width of the simulation area was
480 mm. In the case of the negative-g protocol, there is
no lid, for the rotating-g protocol the height of the box is
900 mm. Walls are realized as fixed rectangular particles with
the same Young’s modulus and friction coefficients as the
mobile particles.

Tejada et al. [48] pointed out that the size of the time step
in DEM simulations may influence the width and the shape
(but not the mean) of the determined probability distributions,

(b)

(a)

t

(t)

2π/ω

0 t1

t

g(m/s2)

t2

gp

9.81m/s2

t1

FIG. 2. (Color online) (a) The “negative-g” protocol: For a short
time interval t1 the gravity is turned upward with a prescribed
magnitude. Afterwards, the granular system has time to come to
rest completely, before the next pulse starts. (b) The “rotating-g”
protocol: The gravitational acceleration vector performs a complete
rotation. Afterwards, the granular system comes to rest completely
before the next round starts.

even if the time step appears sufficiently small using common
criteria. In order to make sure that this effect does not influence
our results, we repeated some of the simulations with a time
step of �t = 10−5 s. We found that the mean volume fraction,
the volume fraction variance and also the shape of the volume
fraction distribution did not change on reduction of the time
step.

The first protocol, called “pulses of negative gravitation”
or “negative-g” protocol, is illustrated in Fig. 2(a). Most
of the time, the granulate is at rest in a container under
normal gravitation, but for short time intervals, the direction
of gravitational acceleration is reversed. The time dependence
of the gravitational acceleration g(t) is taken to be

g(t) = 9.81 m/s2ey ×
{
gp t̃ < t1

−1 otherwise
. (37)

Here t̃ = t mod T is the simulation time t modulus the
period T of the protocol and t1 is the duration of a pulse.
We took the pulse length to be t1 = 0.1 s and the period
T = 3 s. The relaxation period was chosen so that for the
biggest excitation amplitudes the resulting volume fraction
variations due to remaining kinetic energy in the system are
smaller than 10−5 which is 100 times smaller than the typical
magnitude of the observed static volume fraction fluctuations.
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The pulse amplitude gp was used as a tapping parameter. Due
to Einstein’s equivalence principle, this protocol is equivalent,
per period, to a downward acceleration (gp + 1)g for an
interval t1 and a subsequent stoppage in the gravitational field
for a time span T − t1, taken long enough for the granulate to
come to rest. Here and in the following when we write g, we
mean g = 9.81 m/s2.

Figure 2(b) illustrates the second protocol. The granulate
is at rest in a closed box. Then the gravitational acceleration
performs a complete rotation followed by a relaxation period:

g(t) = 9.81 m/s2 ×
{

sin(ωt)ex − cos(ωt)ey t̃ < ω
2π

−ey otherwise
.

(38)

As in the negative-g case, t̃ = t mod T is the simulation time
t modulus the period T . The angular frequency ω is the control
parameter of the protocol. Of course, T > 2π/ω must be
fulfilled. In our simulations, we used T = 2π/ω + 3 s, with
ω � 4 s−1. For both protocols, we tested whether segregation
of the particles occurs by measuring the cumulative number of
small and big grains as function of the column height n(h) (i.e.,
the number of small or big particles with z coordinates smaller
than h). These curves are straight lines and do not change
during the simulations, except for fluctuations. Therefore we
conclude that in our simulations segregation did not take place.

V. DETERMINATION OF COMPACTIVITY,
FLUCTUATIONS AND THE PARTITION FUNCTION

For both protocols and each choice of the tapping parameter
the simulations ran for 2500–3000 excitation and relaxation
periods. Note that this relatively high number of taps is
necessary to draw serious conclusions for the systems used
here. While the confidence interval of the mean volume
fraction became sufficiently small after some hundred taps,
this was not the case for the estimated variance. In test
simulations, where only a few hundred taps were considered,
the uncertainty of the estimated variance [[49], pp. 771–772]
was as big as the domain of the measured variance itself.

Immediately before the relaxation period ended, we deter-
mined the volume fraction of the granulate by measuring the
fraction of solid particles in a test volume. The test volume
shown in Fig. 3 is a square with edge length of 400 mm and
was chosen in such a way that some layers of particles were
between the borders of the test region and the walls.

It was pointed out [50] that test volumes must be big
enough to avoid size-dependent effects. To make sure that
our test volume is sufficiently large, we divided it into two
neighboring columns. The relative difference of mean volume
fraction (after 2500 taps) between the columns and the entire
test volume was always smaller than 0.01% and the deviation
of the volume fraction fluctuation ratio from

√
2 was always

lower than 1%.
Figure 4 shows some typical time series for both protocols.

The mean volume fraction reaches a steady-state value
very quickly (after approximately <10 taps) and then only
fluctuations around its mean value occur.

In Fig. 5, the mean value of the volume fraction φ̄ and
the standard deviation of the volume fraction distribution,

FIG. 3. (Color online) A typical situation when the granulate is
at rest. The region shaded gray is the test volume, used for volume
fraction determination.

0 450 900 1350 1800 2250 2700
0.81

0.815

0.82

0.825

0.83

0.835

0.84

taps

vo
lu

m
e 

fr
ac

tio
n

(a)

0 500 1000 1500 2000 2500
0.805

0.81

0.815

0.82

0.825

0.83

taps

vo
lu

m
e 

fr
ac

tio
n

(b)

FIG. 4. (Color online) Exemplary time series for both protocols.
The points are the volume fractions calculated from simulation data
and the solid lines are the corresponding mean values. The tapping
parameter is for the “negative-g” protocol (a): gpg = 6 m/s2 (red or
gray points) and gpg = 28 m/s2 (blue or dark gray points) and for
the “rotating-g” protocol ω = 0.75 × 2π s−1 (red or gray points) and
ω = 2 × 2π s−1 (blue or dark gray points).
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FIG. 5. Simulation results for the “negative-g” protocol: (a) the
mean volume fraction as function of the pulse strength in units of
earth acceleration is depicted and (b) shows the standard deviation
of the volume fraction fluctuations. The error bars correspond to a
confidence interval of 95%.

characterizing the volume fraction fluctuation strength, are
shown. Initially, the volume fraction decreases with increasing
pulse strength until it reaches a local minimum around
gp = 20. Afterwards, the volume fraction increases with the
pulse strength. Similar behavior for tapped granulates at high
tapping strengths was described in Refs. [51,52]. A possible
explanation is the interplay between two competing effects.
First, the stronger the pulse of negative gravitation, the more
the granulate is whirled around, i.e., the looser the resulting
packing should get. On the other hand, the stronger the
pulse, the higher the granulate flies, therefore the higher
its impact velocity when it reaches the bottom, resulting in
stronger compaction during the relaxation period. The first
effect dominates for relatively small values of gp, the second
effect becomes more important for stronger pulses. At the same
value of gp, where the volume fraction is minimal, the volume
fraction fluctuations have a local maximum [see Fig. 5(b)].
Similar results were found in work by Pugnaloni et al. [52].

The corresponding results for the “rotating-g” protocol are
shown in Fig. 6. With increasing frequency the mean volume
fraction shows a crossover from φ̄ � 0.814 to φ̄ � 0.821.
When the frequency is very small, a complete rotation takes
a long time and the granulate behaves in a quasistatic way. It
is clear that in this case a further decrease of the frequency
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0.814

0.816
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frequency (s−1)

φ

(a)
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FIG. 6. Simulation results for the “rotating-g” protocol: Part (a)
shows the mean volume fraction as function of rotation frequency f =
ω/(2π ) and (b) shows the standard derivation of the volume fraction
fluctuations. The error bars correspond to a confidence interval of
95%.

will not have a significant influence on the resulting volume
fraction. Therefore, for small frequencies the φ(ω) curve
should approach a plateau. When the frequency increases, the
rotation gets faster, the granulate is more strongly whirled
around and becomes looser. When the frequency increases
further, the time per rotation gets smaller which compensates
the increase of swirling due to faster rotation. For very high
frequency, one expects that the system reaches an irreversible
regime, because it does not have time to respond to the rotation
pulse and will largely stay in the initial configuration—but this
regime is not reached in our simulations.

In order to determine the granular temperature of the sam-
ples with the overlapping histogram method, the probability
density distribution of the volume fraction must be estimated.
Notwithstanding the name of the approach, we used the more
sophisticated kernel density estimation method [53,54] instead
of histograms in order to obtain an approximation for the prob-
ability density. A normal kernel was employed and the band-
width was chosen according to Silverman’s rule of thumb [55].
In Appendix B, a short description of the approach is offered.

Some of the determined probability density distributions
are shown in Fig. 7(a) for the “negative-g” protocol and in
Fig. 8(a) for the “rotating-g” protocol. In order to test if
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FIG. 7. (Color online) (a) Probability density function of the
volume fraction for the “negative-g” protocol, estimated with the
kernel density method, for different values of the pulse strength.
(b) The quantity Q from Eq. (20) for some values of the tapping
parameter, where the distribution with gp = 6 was chosen as
denominator in Eq. (19). (c) The compactivity calculated with the
help of the overlapping histogram method using the distribution with
gp = 6 (green squares) and gp = 10 (red circles) as denominator in
Eq. (19).

the distributions are Gaussian, we used a chi-square test [49]
with a significance level of 5%. The null hypothesis that the
data is normally distributed was rejected for all samples [56].
Although Gaussians may still be good approximations to the
central region of our distributions, we take this as evidence
for a statistical mechanical origin of these distributions rather
than their emergence from some unknown additive process not
related to phase-space exploration. Therefore, we believe that
our data do not give spurious results due to the pitfall described
in Appendix A.

We also show in Appendix A that while the presence
of Gaussian distributions may lead to false positive results
regarding the validity of Edwards’s theory [27], this is by
no means true for all Gaussian distributions: In the limit of
large numbers, the canonical distribution corresponding to a
fixed compactivity must become Gaussian as well, and this
distribution obviously satisfies Edwards’s theory by definition.
We take the fact that the tails of our distributions are non-
Gaussian together with the verification of (20) as an indication
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FIG. 8. (Color online) (a) Probability density function of the
volume fraction for samples of the “rotating-g” protocol, estimated
with the kernel density method, for different values of the rotation
frequency. (b) The quantity Q from Eq. (20) for some values of the
tapping parameter using the distribution with gp = 6 of the “negative-
g” protocol as denominator in Eq. (19). (c) The compactivity
calculated with the help of the overlapping histogram method using
the distribution from the “rotating-g” protocol with f = 0.5 Hz (blue
circles), f = 1.25 Hz (green squares) and the distribution from the
“negative-g” protocol with gp = 6 (black diamonds) as denominator.

that the theory works. This interpretation is supported by other
studies of very similar systems where the volume-per-particle
distribution (which is not a sum and therefore not subject to the
central limit theorem) was found not to be Gaussian [17,27]
even in the central region.

In terms of volume fraction, equation (20) reads:

Q = ln
P (φ,β1)

P (φ,β0)
= −(β1 − β0)

Vg

φ
− ln

Z(β1)

Z(β0)
. (39)

We note that (39) is interpreted in terms of a canonical
ensemble, which implies the number of particles to be a
constant. This means that the total volume of the grains Vg in
the test volume must be a constant [57]. In principle, one would
have to adapt the test volume size VT used in determining the
volume fraction distribution to the measured mean volume
fraction φ̄ in such a way that Vg = VT φ̄ remains constant.
The size of the test volume would then be a function of the
mean volume fraction. This could become important, if very
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small test volumes were used. The standard deviation of the
volume fraction distribution should decrease with increasing
test volume as σ ∝ V

−1/2
T , which follows from (17), while φ̄

does not depend on the system size. By using a constant test
volume VT , the magnitude of differences in Vg due to different
volume fractions is bounded by �Vg = VT (1/φrcp − 1/φrlp) �
0.05VT . If the test volume is large compared to the size
of the particles, the relative error which is made by using
a constant test volume, assuming that the cumulative grain
volume is constant (in spite of the different volume fractions),
corresponds to approximately 2–3%. This is smaller than the
confidence interval of σφ due to the finite sample size and
therefore negligible.

By choosing a reference probability distribution which
is used as the denominator in Eq. (39) we are able to
determine the inverse compactivity and the logarithm of the
partition function up to additive constants, which are the
unknown inverse compactivity of the reference distribution
and the unknown logarithm of the partition function thereof,
respectively. In order to avoid errors due to insufficient data in
the tails of the distribution, we evaluated the slope of Q only
in regions where the value of each distribution involved in the
calculation of (39) is bigger than 5% of its maximum.

Figures 7(b) and 8(b) show the quantity Q for some
samples as function of the inverse volume fraction, where
the distribution with gp = 6 of the “negative-g” protocol was
chosen as the reference distribution, because it has sufficient
overlap with all the other distributions. We tried several other
distributions as references, too. So long as the distribution
overlap was big enough, we always found a linear relation
between Q and the inverse volume fraction φ−1. This may
be interpreted as suggestive of the validity of Edwards’s
assumptions. Note that the deviations from the straight line
on the left and right ends of the curves are due to insufficient
number of sampling data points in that region. Therefore the
estimated probability density function behaves like the tails of
the sampling kernel, which is reflected also in Q. This behavior
is a mathematical artifact and not a systematic deviation from
a straight line.

From (39), it follows immediately that the values deter-
mined for β using different samples as reference distribution
may only differ by an additive constant. This prediction holds
for the “negative-g” protocol as is demonstrated in Fig. 7(c).
There the samples with gp = 6 and gp = 10 were used as
reference distributions. The same is true for the “rotating-g”
protocol [Fig. 8(c)] when we used samples corresponding to
different values of the rotating frequency. It even applies if
we use samples from the “negative-g” protocol as reference
distribution, in agreement with the fact that the predictions of
Edwards’s theory should be protocol independent.

From now on, we use the distribution from the “negative-
g” protocol with gp = 6 as reference distribution for all the
following calculations. Figure 9 shows the values determined
for the inverse compactivity for both protocols as function of
the volume fraction. All the data, whether obtained from the
branch left of the minimum or the branch right of the minimum
in the φ(gp) curve of the “negative-g” protocol (cf. Fig. 5)
or else from the “rotating-g” protocol is fitted by the same
function β(φ). This is a strong indicator for the applicability
of Edwards’s theory to our samples.
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FIG. 9. (Color online) The compactivity as function of the vol-
ume fraction density for the “negative-g” protocol (square) and for
the “rotating-g” protocol (diamonds). The values were corrected with
the additive constant β0 determined from the ideal quadron fit. The
solid line is a fit to the ideal quadron solution (26).

In order to fit our results to an analytical function, we used
the ideal quadron solution (26). The values of random loose
packing (rlp) and random close packing (rcp) were assumed
to be φrlp = 0.81 and φrcp = 0.855. The choice of these values
was pragmatic. To our knowledge, there are no studies about
the exact values for random close and random loose packing
for bidisperse decagons. Furthermore, the values of rlp and
rcp will depend on on the size ratio between the particles.
Therefore, we used plausible values obtained for (bidisperse)
disks [17,58,59]. We checked that the influence of the values
of random loose and random close packings on the values of
the obtained parameters are smaller than 20%, as long as the
values are in the plausible interval.

Nz̄/Vg was used as fitting parameter. Since we can
determine the inverse compactivity only up to an additive
constant from the overlapping histogram method, we made
the replacement β → β̃ + β0 in Eq. (26), where β̃ is the
value determined from the simulations and β0 is taken as
an additional fit parameter. Note that the determination of
β0 is possible as we assumed that the inverse compactivity
is fixed at random loose and random close packing and that
this is not specific to the ideal quadron fit. We emphasize
that the parameter β0 only shifts the whole curve shown
in Fig. 9 upward or downward and is the same for both
protocols. Since the same value of β0 was added to every
data point obtained from the overlapping histogram method
for the comparison of the fit function with the simulation data
in Fig. 9, this value does not influence the conclusion that the
compactivity is the same for both protocols. The fit describes
the simulation data very well, as is seen in Fig. 9. However,
we find as fitting value Nz̄/Vg = 556.51 m−2, which differs
by about a factor of 40 from the values used in the simulation.
This might be understood by assuming that approximately
40 quadrons constitute a statistically independent unit in the
granular ensemble. This issue certainly needs further study. We
also tried to fit φrlp and φrcp using the known particle number
in Eq. (26) but this leads to an unphysical value for random
close packing of about φrcp � 1.2.
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FIG. 10. (Color online) The logarithm of the partition function,
determined from the overlapping histogram method (symbols). The
solid line is the ideal quadron solution.

When we used only the data obtained by one of the protocols
to determine the parameters of the ideal quadron solution,
the solution fitted the data of the other protocol. The relative
deviation of the obtained fitting parameters is smaller the 2%.
Because this results in curves that are indistinguishable to
the eye, only the fit using the whole data set is presented in
Fig. 9. Nevertheless, this means that we can predict the β(φ)
curve, for the “rotating-g” protocol using the data determined
from the “negative-g” protocol and vice versa. However, for
all compactivities determined, the same reference distribution
was used so the data of the fit employed for the one and the
other protocol was not entirely independent.

While the slope of Q allows us to determine the inverse
compactivity, the axis intercept B determines the logarithm of
the partition function

B = − ln Z(β) + ln Z(β0). (40)

If the assumptions leading to (39) are correct, the partition
function of the ideal quadron solution (21) should describe
the found intercept without additional fitting. The parameters
�, V0, Nz are directly related to the parameters determined
via Eqs. (24) and (25). As Fig. 10 shows, the numerically
determined values and the ideal quadron solution fit very
well, independently of the protocol and of the branch in the
“negative-g” protocol.

Using (26) in Eq. (17), we get the relationship between the
mean volume fraction and its fluctuations. The result together
with simulation data obtained directly is shown in Fig. 11. The
data is in good agreement with the theory for both protocols.

We mention that in a former study which used vertically
tapped monodisperse regular polygons [60], a maximum in
the φ-σ curve was reported which coincided with an inflexion
point in the impulse strength-volume fraction curve. In our
simulation we do not see this effect, also in experimental
work about bidisperse two dimensional systems such a
maximum was not observed [17]. It might be suspected that
crystallization effects that occur frequently in two-dimensional
monodisperse systems were responsible for the occurrence of
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FIG. 11. (Color online) The volume fraction fluctuation (stan-
dard deviation) as function of the mean volume fraction. The blue
points correspond to the “rotating-g” protocol and the magenta points
and lines corresponds to the negative-g” protocol. The solid line is
the ideal quadron fit.

the maximum in Ref. [60], but this is a speculation, given that
the simulation was done with decagons, not normally expected
to crystallize.

However, we cannot exclude that there may be a small
hysteresis for the branch pieces to the left of minimum and
to the right of minimum, respectively (cf. Fig. 5). Clearly,
if the volume ensemble completely described all structural
degrees of freedom and the probability distribution, two states
with the same β and the same φ would be identical and
therefore σφ would also have to be the same. However,
if the volume ensemble is only a good approximation of
the geometric aspects of interdependent force-moment and
volume ensembles (see, e.g., Ref. [6]), deviations may occur.

VI. LIMITATIONS OF THE VOLUME ENSEMBLE

Whereas the volume ensemble appears to succeed in
describing the geometrical and structural degrees of freedom
of a granular aggregate, this is not the case for the stress
state of the latter. If the volume ensemble entailed a complete
description of a granular state and its probability distribution,
then the mean stress of the system would have to be a unique
function of the inverse compactivity and therefore also a unique
function of the mean volume fraction. We computed the mean
extensive stress (or force-moment tensor), defined as

Sij =
∑

p

V pσ
p

ij (41)

as a function of the volume fraction. Note that the volume
density of this tensor is the stress itself. Here i and j label
Cartesian coordinates. The sum runs over all particles, where
σ

p

ij is the mean stress in particle p and V p is the volume
associated with the particle. The result is shown in Fig. 12.
The stress tensor is obviously not a unique function of the
volume fraction.

Neither the results from the different protocols nor the
results from the half-branches left to the minimum and right
to the minimum, respectively, of the “negative-g” protocol
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FIG. 12. (Color online) The components of the extensive stress
tensor as function of the mean volume fraction for the “negative-g”
protocol (diamonds) and the “rotating-g” protocol (crosses).

fall on the same curve, which is in agreement with similar
findings on tapped granular matter [52]. Two systems with
almost identical particle positions and orientations can be in
very different stress states which is not captured by the volume
ensemble. To describe the stress state and the volume state
together, probably the combined volume-stress ensemble [6]
must be taken into account. We remark that it is unclear so far
whether the stress states observed here are “very different” or
even “very similar” because we do not know the size of the
accessible phase space for the extensive stress tensor. Maybe
the deviations in our systems which have magnitude on the
order of 0.01 Nm are so small that it is reasonable to assume
in first approximation that the stress-moment tensor is almost
constant which would be a possible explanation for the success
of assuming a pure volume ensemble.

VII. CONCLUSIONS

We used two different protocols to excite a granular en-
semble periodically. The inverse compactivity was determined
as a function of the mean volume fraction and we found
that the relation between the compactivity and the mean
volume fraction is protocol independent. We determined an
expression for the logarithm of the partition function and thus
the thermodynamic potential which is the equivalent of the free
energy of classical statistics. This was done by using the ideal
quadron solution derived by Blumenfeld and Edwards [29]
as a fitting function. Even though the ideal quadron solution
makes very rough assumptions, the resulting description is in
qualitative agreement with the findings from the simulations.
If the particle number is used as a fit parameter instead of
calculating the distribution with the true particle number, then
the ideal quadron solution is also able to describe the results
quantitatively.

We found that all our simulation results related to structural
quantities are compatible with Edwards’s theory and that
the Edwards theory describes the volume fluctuations very
well, independently of the excitation protocol. The usage

of the Edwards volume ensemble seems to be sufficient for
the description of system properties which are related to
the geometrical arrangement of the grains, but, as might be
expected from previous findings, it is not sufficient to describe
the stress states of the granular ensemble.

APPENDIX A: OVERLAPPING HISTOGRAMS FOR
GAUSSIAN DISTRIBUTIONS

If two volume samples were Gaussian distributed with mean
values V1 and V2 and variances σ 2

1 and σ 2
2 , the corresponding

Q function defined in Eq. (19) would be [27]:

Qg(V ) = − (V − V1)2

2σ 2
1

+ (V − V2)2

2σ 2
2

+ ln

(
σ2

σ1

)
. (A1)

This is a quadratic function of V , but in some V interval the
curvature of Qg may be very small and the parabolic function
(A1) would then practically be indistinguishable from a linear
function. This happens in particular if the variances σ1 and σ2

are close to each other, i.e., for nearby compactivities. If we
define a function A

g

21 as the slope of (A1) midway between the
maximum values of the two normal distributions,

A
g

21 := d

dV
Qg(V )

∣∣∣∣
V =(V1+V2)/2

, (A2)

then we obtain [27]:

A
g

21 = 1

2

(
1

σ 2
1

+ 1

σ 2
2

)
(V1 − V2). (A3)

Identifying formally

A
g

21 = β(V2) − β(V1), (A4)

we find from (A3):

− V2 − V1

β(V2) − β(V1)
= 2

(
1

σ 2
1

+ 1

σ 2
2

)−1

. (A5)

If we assume that the variance is a unique function of the mean
volume, then this equation is an approximation of (12) which
is the better the smaller the difference |V2 − V1|.

We note that the formal identification (A4) is, strictly
speaking, inherently contradictory, which is easy to see if
we calculate Q for a third sample with mean value V3 and
variance σ3 and the same reference sample in the denominator.
From (A4) A31 − A21 = A32 follows, but if one calculates
the same quantity from (A3), then the result does not agree.
(However, the identification is possible if the three variances
are the same.)

Analogously, we can calculate the intercept B
g

21 of the
tangent which touches (A1) at V = (V 1 + V 2)/2:

B
g

21 = 1

8
(V2 − V1)2

(
1

σ 2
2

− 1

σ 2
1

)
+ ln

(
σ2

σ1

)

+ 1

4

(
V 2

2 − V 2
1

)( 1

σ 2
1

+ 1

σ 2
2

)
. (A6)

By calculating the limit

lim
V2→V1

B
g

21

A
g

21

= −V1 − σ1
∂σ1

∂V1
(A7)
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we find that the term B
g

21/A
g

21 is an approximation for (10) if we
assume ∂σ1

∂V1
to be negligibly small and formally identify B

g

21 =
ln(Z2) − ln(Z1). Again the approximation becomes better as
the difference between the volume V2 and the reference volume
V1 gets smaller.

Due to these similarities, it might occur, even if the relations
(10), (12), and (20) are consistent, that within the limits of data
precision it is not possible to decide whether the reason of this
agreement is the correctness of Edwards’s theory or the fact
that the data generated by a specific protocol happen to have a
distribution that is well approximated by a normal distribution.
If the samples are generated using the same protocol, then one
may expect that there is a function σ (V ), but when different
protocols are used, it would be surprising if both protocols
led to the same relation, unless a general principle, such as
Edwards’s theory, were at work.

On one hand, these similarities make it more difficult to
verify Edwards’s theory. On the other hand, due to the central
limit theorem, we should expect that the distribution of Eq. (18)
becomes more and more Gaussian with increasing system size.
Therefore, it is not always true that the appearance of Gaus-
sian distributions signifies inapplicability of the overlapping
histogram method in the determination of the compactivity
and of related quantities. Let us briefly have a look at this.
Rewriting Eq. (18) for general β and using the microcanonical
result for the density of states, we have

P (V,β,N ) = �(V,N )

Z(β,N )
e−βV = eS(V,N)−βV

Z(β,N )
. (A8)

As in standard statistical mechanics, we can then argue that
for large systems this distribution has a sharp peak at the mean
value of the volume and we may expand the entropy about
this average, neglecting terms that are of higher than quadratic
order:

S(V,N ) − βV ≈ S(V̄ ,N ) + β(V̄ )
(
V − V̄

)
+ 1

2

∂2S

∂V 2

∣∣∣∣
V̄

(
V − V̄

)2 − βV. (A9)

In order for the expansion to be about the maximum of
the distribution, we must require the linear order term to
vanish, i.e., we have β(V̄ ) = β, meaning equivalence of the
microcanonical and the canonical compactivity definitions.
Identifying the inverse of −∂2S/∂V 2 with the variance, our
distribution takes the form

P (V,β,N ) = eS(V̄ ,N)−βV̄ −(V −V̄ )2
/2σ 2

Z(β,N )
. (A10)

Evaluating this at two different compactivities and taking the
logarithm of the ratio, we find (denoting the mean volumes by
V1 and V2 again)

Q(V ) = ln
P (V,β1,N )

P (V,β2,N )

= − (V − V1)2

2σ 2
1

+ (V − V2)2

2σ 2
2

− β1V1 + S(V1,N )

+ β2V2 − S(V2,N ) + ln
Z(β2,N )

Z(β1,N )
, (A11)

which is nothing but (A1) with an explicit expression for
ln(σ2/σ1). But we have derived this as an approximation to
the distribution (18) from which we obtain Eq. (20) for Q. If
we substitute β2 for β0 in that equation, then we see that the
following (nontrivial) approximation holds in sufficiently large
systems (close to the “thermodynamic limit”), as long as the
distributions overlap significantly (which of course becomes
less likely with increasing system size):

−(β1 − β2)V ≈ − (V − V1)2

2σ 2
1

+ (V − V2)2

2σ 2
2

− β1V1 + S(V1,N ) + β2V2 − S(V2,N ).
(A12)

Hence, the sum on the right-hand side that is quadratic in V is
a good approximation to the sum on the left-hand side that is
linear in V . As we have shown by this small calculation, the
overlapping-histogram method will give, for such a system, the
correct linear dependence on V , despite the fact that the central
part of the distribution is well approximated by a Gaussian.
In simulations, this behavior might be distinguished from
Gaussian distributions not having the statistical mechanical
origin postulated by the Edwards theory through verification
that the tails of the simulated distributions, i.e., their behavior
for V values, where the quadratic approximation (A9) breaks
down, are not Gaussian. This was done for our simulations via
the chi-square test mentioned in Sec. V.

APPENDIX B: KERNEL DENSITY ESTIMATION

A method to determine a continuous probability density
from a data sample is the kernel density estimation method
(KDE) [53,54]. If x1,x2, . . . ,xn are sampled data, the kernel
density estimation of the probability density P (x) at the point
x is defined as

P (x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
, (B1)

where K(x) is the kernel which must be a non-negative
function that satisfies ∫ ∞

−∞
dxK(x) = 1 (B2)

and h is a smoothing parameter called the bandwidth. Possible
kernels are, for example, the normal kernel

K(x) = 1

2π
exp(−x2/2), (B3)

the Cauchy kernel

K = 1

π (1 + x2)
, (B4)

the Epanechnikov kernel

K(t) =
{

3
4 (1 − x2) if x ∈ [−1; 1]

0 elsewhere
, (B5)

or even the rectangular kernel:

K(t) =
{

1 if x ∈ [−1/2; 1/2]

0 elsewhere
. (B6)
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The latter is equivalent to a histogram with bin width h. While
it can be shown that the Epanechnikov kernel is optimal in
the sense that it minimizes the mean-squared error between
the estimated and the real probability distributions, we used a
normal kernel since it allows us to make a good estimation of
the optimal bandwidth h. In general, the optimal bandwidth
can only be calculated if one knows the underlying probability
density, but this density is unknown. In practice, therefore,
Silverman’s rule of thumb is often used. Under the assumption
that the underlying probability distribution is Gaussian and if
a Gaussian kernel is used, the optimal bandwidth is(

4σ 5

3n

) 1
5

� 1.06σn−1/5, (B7)

where σ is the standard derivation of the sample. It turns out
that this bandwidth is also a reasonable choice in practical
situations, if the underlying distribution is not Gaussian. We
note that for small data sets the choice of the kernel may have
a significant influence on the quality of the fit. However, if the
data sample becomes big enough, all kernels lead to almost
the same results except for the far tail of the distribution,
where no data points are available. In this region, the kernel
itself specifies the decay of the distribution. As it is shown
exemplarily in Fig. 13, the choice of the kernel is not crucial
for our data samples. The results obtained with the optimal
Epanechnikov Kernel and those achieved with the normal
kernel are practically indistinguishable. The box kernel which

0.82 0.825 0.83 0.835 0.84
0

50

100

150

200

volume fraction

pd
f

 

 

normal
epanechnikov
box

0.833 0.8335 0.834
160

170

180

FIG. 13. (Color online) Comparison of the results of kernel den-
sity estimation using different kernels. The shown data were obtained
from the volume fraction time series of the “negative-g” protocol
with the tapping parameter gp = 8, for other parameters we found
the same conclusion. The results due to the Epanechnikov kernel and
the normal kernel are indistinguishable, the box kernel results in a
little bit more irregular estimations. The inset shows the normal and
the box kernel in the central region of the distribution.

is equivalent to a shifted histogram is a little bit more more
irregular. We preferred the normal kernel, in order to avoid an
ad hoc choice of the kernel bandwidth.
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