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A variability measure of the times of uniform events based on a shot-noise process is proposed and studied.
The measure is inspired by the Fano factor, which we generalize by considering the time-weighted influence
of the events given by a shot-noise response function. The sequence of events is assumed to be an equilibrium
renewal process, and based on this assumption we present formulas describing the behavior of the variability
measure. The formulas are derived for a general response function, restricted only by some natural conditions,
but the main focus is given to the shot noise with exponential decrease. The proposed measure is analyzed and
compared with the Fano factor.

DOI: 10.1103/PhysRevE.92.052135 PACS number(s): 02.50.Ey, 05.45.Tp

I. INTRODUCTION

From many experiments or observations, data arise in the
form of sequences of times of occurrence of identical events
(e.g., radioactive particles emission, accidents, earthquakes,
neuronal spikes, arrivals of customers or cars, etc.). The
numbers of events in time intervals of a certain length are often
examined when analyzing these sequences. For example, the
very frequently used variability measure, the Fano factor, is
defined as the variance to the mean ratio of numbers of events
that occurred up to a time t . The Fano factor was first defined
and used in [1] for a slightly different purpose—as a measure
of fluctuations of the produced number of ion pairs in a volume
of gas. Nevertheless, since then it has been commonly used
as a variability measure in many situations, where discrete
identical events occur in time. For example, the Fano factor
is useful in analysis of natural disasters (earthquakes, fires)
[2–4], neural spike trains [5–7], chemical reactions [8,9], or
many other phenomena [10–13].

The Fano factor implicitly assumes that all the events have
the same effect independently of the times of their occurrence,
which may not always be valid. Sometimes, it is more
convenient to give a greater influence to the more recent events
or to distribute their weights depending on time in some other
way. This can be done by employing a function representing
the dependence of the weights on time and summing the values
of weights corresponding to the single events.

As an example of a scientific field where weighting the
events has a transparent empirical reason, let us mention the
analysis of neural spike trains. In such an analysis, the Fano
factor calculated based on events that occurred in a time
window is often supposed to represent the variability that a
neuron “registers” at the time corresponding to the end of the
window. Nevertheless, a standard property of neurons is that
they constantly lose information about the received spikes (the
accumulated membrane potential spontaneously decreases). It
seems natural, therefore, to improve the Fano factor so that
the recent spikes have a larger influence. Most of the standard
neuronal models (leaky integrator) describe the “forgetting”
using an exponential decay [14], thus a natural choice for the
weighting function is a decreasing exponential.
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We believe that weighting the events can be convenient in
any situation in which the Fano factor is used to measure the
instantaneous variability of a series of events, mainly when
some “effect” of the events decreases in time. There might not
always be a rigorous theoretical justification resulting from
the character of the sequences of events, but intuitively the
events nearer the time at which the variability is studied should
have a larger influence on the measure than the more distant
events.

The proposed measure can be formally described as
follows. Assuming m time intervals of a length t in which some
identical events occur, the “counting” approach yields numbers
of events n1, . . . ,nm in the individual intervals. On the other
hand, the “weighting” approach assesses the occurrence of the
events by values s1, . . . ,sm. Every value si, i = 1, . . . ,m, is
created by summing the weights of the events in every interval.
We define the weights using a weighting function w so that the
weight w(t − x) is assigned to an event that occurred at a time
x > 0. A simple example of the weighting function can be
a decreasing exponential function, yielding weights e−(t−x)/τ ,
where τ > 0 is a time constant (for illustration, see Fig. 1).

Using the terminology of filtering theory, the values of
si arise as the times of the events filtered by a response
function w(x), thus as convolution of the (stochastic) counting
process describing the events with the function w(x). In this
specific case, where the filtered process is created by discrete
values, the resulting process is often called shot noise [15].
We define the proposed variability measure analogously to the
Fano factor using the values si , thus as the variance-to-mean
ratio of a shot-noise process. Shot noise has a wide range
of applications in many fields [16–22], while it is mostly
considered with an exponential distribution of events [23],
i.e., the Poisson process. This assumption is too restrictive
for our purposes, so we use a more general model, namely
an equilibrium renewal process. Two situations are studied:
the shot-noise process with an exponential response function,
which is the most often used case, and the shot-noise process
with a general response function. The renewal shot-noise
process was also studied recently in [24,25].

Note that there are also other variability measures of
sequences of uniform events such as the very often used
coefficient of variation, measures based on entropy or Fisher
information [26], or a measure reducing the influence of rate
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FIG. 1. Data construction based on events that occurred in m

time intervals of a length t > 0. (a) The events are counted and
their numbers n1, . . . ,nm obtained. (b) To every event a value is
assigned using a weighting (exponential) function, and these values
are summed. The individual sums are denoted as s1, . . . ,sm.

changes [27]. Nevertheless, they all differ from the approach
proposed in this article.

II. MODEL OF OCCURRENCE OF EVENTS

First, we specify the considered model of occurrence of
events, and we present its properties. The time at which
the observation of the events starts is denoted as zero, and
the random times at which the events occur are denoted
as X1, X2, X3, . . . [see Fig. 2(a)]. Next, we assume that
this sequence can be described as an equilibrium renewal
process. Thus, the lengths of intervals between the events
[interevent intervals (IEIs)] are independent and identically
distributed continuous random variables, denoted by T with
the probability density function f (t). The term “equilibrium”
moreover specifies that the time zero is unrelated to the
sequence of events. In such a situation, the time up to the
first event (X1), i.e., the forward recurrence time, generally
has a different probability distribution from T .

0 tX1 X2 X3 X4 X5
(a)

0 X1 X2 X3 X4 X5t

S(t, τ)
(c)

N (t)

0 tX1 X2 X3 X4 X5

(b)

FIG. 2. (a) Illustration of times of events that occurred after time
zero. (b) Illustration of the counting process N (t). (c) Illustration of
the shot-noise process S(t,τ ) with an exponential response function.

The random process N (t) describes the number of events
in an interval (0, t], t > 0, where time zero is “randomly
positioned” with respect to the sequence of times [see Fig.
2(b)]. The process No(t) representing the number of events in
(0, t] on the condition that an event occurred at time zero is
called an ordinary renewal process. The time up to the first
event has, in this situation, the same probability distribution as
the IEIs.

Next, we denote the intensity of the renewal process at time
t as

μ(t) = dE(N (t))
dt

, μo(t) = dE(No(t))
dt

. (1)

Then, since [28]

E(N (t)) = t

E(T )
, (2)

it holds that

μ(t) = μ = 1

E(T )
, (3)

which is also the mean number of events in an interval of unit
length. The function μo(t) cannot be generally expressed so
easily. One possibility is the relationship [28]

μo(t) =
∞∑

k=1

fk(t), (4)

where fk(t), k = 1, 2, . . ., is the probability density of the sum
of k random variables with density f (t). Using the Laplace
transform (L), one can rewrite Eq. (4) in the form

L{μo}(s) = L{f }(s)

1 − L{f }(s)
. (5)

Note that

lim
t→∞ μo(t) = μ (6)

and that the only renewal process for which μo(t) = μ for
all t > 0 is the Poisson process (the renewal process with
exponentially distributed T ).

The Fano factor is defined as

F (t) = var(N (t))
E(N (t))

, (7)

and sometimes the term “Fano factor” also denotes the limit

F = lim
t→∞ F (t). (8)

Note that it holds [28] that

lim
t→0

F (t) = 1, (9)

lim
t→∞ F (t) = C2

v , (10)

where Cv , the coefficient of variation, is defined as

Cv =
√

var(T )

E(T )
. (11)

For a specific t and the known probability distribution of T ,
F (t) has to be mostly calculated numerically, e.g., using the
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formula [29]

F (t) = 1

t
L−1

{
1 + L{f }(s)

s2[1 − L{f }(s)]

}
(t) − t

E(T )
. (12)

On the other hand, empirical values are evaluated using
estimates of quantities in Eq. (7). As was mentioned, next
we generalize the Fano factor assuming the shot-noise process
instead of N (t).

III. SHOT-NOISE PROCESS WITH AN EXPONENTIAL
RESPONSE FUNCTION

The shot-noise process is a random process wherein
the value is increased when an event occurs but otherwise
decreases in time—the events are being “forgotten.” The
forgetting is given by a response function that represents the
time effect of one event on the process [23]. Let us note that
the function does not need to be (monotonously) decreasing,
however that is the most natural case. First, we assume that this
response function is exponentially decreasing [see Fig. 2(c) for
an illustration]. The definition of such a process is

SE(t,τ ) =
N(t)∑
i=1

e− t−Xi
τ , (13)

where τ > 0 is the time constant. Equation (13) represents the
process SE(t,τ ) from the discrete-time point of view. Using
the Dirac delta function, δ(x), it is possible to rewrite it into a
continuous-time form,

SE(t,τ ) =
∫ t

0
u(s)e− t−s

τ ds, (14)

where

u(t) =
∞∑
i=1

δ(t − Xi). (15)

This form is often used in filtering theory, however in this
paper we prefer to represent it by the discrete formula (13),
which is more intuitive for our purposes.

In analogy to the Fano factor, we define

GE(t,τ ) = var(SE(t,τ ))
E(SE(t,τ ))

, (16)

GE(τ ) = lim
t→∞ GE(t,τ ). (17)

To be able to study this measure, first we need the mean
and variance of SE(t,τ ). For the mean, there are very simple
formulas (see the Appendix),

E(SE(t,τ )) = μτ (1 − e−t/τ ), (18)

E(SE(τ )) = lim
t→∞ E(SE(t,τ )) = μτ. (19)

Thus, taking into account Eq. (3), we do not need more
information about T than its mean value. On the other hand,
the variance of SE(t,τ ) depends fully on the distribution of T

(see the Appendix),

var(SE(t,τ )) =μ

∫ t

0

∫ t

0
e− x+y

τ [μo(|y − x|) − μ] dx dy

+ 1

2
μτ (1 − e−2t/τ ). (20)

This formula shows that the variance is highly dependent on
the difference of μo(x) and μ; the smaller the difference is,
the closer the variance is to μτ (1 − e−2t/τ )/2, which is the
variance of shot noise with Poisson-distributed events.

Next, we explore the limit properties of GE(t,τ ) for t → 0
and t → ∞. It holds that (see the Appendix)

lim
t→0

GE(t,τ ) = 1 (21)

and

GE(τ ) = 1

1 − L{f }(1/τ )
− μτ − 1

2
. (22)

The function GE(τ ) represents GE(t,τ ) for the shot-noise
process at steady state. We can see that with a known Laplace
transform of f (t), one can simply calculate GE(τ ), e.g., we
obtain

GE(τ ) = 1

1 − (
1 + C2

v

μτ

)− 1
C2

v

− μτ − 1

2
(23)

for the gamma probability distribution of T , and

GE(τ ) = 1

1 − e
1

C2
v

(
1−

√
1+2 C2

v
μτ

) − μτ − 1

2
(24)

for the inverse Gaussian (IG) distribution of T . Both of
these probability distributions contain two parameters, e.g.,
μ = 1/E(T ) and Cv , as in the forms assumed by us. With an
unknown distribution of T , formula (22) can be approximated
for μτ → ∞ as (see the Appendix)

GE(τ ) ≈ μτ

1 − 1+C2
v

2μτ

− μτ − 1

2
, (25)

which yields

C2
v ≈ 4E(SE(τ ))GE(τ ) − 2GE(τ ) − 1

2GE(τ ) + 2E(SE(τ )) + 1
. (26)

Independently of IEI distribution, it also holds that

lim
Cv→0

GE(τ ) = 1

1 − e
− 1

μτ

− μτ − 1

2
, (27)

which expresses the behavior of GE(τ ) when IEIs are all equal,
thus when f (t) = δ(t − 1/μ), where δ(x) is the Dirac delta
function. We can see that even then GE(τ ) is not zero, which
is caused by the equilibrium property of renewal processes we
use for the modeling of the sequences of events.

Finally, we present the limit relationships of quantity (16)
with respect to τ (see the Appendix),

lim
τ→0

GE(t,τ ) = 1
2 , (28)

lim
τ→∞ GE(t,τ ) = F (t), (29)

lim
τ→0

GE(τ ) = 1
2 , (30)

lim
τ→∞ GE(τ ) = 1

2C2
v . (31)

The second formula can be intuitively explained so that for
τ → ∞ the value of the shot-noise process does not decrease
and thus the process is equal to N (t). Note that Eqs. (10), (29),
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and (31) imply that the order of the limits (with respect to τ

and t) cannot be changed.

IV. SHOT-NOISE PROCESS WITH THE GENERAL
RESPONSE FUNCTION

Although the decreasing exponential is the most important
example of the shot-noise response function, sometimes a
different type of decrease of the process is assumed, e.g., a
decaying power law [30,31]. Thus, we will next consider the
shot-noise process with the response function in the general
form w(x). Such a process can be defined as

S(t,τ ) =
N(t)∑
i=1

w

(
t − Xi

τ

)
, (32)

where τ > 0 is the scale parameter. The parameter τ is not
usually part of the definition of the general shot-noise process,
nevertheless it provides a universal way to change the rate of
forgetting of the events (for a decreasing response function, the
larger the τ is, the slower is the forgetting), which is suitable for
our purposes. Note that process (13) is obtained for response
function wE(x) = e−x, x ∈ [0,∞).

It is not necessary to restrict the form of w(x), however
we want it to fulfill some natural conditions. We assume that
the functions w(x) and w′(x) = dw(x)/ dx are continuous and
bounded functions defined on [0,∞) such that

lim
x→∞ w(x) = lim

x→∞ w′(x) = 0. (33)

Moreover, w(x) is non-negative and integrable. For the
integrals, we use the notation

Ik(t) =
∫ t

0
wk(x) dx, k = 1,2 (34)

and

Ik = lim
t→∞ Ik(t). (35)

The stated conditions mainly ensure that G(t,τ ) is not
divergent in dependence on t and τ , which is reasonable
behavior for a variability measure. However, note that they
exclude some standard power-law response functions, which
are, for example, unbounded in proximity of zero.

Analogically to GE(t,τ ) we define the variability measure

G(t,τ ) = var(S(t,τ ))
E(S(t,τ ))

, (36)

G(τ ) = lim
t→∞ G(t,τ ). (37)

The mean and variance of S(t,τ ) can be expressed as (see
the Appendix)

E(S(t,τ )) = μτI1(t/τ ) (38)

and

var(S(t,τ )) =μ

∫ t

0

∫ t

0
w

(
x

τ

)
w

(
y

τ

)
[μo(|y − x|) − μ]

× dx dy + μτI2(t/τ ), (39)

which is suitable to rewrite into the form

var(S(t,τ )) =2μτ 2
∫ t/τ

0
w(x)

∫ x

0
w(x − y)μo(τy) dy dx

− [μτI1(t/τ )]2 + μτI2(t/τ ). (40)

The ratio of relationships (39) and (38) gives a general
formula for G(t,τ ). At the steady state (t → ∞), it simplifies
to the form

G(τ ) =2
τ

I1

∫ ∞

0
w(x)

∫ x

0
w(x−y)μo(τy) dy dx−μτI1+I2

I1
.

(41)

On the other hand, for t → 0 (see the Appendix),

lim
t→0

G(t,τ ) = w(0). (42)

Finally, the limit relationships with respect to τ are (see the
Appendix)

lim
τ→0

G(t,τ ) = I2

I1
, (43)

lim
τ→∞ G(t,τ ) = w(0)F (t), (44)

lim
τ→0

G(τ ) = I2

I1
, (45)

lim
τ→∞ G(τ ) = I2

I1
C2

v . (46)

Relationships (45) and (46) resemble the well-known limit
properties of the Fano factor (9) and (10). Because the Fano
factor can be seen as a special case of G(t,τ ), it is possible to
obtain it also using formula (36). Let us consider the response
function in the form

wR(x) =
{

1 for x ∈ [0, 1],
0 otherwise (47)

and denote G(t,τ ) with this response function as GR(t,τ ).
Then clearly GR(t,τ ) = F (min{t,τ }), thus GR(τ ) = F (τ ),
and formulas (45) and (46) are generalizations of formulas
(9) and (10).

V. ILLUSTRATION OF THE BEHAVIOR
OF G E(t,τ ) and F(t)

Figure 3 illustrates the dependence of GE(t,τ ) on t and
the dependence of GE(τ ) on τ for gamma, IG, Weibull, and
log-normal probability distributions of T and compared with
the Fano factor. These distributions are probably the most often
used distributions of interevent times in various processes. Let
us mention, for example, that gamma, IG, and log-normal
distributions are useful in the analysis of neural spike trains
[32], and gamma and Weibull distributions are useful in the
analysis of earthquakes or tsunamis [33,34]. All values were
calculated based on formulas presented in this paper.

First, we compared GE(t,τ ) for τ = 1 with F (t). Both
of these quantities start at the value 1, but with increasing
t their behavior differs. Mainly GE(t,1) is lower than F (t).
According to Eq. (29), the value of GE(t,τ ) converges to F (t)
with increasing τ . Next, we compared GE(τ ) with F (τ )/2. The
purpose is to find out how much these values differ, because
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FIG. 3. Illustration of the behavior of GE(t,τ ) and F (t) for gamma (a),(c), IG (b),(d), Weibull (e), and log-normal (f) probability distributions
of IEIs with mean 1 and with various values of C2

v (values that correspond to the lines from bottom to top: 0.25, 0.5, 1, 2, 4). The vertical
axes are logarithmically scaled. (a),(b) Solid lines: GE(t,τ ) in dependence on t for τ = 1. Dash-dotted lines: G(t) in dependence on t . (c)–(f)
Solid lines: GE(τ ) in dependence on τ . Dash-dotted lines: F (τ )/2 in dependence on τ . We can see that the behavior in dependence on t of the
variability measures differs; however, at the steady state, GE(τ ) is approximately G(τ )/2.

their limit values for τ → 0 and τ → ∞ indicate that GE(τ )
could be approximately F (τ )/2. We can see that there are
some differences, however they are vanishing with increasing
τ , as expected.

VI. CONCLUSIONS AND DISCUSSION

The Fano factor, which is a frequently employed measure of
the variability of sequences of times of events, was generalized
by assuming the time-weighted influence of the events. Such
an approach leads to the shot-noise process and variability
measure G(t,τ ) defined as its variance-to-mean ratio. Shot
noise is almost always considered to be driven by the Poisson
process. However, under this assumption, the value of G(t,τ )
depends only on the arguments t and τ , which is clearly too
restrictive. Therefore, shot noise with events described by an
equilibrium renewal process was assumed. For this process,
we presented the mean and variance, yielding formulas for
G(t,τ ). Moreover, the limit properties of G(t,τ ) were derived

and the behavior of the new variability measure was compared
with the Fano factor.

Our results are mainly theoretical, but we also briefly
describe some potential applications. They depend on whether
we deal with data in the form of times of events or in the form
of realizations of a shot-noise process. In the processing of
times of events, we suggest G(t,τ ) (its empirical version) as
a measure of local variability. For such a purpose, the Fano
factor is often used. Specifically, in the situation when we have
multiple parallel records of times of events, the variability
at time t can be measured using the Fano factor calculated
based on events in the time interval [t − τ,t] for a τ > 0. It
corresponds to G(t,τ ), where w(x) is a rectangular function
(47). However, if there is no specific reason for the rectangular
function, a decreasing smooth function (mainly exponential)
might be more suitable—it might reflect the importance of the
time-dependent events more naturally. Our theoretical results
can be then used to make inferences about the character of the
data.
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An advantage of GE(t,τ ) over F (τ ) is also that the
theoretical values of GE(t,τ ) can be more easily calculated. If
the data records are long enough with respect to τ (values of
the response function outside the interval [0,t] are negligible),
the behavior of GE(t,τ ) can surely be well approximated using
GE(τ ), for which relatively simple formulas exist. Moreover,
we have shown that F (τ ) ≈ 2GE(τ ), which can be used to
approximate the theoretical values of the Fano factor, mainly
for gamma and IG distributions.

The second area of application is in processing data that
we assume to be values of a shot-noise process (with an expo-
nential response function). Such data arise in many situations,
as shot-noise realizations can be interpreted, for example, in
traffic noise [35,36], river flows [37], or neural membrane
potential [38]. The presented results describe some theoretical
properties of such data and can be used, for example, to
construct simple moment estimators of Cv of the underlying
renewal process. To deduce the value of Cv with a known
sample mean and variance of the shot noise, it is possible
to use Eq. (26) directly or, while assuming gamma or IG
distribution of IEIs, Eqs. (23) and (24). An assumption about
the probability distribution might seem to be too restrictive,
however there are two reasons why gamma distribution in
particular is often suitable. First, it is relatively flexible and
thus it could appropriately approximate a wide range of
various distributions. The second reason is its connection with
the Poisson process. The gamma distribution with Cv = 1 is
exponential and the events create the Poisson process. Thus, Cv

estimation using the gamma distribution assumption indicates
whether the shot-noise events are Poissonian or less or more
variable.
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APPENDIX

We focus mainly on the case with a general response func-
tion w(x). The special formulas are their simple consequences.
In the following, we assume that w(x) satisfies the conditions
stated in Sec. IV.

First, we derive formulas for the mean and variance of
S(t,τ ). Using results from [39], we simply obtain

E(S(t,τ )) = μτ

∫ t/τ

0
w(x) dx (A1)

and

var(S(t,τ )) =μ

∫ t

0

∫ t

0
w

(x

τ

)
w

(
y

τ

)
[μo(|y − x|) − μ] dx dy

+ μτ

∫ t/τ

0
w2(x) dx. (A2)

Next, we derive the limit properties (45) and (46). Limit (45)
can be deduced directly from relationship (41) considering Eq.
(4). To derive limit (46), let us first denote

Ho(t) = E(No(t)) =
∫ t

0
μo(x) dx. (A3)

Then it holds [28] that

Ho(t) = μt + 1
2

(
C2

v − 1
) + g(t), (A4)

where g(t) is a bounded function satisfying

lim
t→∞ g(t) = 0. (A5)

Using integration by parts, it is possible to derive

∫ x

0
w(x − y)μo(τy) dy = 1

τ
w(0)Ho(τx)

+ 1

τ

∫ x

0
w′(x − y)Ho(τy) dy.

(A6)

Now, combining relationships (41), (A4), and (A6), one can
obtain

G(τ ) =I2

I1
C2

v + 2

I1

∫ ∞

0
w(x)

∫ x

0
w′(x − y)g(τy) dy dx

+ 2w(0)

I1

∫ ∞

0
w(x)g(τx) dx, (A7)

which yields relationship (46).
Another relationship we derive is (22). Putting formula (4)

and w(x) = e−x into (41) gives

GE(τ ) =2τ

∞∑
k=1

∫ ∞

0
e−2x

∫ x

0
eyfk(τy) dy dx

− μτ + 1

2
. (A8)

Then, using integration by parts with u(x) = ∫ x

0 eyfk(τy) dy

and v′(x) = e−2x , we obtain

GE(τ ) = τ

∞∑
k=1

∫ ∞

0
e−xfk(τx) dx − μτ + 1

2

=
∞∑

k=0

Lk{f }
(

1

τ

)
− μτ − 1

2

= 1

1 − L{f }(1/τ )
− μτ − 1

2
. (A9)

Approximation (25) can be derived from relationship (A9)
using a Taylor expansion of the exponential function in the
Laplace transform.

It remains to prove formulas (42), (43), and (44). They
are not too complicated, so we present only their rather intuitive
explanations. The first formula can be explained using the
fact that clearly limt→0 S(t,τ ) = limt→0 w(0)N (t). Next, the
second formula holds because for τ → 0 the process S(t,τ )
converges to a steady state (“most of the response function”
will be in the interval [0,t]) and thus the limit value is the
same as the limit value of G(τ ). Finally, Eq. (44) stems from
the obvious relationship limτ→∞ S(t,τ ) = w(0)N (t).
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