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Neuromorphic behavior in percolating nanoparticle films
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We show that the complex connectivity of percolating networks of nanoparticles provides a natural solid-state
system in which bottom-up assembly provides a route to realization of neuromorphic behavior. Below the
percolation threshold the networks comprise groups of particles separated by tunnel gaps; an applied voltage
causes atomic scale wires to form in the gaps, and we show that the avalanche of switching events that occurs is
similar to potentiation in biological neural systems. We characterize the level of potentiation in the percolating
system as a function of the surface coverage of nanoparticles and other experimentally relevant variables, and
compare our results with those from biological systems. The complex percolating structure and the electric field
driven switching mechanism provide several potential advantages in comparison to previously reported solid-state

neuromorphic systems.
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I. INTRODUCTION

The experimental realization [1] of memristors [2] and
atomic switches [3] has recently led to proposals for novel
computational paradigms [4,5], and in particular to proposals
for architectures that would enable neuromorphic computing
[6,7] using complex networks of nanoscale devices. A key to
such proposals is that the behavior of individual component
devices is dependent on the history of their inputs (i.e., their
state exhibits “memory”), and hence that the behavior of such
devices can be seen as analogous to that of the synapses
between neurons, which enable learning in the human brain
[8—14]. In particular, it has been shown that nanoscale devices
can exhibit both short-term plasticity (STP) and long-term
potentiation (LTP) [8,11].

Memristors have been identified as the fourth basic circuit
element (alongside resistors, capacitors, and inductors) [1,2].
The first memristive devices were based on movement of
impurities in semiconducting matrices [1], and the first atomic
switches relied on the electrochemical reduction of Ag,S to
form atomic scale silver wires [3]. Since then, many other
related devices have been reported, including those based
on, for example, polymers [15], indium zinc oxide [16], and
superconductors [17].

Neuromorphic behavior is a property of a system that
comprises many such devices. There have been a variety
of proposals for both deterministically assembled and self-
assembled systems that exhibit neuromorphic behavior in
some form, with some impressive results achieved [6,7,16,18—
22]. The considerable current excitement about neuromorphic
behavior is driven at least partially by the possibility that that
the collective behavior of these system will exhibit emergent
behavior similar to that which occurs in the brain [23].
Other drivers include the belief that neuromorphic behavior
may enable new forms of computational capability, such
as reservoir computing [7,24,25], and the hope that these
electronic systems will allow a deeper understanding of the
fundamental nature of intelligence [5,20,23,26]. One of the

*simon.brown @canterbury.ac.nz

1539-3755/2015/92(5)/052134(11)

052134-1

PACS number(s): 64.60.ah, 73.63.—b, 36.40.—c, 73.23.Hk

key motivations for the present work is that the percolating
system of interest is poised near criticality, as are biological
neural systems [23].

We have recently [27] reported switching behavior (along
with quantized conduction [28-30] at room temperature) in
devices composed of tin nanoparticles. In this system the
random deposition of the nanoparticles leads to formation
of a complex percolating [31] network comprising groups
of particles separated by tunnel gaps. When a voltage is
applied across the system the local electric field across the
tunnel gaps can be very high resulting in switching events
driven by the formation of atomic scale wires in the gaps
[27]. Here we model electrical transport across these devices
and demonstrate that this complex system fulfills at least
some of the criteria for neuromorphic behavior. Previous
simulations of neuromorphic behavior focused on harmonic
generation in quite different physical systems [18,32]. We
show that formation of atomic scale wires in one tunnel gap
can lead to an avalanche of subsequent wire formation, and
consequent increases in conductance that mimic the increase in
connectivity of biological neural systems in response to inputs.
We then present a detailed discussion of the data including
a comparison with biological and experimental solid-state
systems, and conclude with a discussion of possible variations
on the experimental system that would show neuromorphic
behavior, including molecular systems.

Since the literature contains a number of definitions, for
the sake of clarity in the reminder of this paper we wish
to distinguish between STP and LTP of individual synapses
[8] and potentiation of a pathway through a network (e.g.,
of neurons and synapses). We will use the word potentiation
to refer to the latter, i.e., the sensitisation of a pathway,
corresponding to a memory response in the system of interest
(see Ch. 6 in Ref. [14]). The potentiation of the network results
from an avalanche of neuronal connections [23].

II. SIMULATION DETAILS

We focus on simulations of overlapping disks for a system
size of 200 x 200 particle diameters (chosen to provide the best
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FIG. 1. Map of 200 x 200 system of overlapping disks (gray) with locations of switching events shown using black dots. The electrodes
(not shown) are at the left and right edges of the system. V,,x = 1V and p = 0.55 (left), p = 0.65 (right). At higher coverages the larger size
of the connected groups [33] means that there are fewer tunnel or switching junctions between groups and a much higher conductance prior to
the switching process (by up to 8 orders of magnitude); it also means that there are fewer locations at which switching can occur.

tradeoff between computational time and finite size effects).
The disks are allowed to have random positions and we
have previously shown that this continuum percolation model
provides a good representation of the random assemblies of
nanoparticles that are of interest here [33-35]. Reference [33]
provides a more detailed comparison with (and discussion
of) the experimental system—note in particular that when the
particles touch they are strongly connected electrically, as are
overlapping disks.

The key difference between the present simulations and
standard models of continuum percolation [36] is that here
we explicitly allow tunneling as in Ref. [33]. Tunneling
processes [37,38] and related soft percolation problems [39]
have been studied for some time, but it has only recently
been demonstrated [33,40,41] that when tunneling is allowed
the system conductance depends exponentially on surface
coverage p below the percolation threshold, p. = 0.676336
[42] and that for p > p. the system conductance obeys the
power law:

(D

where in two dimensions ¢ takes the universal [43] value 1.3.

We focus here on the regime p < p., i.e., below the
percolation threshold (see Fig. 1), where the conductance of
the system is due to tunneling across gaps between the groups
of connected particles. The connections between overlapping
particles are assumed to have negligible resistance [33]. Each
gap is assigned a conductance,

G x(p—p),

Gi = Aexp(—BL)), 2)
where A and B are constants and L; is the size of the gap
(A = 1 for convenience and 8 = 100). The conductance of the
network is then calculated by solving for the voltages at each
node, with boundary conditions set by the voltage difference
between the electrodes on either side of the system. The
particles are assumed to be monodisperse [44] with diameter 1
and all distances (e.g., L;,) are measured in units of the
particle diameter.

To study the voltage response of the network we ramp the
voltage across the system in a triangular ramp from V = 0 to
Vimax and back to V' = 0, with constant step size 0.025 V. Hence
the number (Ny ) of voltage steps is sufficient to characterize
both the voltage at any time and the time since the start of
the ramp, and we plot all data as a function of Ny. We simulate
the switching process by first identifying the smallest gaps
between each pair of groups. We then identify those gaps with
electric fields larger than a chosen threshold (here Ey, = 0.9)
[45] which are then replaced with a large conductor (G onmic =
10Q") with probability P,. This process simulates the
formation in the tunnel gap of an atomic wire, which occurs
due to either electric-field-induced surface diffusion (EFISD)
or electric- field-induced evaporation (EFIE) [27,46-48]. We
then recalculate the conductance of the network G. At the next
voltage step the process is repeated; the voltage ramps continue
until the system conductance converges—typically to within
0.1% of the value on the previous step. The probability P,
accounts for the stochastic nature of the switching process
and we have performed simulations for P, in the range
0.1%-100%. For all our simulations we record the cumulative
number of replacements (i.e., switching events) Nz, as well
as G and the current flowing /. Note that we have chosen to
focus on voltage ramps for consistency with the experimental
protocol used in Ref. [33], but discuss dc applied voltages and
voltage pulses in Sec. IV D.

We note that in this model the conductance can only
increase: These simulations are a deliberate simplification of
the experimental situation where decreases in conductance
are also observed due to breaking of the atomic scale wires
by electromigration [27]. It is intuitively clear that if both
creation and breaking of connections is possible there will
be random switching of the conductance around some mean
value that is determined by the relative probabilities of the
two types of events. By focusing on the simplified model
we are able to more clearly demonstrate potentiation of the
network, i.e., neuromorphic behavior of the system. The
“noise” generated by breaking connections serves only to
complicate matters, as we show in Sec. III C when I exceeds
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a current threshold /i, = 0.1 we allow breakage of previously
establish connections with probability P, .

We note that the present simulations are very different from
those in Ref. [27]. There it was shown that the probability of
obtaining a quantized system conductance when a quantized
local conductance was introduced in a tunneling gap increased
dramatically as p approached p.; in that case we replaced the
tunnel gaps with the highest field with quantized conductors
but did not iteratively solve for a new system conductance,
nor did we change V at all. There was no possibility of
a cascade of switching events and no attempt to observe
neuromorphic behavior. Here the situation is different because
we allow successive replacements of tunnel gaps with Ohmic
conductors (and ignore any possible quantization effects)
which allows potentiation.

Finally we note that the values of the system conductance in
our simulations range from G ~ 107" Q~! to 10> Q!; these
values are determined by our choice of A, 8, and G opmic. Our
choice of Gonmic = 10 27! is somewhat arbitrary but it is of
course possible to scale our results to the quantized [28-30]
value Gy = e?/h = 1/25.9k< thatis obtained experimentally
for atomic scale wires [27]. The value g = 400 corresponds to
our previous experiments [33] but in the simulations we choose
B = 100 as this allows calculation of tunneling behavior (i.e.,
increases the system conductance) over a larger range of p.
This means that the ratio of the tunneling and wire conduc-
tances is smaller, and the neuromorphic behavior somewhat
less dramatic, than could be expected in experiments.

III. RESULTS

Figure 2 shows the current through the percolating system
of nanoparticles in response to the applied sawtooth voltage
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FIG. 2. Current flowing between the electrodes as a function of
time (which corresponds to the number of voltage steps Ny) for
P, = 10% and (a) p = 0.55, (b) p = 0.65. (c) Corresponding voltage
ramp with Vipx = 1V and Vi, = 0.025. The increase in current as
a function of applied voltage and in subsequent voltage cycles is
due to the insertion of high conductances (representing atomic wires)
in tunnel gaps between particles when the electric field in the gap
exceeds a defined threshold Ey,.
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FIG. 3. As for Fig. 2 but with P, = 1%. (a) p =0.55, (b) p =
0.65, (c) corresponding voltage ramp. The data in (b), as in many
other figures below, terminates when the conductance converges to
within 1%.

with Vinax = 1 Vand Py = 10%. For low coverages [p = 0.55,
Fig. 2(a)] the initial conductance is low (invisible on this linear
scale during the first cycle of the voltage ramp) because all cur-
rent flow is via small tunneling conductors. It is immediately
clear, however, that the current increases in response to the
increasing applied voltage during the second voltage cycle, as
is expected when the tunneling conductors are replaced by high
conductances representing atomic scale wires. Subsequent
cycles of the voltage ramp cause a further increase in the
current until after the fifth cycle the network conductance is
dominated by the high conductances Gonmic and saturates.
At higher coverages [p = 0.65, Fig. 2(b)] significant current
is observed immediately and the conductance saturates much
more quickly. This is because the tunneling gaps are both fewer
and smaller and so the applied voltage causes a more dramatic
increase in electric field, resulting in more switching events
even at low voltages during the first cycle of the voltage ramp.

Figure 3 shows similar results for Py = 1%. Here, because
the switching probability is smaller, a larger number of voltage
cycles are required but eventually the conductance again
saturates. While Figs. 2 and 3 clearly show the increase in
current with time it is evident that for much of the time
the current flow tracks the sawtooth voltage waveform: The
neuromorphic behavior is shown more clearly in plots of the
system conductance G versus Ny, as in all further plots below.
In addition, we use logarithmic plots to make the small changes
in conductance in earlier cycles of the voltage ramp [e.g., in
Figs. 2(a) and 3(a)] visible. We emphasise that Ng and G
provide complementary ways of characterizing the level of
potentiation in the network.

A. Finite P;

As noted above P; allows us to account for the stochastic
nature of the switching process, i.e., for the fact that atomic
scale wires are not formed completely deterministically. On a
microscopic scale Py accounts for different local environments
around each tunnel gap and the time taken for electric field
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FIG. 4. (Color online) Number of tunnel junctions replaced (Ng) and system conductance (G) as a function of time (number of voltage
steps Ny) for p = 0.55 and P; = 1, 10, and 80% (black, red, and blue curves, respectively, and from right to left). (a) and (d) Vipex = 0.5V,
(b) and (€) Vimax = 1V, (c) and (f) Viax = 5'V. Colored dots mark the points at which the last tunneling conductor on the primary conduction

path between the contacts is replaced by an Ohmic conductor G onmic-

effects to result in formation of the atomic wire [46-48], a
process which is not completely understood.

We begin by focusing on systems with p = 0.55. Figure 4
shows the evolution of both Ny (top row) and G (bottom row)
with time (i.e., Ny) for a range of values of Vp,, and of P;.
In each case, it is clear that an increase in P leads to a faster
increase in the number of replacements and consequently a
faster increase in the conductance. The maximum conductance
reached for each set of curves is clearly highest for the largest
Viax» since Ey, is exceeded in a larger number of tunnel gaps.
However, the full effect of the maximum voltage is actually
more subtle. At low V.« [Figs. 4(a) and 4(d)], Ey, is only ever
exceeded for a relatively small number of tunnel gaps and so
the number of replacements is modest and the conductance
saturates at small values (still in the tunneling regime). At
higher Vi.x, once Ey, is exceeded there is a nearly exponential
initial increase in both Ng and G until eventually the last
tunneling conductor on the primary conduction path between
the contacts is replaced (the points marked by colored dots in
Fig. 4; these points define a critical number of voltage steps
NS ; see below). Note that at later times Ny saturates both
because most of the relevant tunnel gaps have already been
replaced and because the existence of an Ohmic conductance
path means that the voltage distribution across the system is
relatively uniform and there are few opportunities to newly
exceed Ey,.

Note that the horizontal scale in Fig. 4 is a little deceptive
and needs careful attention for two reasons: (i) It is logarithmic
and so emphasizes changes at small Ny—Fig. 5 shows the
data from Figs. 4(c) and 4(f) on a linear horizontal scale which
emphasizes the exponential initial increase in G and Ny ; and
(i1) because Ve, is constant, the length of each voltage cycle
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FIG. 5. (Color online) Data from Figs. 4(c) and 4(e) (i.e., p =
0.55, Vimax = 5 V) replotted on a linear horizontal scale so as to allow
the behavior at small Ny to be seen more clearly and to emphasize the
nearly exponential initial increase in G. Colored dots mark the points
at which the last tunneling conductor on the primary conduction path
between the contacts is replaced by an Ohmic conductor G opmic-
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FIG. 6. (Color online) As for Fig. 4 but for p = 0.65.

is proportional to Vp,x meaning that, for example, the data in
Figs. 4(a) and 4(d) cover a number of cycles whereas the data
in Figs. 4(c) and 4(f) cover only one voltage cycle. Figure 5
shows that the apparently S-shaped conductance curves in
Fig. 4 in fact comprise a nearly exponential region followed
by aregion of saturation: G saturates because N is saturating
and because of the functional form of Eq. (1) as discussed
further in Sec. III B 1.

Figure 6 (p =0.65) shows similar general trends to
Fig. 4, although note the dramatic decrease in the range of
conductivities (change in G scale) compared to Fig. 4. The
key difference is that because the coverage is higher, the
initial conductance G, for each curve is many orders of
magnitude larger than in Fig. 4 (while the final conductance
G max 1s only slightly higher). This is because Gy, is associated
with the tunneling regime where the conductance changes
exponentially with coverage [33] whereas G« is associated
with the regime governed by Eq. (1).

These differences are made clearer in Fig. 7 where we
directly compare the conductance as a function of number of
voltage steps for p = 0.55 and 0.65, Vj,,x = 1 Vand 5V, and
Py = 1% and 40%. Clearly Guyin and Gpax are smaller for
p = 0.55 than for p = 0.65 but another important difference
is that the number of replacements required to create an Ohmic
path is larger for p = 0.55. This larger critical value of N§ is
analogous to a new percolation threshold [for the percolating
system comprising tunnel gaps (empty sites) that are being
replaced by Ohmic conductors (filled sites)]—see Sec. III B 1.

B. P, = 100%

Clearly the conductance in Figs. 4, 5, 6, and 7 is stochastic:
There is a probabilistic element to the simulations (P4) which
means that different tunnel gaps are replaced by Ohmic con-

ductors on each run and that the precise shapes of each curve
are different from run to run. (In addition we must be clear that
any given realization of a system with a certain p will yield
slightly different data—the precise sizes and positions of the
steps in G versus Ny plots will be different. Nevertheless the
trends for each realization are the same and the G i, and G pax
values are very consistent for the large system sizes studied
here.) This stochastic element can be removed by setting
P, = 100% as in Fig. 8(a), which allows a simpler comparison
of the effect of p on the overall size of the neuromorphic effect:
The ratio G,k / Gmin clearly decreases with increasing p and
at large p a smaller number of voltage steps are required
to achieve neuromorphic behavior. Perhaps most importantly,
at low p the number of voltage steps required to complete
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FIG. 7. (Color online) Direct comparison of conductance as a
function of time (Ny) for a range of parameter values: p = 0.55 and
0.65, Vinax = 1 V (dashed lines) and 5 V (solid lines), and Py = 1%
and 40%. (From right to left) p = 0.55, P, = 1% (red); p = 0.55,
P; = 40% (blue); p = 0.65, Py = 1% (green); p = 0.65, P, = 40%
(black).
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FIG. 8. (Color online) (a) G as a function of Ny for Py = 100%, Vimax = 5 V. (From bottom to top) p = 0.55, 0.57, 0.60, 0.62, 0.65.
(b) The same data plotted as function of Ny — NS in order to show the power law variation of the conductance discussed in the text. The

dashed line indicates a slope of 0.5.

the process is much greater (i.e., the width of the transition is
larger) and this means that the number of switching events that
occur during potentiation is greater—see discussion below.

The effects of changing the probability of formation of a
connection and maximum applied voltage are as intuitively
expected, i.e., increases in Py and Vi, both increase the rate
at which connections are formed, and consequently the rate
of increase of conductance is also increased. However, the
response to the ramped voltage does not scale trivially with
time (equivalently Ny): In periods of decreasing voltage the
rate of formation of connections is limited. Hence it is not
possible to simply scale the data in Figs. 4 and 6 onto Fig. 8(a)
even though the response to the voltage ramps is essentially
the same.

Power law regime

Figure 8(b) shows the data for Py = 100% on an expanded
scale, revealing a power law behavior in the conductance. This
power law regime is visible at all coverages and particularly at
high probabilities but is obscured in Figs. 4 and 6 by the choice
of vertical scale. This behavior is observed for Ny > N{ and
is clearly distinct from the exponential behavior in Fig. 5 for
Ny < N§.

Above the percolation threshold N €. where the switched
junctions and their associated groups span the system, this
power law region can be explained qualitatively by the
existence of an Ohmic spanning group which grows in a
fashion which is dictated by the underlying structure of the
connected switchable elements (which are themselves given
by the underlying percolating structure of the film). After the
first Ohmic connection across the film is formed at N 5 , further
cycling of the voltage links a subset of the remaining groups to
the spanning group, gradually approaching a saturation point,
at which the conductance plateaus. The random insertion of
G onmic resistors into the network of tunneling gaps is a kind of
additional percolation process, i.e., percolation of connections
on top of the percolating network of particles.

The slope of the data in Fig. 8(b) is approximately 1/2, as
shown by the dashed line. It is not clear why the slope takes this
value [the power law exponentin Eq. (1)is¢ ~ 1.3]butitisalso
not clear how to relate Ny to p in Eq. (1). Further investigation
is required, including a systematic study of the system size
dependence of this exponent, but we speculate that it should

be possible to define an effective coverage p* that is a function
of both p and Ny and that some progress might be made
by equating (p* — p¥)' to (Ny — N§)!/2. However, Sec. IV B
shows that N S is coverage dependent and this problem requires
further detailed analysis.

C. More realistic simulations including wire breaking (P,)

The simulations discussed to this point include only
replacements of tunneling conductors with the Ohmic conduc-
tors G onmic (representing the formation of atomic wires) so that
the neuromorphic behavior is clearly manifested as an increase
in conductance. Now we demonstrate the effect of including
in the model the possibility that the atomic wires formed can
subsequently be broken by electromigration [27]. We assume
that when the current in an atomic wire exceeds a threshold
value I, = 0.1 the wire has a well-defined probability of being
broken P, at each voltage step. When a wire is broken it
is assumed that the original gap between particles reappears
(experimentally it is clear that this need not be true, but this is
a reasonable first approximation).

We begin by considering an example with Py = 1% and the
extreme case of P, = 100%. Figures 9(a) and 9(b) show the
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FIG. 9. G versus Ny when both creation (with probability P; =
1%) and breaking (with probability P, = 100%) of atomic wires is
allowed in the simulation (at Ey = 0.9 and I, = 0.1, respectively).
(a) p = 0.55, (b) p = 0.65, (c) corresponding voltage ramp. Note the
change in scales from (a) to (b).
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response of systems with p = 0.55 and 0.65, respectively, to a
voltage ramp [V, = 1V, Fig. 9(c)]. Interestingly, despite the
fact that P, = 100%, Fig. 9(a) still shows clear neuromorphic
behavior in the form of increases in current from cycle to
cycle. This is because of the large number of tunneling gaps
that exist in series in low coverage samples, which means that
the current flowing through the atomic scale wires that are
formed is limited by the series resistance and the threshold Iy,
is not reached. Hence the data in Fig. 9(a) is actually identical
to what would be seen on an expanded scale in the first few
cycles of Fig. 3(a) (note the difference in vertical scales). In
contrast the formation of atomic wires during the first cycle in
Fig. 9(b) results in much higher currents [because the number
of series tunnel gaps is smaller—compare Figs. 1(a) and 1(b)]
and electromigration immediately starts to remove the Ohmic
conductors for which I > Iy. Hence, even in the second
voltage cycle, a dynamical equilibrium is obtained as wires
repeatedly form and break, and the average current flowing in
the subsequent cycles is approximately constant.

The more realistic case where P, = 1% is shown in Fig. 10.
As in Fig. 9(a), for p = 0.55 Fig. 10(a) shows an increase
in the tunneling current from cycle to cycle but the large
series resistance means that electromigration is irrelevant. As
we move to higher coverages [Figs. 10(b) and 10(c)] the
increases in current from cycle to cycle are faster, and the
maximum current and conductance increase with p. Initially
electromigration has only a limited impact and so it takes
some time for a dynamic equilibrium to be established (after
a relatively large number of cycles). The behavior in Figs.
10(b) and 10(c) is quite comparable to the behavior reported in
other experimental realizations of neuromorphic systems [6].
In particular, in this regime the behavior is very similar to that
associated with Aviziensis et al. with recurrent connections
and feed forward mechanisms (see, for example, Fig. 4 in
Ref. [6]). Finally, we note that when the devices are operated
in the tunneling regime [as in Figs. 9(a) and 10(a)], the inherent
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FIG. 10. Same as for Fig. 9 except with P, = 1%. (a) p = 0.55,
(b) p =0.60, (c) p =0.65, (d) corresponding voltage ramp. Note
that (a) is on a different vertical scale from (b) and (c).
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nonlinearity may be useful in providing functionality similar
to that required for reservoir computing [7,24,25].

IV. DISCUSSION

When we include both formation and breaking of atomic
scale wires our model produces realistic potentiation behavior
(Fig. 10), demonstrating that percolating films of nanopar-
ticles have potential applications in neuromorphic devices.
Implementation of neuromorphic devices will require multi-
contact geometries [6,8] where inputs to particular contacts
potentiate different pathways within the system, and there
are a large number of possibilities for variations on the
scenario considered here. In particular we envisage the use
of switching molecules (through chemical functionalization
of the nanoparticles) and other memristive elements. The
extension of the present model to such geometries and differing
switching elements should be straightforward; we discuss
these variations and other relevant effects in turn below.

A. Geometrical effects

We find potentiation (in the sense discussed in the intro-
duction) of the nanoparticle networks for all surface coverages
studied; we have presented data for p = 0.55 and 0.65 but
similar behavior is observed for other coverages in this
range. The size of the neuromorphic effect (change in G)
is significantly more dramatic for systems with low particle
coverages because the networks are more complex. As p — p,
the size of the connected groups of particles increases and
approaches the size of the simulated system which means that
the number of tunneling connections that must be traversed
in order to span the system becomes smaller: This means
that there are fewer locations at which atomic scale wires
could be formed, and hence that potentiation involves fewer
switching effects [the total number of tunneling conductors
Npg that are replaced at the end of the process is about an
order of magnitude higher in Fig. 4(c) compared to Fig. 6(c)].
The average size of the gaps decreases with increasing p [33]
and together with the smaller number of gaps this means the
average electric field in each gap is higher, which means that
electric field driven switching [27,46—48] is more likely for
higher p. In contrast, we expect that for coverages lower
than those studied here the network will be simplified and
become similar to a random system of dopants [33,49]; this
regime is not experimentally accessible in the nanoparticle
films of interest because the current flowing falls below the
noise threshold.

B. Critical point for secondary percolation

As discussed above the critical number of voltage steps
(N‘f) required to achieve an Ohmic connection across the
system is highlighted by colored dots for each of the curves
in Figs. 4 and 6. Figure 11 shows the dependence of NS
on coverage p for several different values of Py = 1% and
Vinax- The further the system is from the percolation threshold,
the more voltage steps (and more replacements) are needed
to achieve an Ohmic connection. Interestingly the three data
sets for which the chosen parameters avoid significant periods
where no switching occurs during decreases of the voltage

052134-7



SHAWN FOSTNER AND SIMON A. BROWN

FIG. 11. (Color online) Dependence of critical number of steps
required to create an Ohmic connection across the system NS, on
coverage p, extracted from the data in Figs. 4 and 6. (Top to bottom)
Py =1%,at Vinax = 1V, Py = 1%, at Vipox =2V Py = 1%, Vinax =
5V; Py = 10%, at Viyax = 5 V; Py = 80%, at Vipax = 1 V. Lines serve
only to connect the data points.

ramps (plotted with solid lines) are each close to a power law
with exponent 1, i.e., N‘g varies approximately linearly with
p—p.- The higher the probability of creating an atomic wire,
the smalleris N{: we find that N§ scales according to the value

of P4. The effect of Vipax on N 5 is more subtle—comparison
of the three data sets for Py = 1% but different voltages in
Fig. 11 makes it clear that there is no simple scaling with
voltage; this effect requires further exploration.

C. Comparison with biological neural networks

There are many aspects of the present solid-state system
that are different to real-world biological systems. Neurons
exist in a complex environment comprising astrocytes, glial,
and other cells, and synapses rely on biochemical mechanisms
that have no simple solid-state analog. These are important
neurologically—for example, the biochemical modification of
neural function by drugs—but our goal is not to replicate such
functionality in solid-state systems. Rather, here the focus is
on a demonstration of potentiation as a necessary (but not
sufficient) condition for neuromorphic computing. Further
simulations, for example, those which include more complex
switching elements, multiple synapses between neurons, mul-
tiple electrodes, more sophisticated pulsed inputs, and multiple
inputs with opposite polarity [50] are necessary to explore the
latter.

One might have expected that the large fractal groups
that are present for p near p. would maximize the oppor-
tunity for interconnectivity between groups. This may be a
key difference between the present system and real neural
networks: The present system is inherently two-dimensional
and this dimensionality limits the neuromorphic potential of
the system. We suggest that an equivalent three-dimensional
system would allow greater opportunities for connections
between non-neighboring groups of particles. A significant
outstanding challenge is to be able to fabricate quasi-three-
dimensional systems that exhibit large fractal structures: Such
systems should exhibit even more interesting neuromorphic
behavior.

PHYSICAL REVIEW E 92, 052134 (2015)

A further difference between the present system and
biological neural systems is that there it is possible to form
more than one connection between neural cells, i.e., multiple
synapses between the same pair of neurons resulting in an
enhanced response to the stimulus from the incoming axon.
Here, because of our choice of the value of Gopmie and
parameters in Eq. (2), if we create one connection between
groups it shorts out any possible other tunnel gaps and (for
the most part) removes the possibility of other replacements
that would cause multiple connections between groups. The
experimental system does, however, allow conductances with
multiple levels; see Sec. IVE 1.

D. Comparison with experiments
1. Pulsed inputs

In experiments on biological neurons and in neuromorphic
computing one would expect to apply a series of voltage
pulses (rather than the voltage ramps considered here) in order
to cause potentiation. Numerically (i.e., in our simulations)
providing a series of voltage pulses is identical to recording the
response of the system to a constant (i.e., dc) voltage except
that one should then interpret Ny as the number of voltage
pulses (with constant height) rather than the number of voltage
steps. Figure 12 shows this for several different coverages and
a constant voltage V = 1 V. The results are qualitatively very
similar to results from voltage ramps (compare with the dashed
lines, corresponding to data from Figs. 4 and 6), but it is clear
that the effect of the down ramps is to extend the amount of time
required to achieve a given system conductance—switching
events are relatively rare during down ramps.

2. Experimentally controllable parameters

Obviously the nanoparticle and system sizes, and applied
voltages are all experimentally controllable parameters that
will affect the switching behavior that will be observed. Hence,
an additional point that should be made here is that because
the switching depends on the local electric field in individual
nanogaps, there is an opportunity in the experimental systems
to tune the switching by using the nanoparticle size or the
system size to tune the electric field that is actually present for
any given applied voltage. In addition, EFIE and EFISD occur
at different electric fields for different materials.

Put another way, the practical voltage range in which
switching is observed will depend on nanoparticle size and

FIG. 12. (Color online) Conductance change at constant voltage
(V =1V)for p = 0.55 (black, right), 0.57, 0.60, 0.62, and 0.65 (red,
left). Dashed lines are from ramped voltages for comparison.
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FIG. 13. Schematic I(V) curve for a single tunnel junction
showing jump from an initial high resistance (tunneling) state to
a low resistance state on formation of an atomic scale wire, and a
hysteresis loop (solid lines) that results from a quasideterministic
memristive behavior; see Sec. IV E. Note that while tunneling is a
voltage-dependent process, for simplicity in this schematic we have
assumed that even in the high resistance (tunneling) state the resistor
still obeys Ohm’s law at low V; different I(V) characteristics in the
two states would change the shape of the curve but not the existence
of a hysteresis loop. Any bias dependence will be unimportant in
most applications because Gpign exceeds Gy by many orders of
magnitude—it is only the ability of the device to switch that is
important to the observation of neuromophic behavior reported here.

the system size, as well as the choice of material. This is
an important point, because it provides an opportunity in
the nanoparticle system to controllably tune the level of
potentiation that would be difficult to achieve in other systems.

E. Memristive elements

The tunnel junctions that are formed at gaps in the
percolating film, and that switch to a highly conducting state
on formation of an atomic scale wire, behave differently than
memristors reported elsewhere [1,3]. These tunnel gaps are
memristive in that the device history determines its state.
Switching occurs at a well-defined threshold value (of the
electric field [46—48]) but unlike the the memristive elements
in Refs. [1,3] the junction cannot be switched back to the
low conduction state by simply reversing the polarity of the
bias voltage. Nevertheless this kind of “once only” switching
provides sufficient functionality to enable potentiation of the
network and a cascade of switching events, as described above.

As shown schematically in Fig. 13, once in the high
conductance state, switching to the low resistance state occurs
(due to electromigration) if the current exceeds some threshold
value for long enough. We have modeled this above as a
stochastic process that occurs with probability P, but it is
clear that a slow voltage ramp that continues after the formation
of the atomic wire will eventually cause the device to switch
back to Giow (if P, = 1% then after 100 voltage steps, on
average the device will be in the Gy, state). Hence, viewed
over a long enough time frame, switching to Gjo Occurs
quasideterministically. Similarly, if the voltage is then ramped
down at a similar rate (lower left-pointing arrow in Fig. 13),
with the voltage remaining above Vi, a quasideterministic
return to the high conductance state will occur due to formation
of a new atomic scale wire. Hence if we define a protocol
which requires that after this switching event the voltage is now
ramped up again, we generate a clockwise hysteresis loop, as

PHYSICAL REVIEW E 92, 052134 (2015)

shown schematically in Fig. 13. Usually memristive hysteresis
loops [1,3] are characterized by anticlockwise paths on an I(V)
plot. The direction of the hysteresis loop changes some of the
detail of the required protocols.

For completeness we note that (i) in the previous paragraph
we have assumed that [y corresponds to a voltage greater
than V4, which appears to be the case in experiments [27].
In principle hysteresis loops could be either clockwise or
counterclockwise depending on the relative positions of these
thresholds. (ii) It should be possible to generate classic
memristive hyseresis loops [1,3,8] using a further different
protocol, i.e., after the initial increase in conductance shown
inFig. 13, if the voltage is decreased the current will be reduced
so that electromigration can be eliminated. If we then choose
to apply negative voltages sufficient current will be generated
so as to break the connection and cause a return to the high
resistance state, thus achieving memristive loops similar to
those observed in other memristive devices [1,3,8]. In this
protocol one uses large voltage pulses to switch states and
small (subthreshold) voltage pulses to read the state of the
devices.

1. Wire width dependence—memristors with multiple
conductance levels

For simplicity, we have not considered here the possibility
that the width of an atomic wire might change with time or
in response to repeated inputs. Such changes are described in
both Refs. [3,27] and could correspond to STP and LTP of
individual synapses [8] (as emphasized in the introduction).
Such variations of conductance will contribute an additional
level of potentiation to the network: While adding further
complexity to the simulations we believe that is likely to lead to
qualitatively similar results to those already described above.

2. Other memristive elements

There are several straightforward adaptations of the system,
relying on other memristive elements, that would allow
alternate embodiments of neuromorphic devices. For example,
we believe that devices fabricated with percolating silver
nanoparticles could readily be sulphidized, which would open
up the possibility of building neuromorphic devices based
on percolating circuits using the electrochemical reduction
approach of Refs. [3,6]. An additional alternative would be to
incorporate switching molecules (for example, azobenzenes
[51-53], rotaxanes [54,55], and other molecular switches
[55-58]). Such hybrid percolating and molecular systems may
allow additional and novel design parameters to be developed,
and may well introduce more complex and interesting func-
tionality.

F. Avalanches and emergent complex dynamics

The percolating system of interest is poised near a phase
transition and so one of the long-term objectives of this work
is to explore whether the emergent complex neural dynamics
that are believed to occur in the brain can be reproduced in this
solid-state system [23]. Figure 14 presents a time sequence
that illustrates the spread of switching sites across the system
in response to a constant voltage input. Clearly the potentiation
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FIG. 14. Illustration of an avalanche of successive switching events resulting from application of a constant voltage (1 V). Locations of
switching events (black dots) are shown for a 100 x 100 subset of a 200 x 200 system of overlapping disks (gray) with p = 0.55 for Ny =1
(a), Ny = 2000 (b), and Ny = 5500 (c), corresponding to the conductivity data in Fig. 4(b).

of the network discussed above arises from a kind of avalanche
of switching events; after formation of an atomic wire between
one pair of connected groups of particles the applied potential
is divided across other tunnel gaps in the network, increasing
the local electric field and therefore increasing the likelihood
of further switching events.

Our percolating networks exhibit many more small
avalanches than large ones. Hence the present avalanche
behavior has clear similarities to neuronal avalanches in
biological systems, but further work is required to under-
stand whether the avalanches in the present systems behave
according to the five fundamental properties of neuronal
avalanches that are identified in Ref. [23] as being consistent
with criticality. The expected power law distribution in the
size of cortical avalanches and lifetime statistcs [59,60] are
not straightforward to simulate in the present simulations,
which do not include this dynamical behavior; in addition,
further work is required to identify a measure of avalanche
size that corresponds to that available from biological systems
[59,60]. We speculate that the power law behavior discussed
in Sec. [II B 1 can be related to experimentally observed power
laws for neuronal avalanche size and lifetime [59,60].

Despite the similarities it is clear that some aspects of the
present system are not perfect analogs of the biological systems
and that, for example, we cannot reproduce the biochemical
complexity of the brain (see, e.g., Sec. IV C). Meanwhile other
aspects of the present work—such as the limitation to only a
single pair of electrical contacts to the sides of the percolating
system—can obviously be extended in a relatively trivial way;
indeed our next step is to develop simulations with multiple
contacts to different local points on the edge of the network,
as well as to contacts within the network, in conjunction with
similar experiments that follow on from the work of Ref. [27].

Finally, it is worth mentioning that the present problem has
some interesting elements in common with percolation models
of electrical discharge [61,62], in which conducting paths grow

(due to ionization) through an insulating medium (air). The key
difference between that work and the present results is that in
Refs. [61,62] the probability of ionization is always determined
by the local electric field at a site and so the occupation of sites
in the lattice is not random. In the present continuum model the
particles are deposited randomly resulting in a distribution of
gap sizes [33] that is a representative function of coverage p.
Hence p governs the formation of the conducting paths and
the potentiation behavior.

V. CONCLUSIONS

The present simulations focus on mapping potentiation in
a percolating network and are a first step to a consideration of
the questions of dynamics and criticality of the system [23].
We have shown that percolating films of nanoparticles exhibit
neuromorphic behavior in the sense that application of a series
of inputs causes potentiation of a pathway through the network,
and a consequent direct transmission of subsequent signals to
an output terminal. We have discussed in detail the response
of the system to ramped, pulsed, and dc voltage inputs, which
results from the formation of atomic scale wires in tunnel
gaps in the network, and the influence of the probability
of wire formation, as well as the effect of wire breaking
due to electromigration effects. Finally, we have discussed
possible future extensions of the model that might lead to
a more direct comparison with biological systems; this future
work will explore whether critical dynamics do indeed emerge
in the present system with atomic scale switches, or other
memristors, or indeed in other systems comprising memristors.
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