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Landauer’s blow-torch effect in systems with entropic potential
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We consider local heating of a part of a two-dimensional bilobal enclosure of a varying cross section confining
a system of overdamped Brownian particles. Since varying cross section in higher dimension results in an entropic
potential in lower dimension, local heating alters the relative stability of the entropic states. We show that this
blow-torch effect modifies the entropic potential in a significant way so that the resultant effective entropic
potential carries both the features of variation of width of the confinement and variation of temperature along
the direction of transport. The reduced probability distribution along the direction of transport calculated by
full numerical simulations in two dimensions agrees well with our analytical findings. The extent of population
transfer in the steady state quantified in terms of the integrated probability of residence of the particles in either
of the two lobes exhibits interesting variation with the mean position of the heated region. Our study reveals that
heating around two particular zones of a given lobe maximizes population transfer to the other.
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I. INTRODUCTION

An interesting class of problems was introduced by Lan-
dauer [1–5] where the steady state probability distribution
depends on the details of the noise processes associated with
the path which connects the states of local stability. For
example, if some portion of a double-well potential near the
barrier maximum is heated locally, the relative population
of the two wells in the steady state differs from that of the
equilibrium state value for the original system [1,2]. A related
issue concerns the passage of Brownian particles through a
very thin tube of a uniform cross section having spatially
varying temperature [3]. The particles acquire the temperature
of the wall through the collisions with it. The spatial variation
of the temperature is such that the length of the tube having
a certain temperature is long enough to allow the particles to
come to thermal equilibrium with the local tube temperature.
As expected, the particles accumulate in the colder regions
where they move slowly, giving rise to peaks in the probability
distribution curve at the positions of lower temperatures. The
interesting point to note here is that the distribution function
is actually flat for the original system. In spite of the absence
of the states of local stability in the deterministic dynamics
or devoid of the multiplicative nature of the noise present in
the system, the system generates some states of local stability
depending on the details of the fluctuation associated with
the process. These effects are popularly known as Landauer’s
blow-torch effect [6–8].

In this paper, we focus our attention on Landauer’s blow-
torch effect on systems having varying cross-sectional width
[9–13]. Specifically, our aim is to explore the influence of
the confining geometry on population transfer through local
heating of some parts of the system. The motivation lies on the
following consideration. It is well known that when a Brownian
particle moves through a tube or channel having varying cross
section, the geometrical confinement in higher dimension gives
rise to an effective entropic potential in reduced dimension
[10–64]. The entropic transport occurring in systems with
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varying geometry has attracted wide attention in recent years
in the context of stochastic resonance [17,18], resonant
activation [19], ratchets and molecular motors [20,25–27],
particle separation mechanism through entropic splitting
[40,53], entropic rectification [47,51], entropic Brownian
pump [52], hysteresis [61,62], geometry-controlled kinetics
[58,59], stochastic localization [24], construction of logic gates
[63], entropic memory erasure [64], and also in the process
of ion transport through phospholipid membranes, biological
channels [30,31], artificial ion pumps [32–34], translocation
of polymers and polyneucleotides through nanopores [35],
etc. While entropic transport processes as mentioned here take
place at a constant temperature, spatial variation of temperature
may occur naturally in some physical situations where the
different parts of the system are kept in contact with different
thermal baths. It is expected that this spatial inhomogeneity
of temperature can significantly alter the relative stability
of the entropic states and thereby influence the population
transfer between them. In what follows, we show that the
entropic potential is profoundly modified due to spatially
varying temperature. The resultant effective potential captures
the interference of two entropic effects, one due to geometrical
confinement and the other due to the local heating that causes
alteration of relative stability of the two states. Our analysis
is based on consideration of an ensemble of overdamped
Brownian particle confined in a two-dimensional bilobal
enclosure. At a constant temperature, both the lobes get equally
occupied. When some part of the system is kept at a higher
temperature, the occupancy of the lobes differs from each
other, leading to a splitting in the steady state population
density for the two lobes. This is calculated in terms of the
integrated probability of residence of the particles in either
of the two lobes. The occupancy of the entropic steady states
depends on the details of the kinetics of the different parts of
the system [1]. The dependence of the population transfer on
the position of the heated zone of the system is subjected to full
numerical simulations in two dimensions. Our study reveals
an interesting bimodal variation of the extent of population
transfer as an entropic effect against the mean position of
the heated zone, implying that the population transfer is most
effective when two particular portions of a given lobe are
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heated separately. The modification of the entropic potential
due to temperature variation is manifested in the numerically
simulated reduced probability distribution curve which is
obtained from the exact Brownian dynamics simulation of the
two-dimensional system subjected to appropriate boundary
condition representing the confining effect of the system. As
expected, the effective population transfer depends on the
difference in temperature of the baths and on the range of
the system heated.

The paper is organized as follows. In Sec. II, we describe
the system and the motion of an overdamped Brownian
particle confined in the two-dimensional bilobal enclosure and
in contact with two different thermal baths. The dynamics
of the particle subjected to this variation of temperature
is evaluated in terms of the Fick-Jacobs equation in the
reduced dimension and the effective entropic potential is
calculated. The numerical results based on simulation of exact
Brownian dynamics in two dimensions have been presented
and discussed in Sec. III. The paper is concluded in Sec. IV.

II. STOCHASTIC DYNAMICS IN CONFINED GEOMETRY
WITH NONUNIFORM TEMPERATURE

A. Model

We consider an overdamped Brownian particle confined in
a two-dimensional bilobal enclosure as shown in Fig. 1(a). The
temperature as well as the frictional coefficient are spatially
nonuniform along the longitudinal direction, i.e., they are
functions of x̃ coordinate of space variables. x̃ represents
the conventional longitudinal direction. The tilde description
has been used to indicate that this is a dimensional quantity.
We will represent all the quantities having dimension with
tilde notation. The two-dimensional Langevin equation for the
Brownian particle can be written as follows:

γ̃ (x̃)
d
−→̃
r

dt̃
= −G̃êy +

√
γ̃ (x̃)kBT̃ (x̃)

−→
η̃(t̃). (2.1)

Here,
−→̃
r represents the position vector of the particle and êy is

the unit vector along the ỹ direction. γ̃ (x̃) denotes the frictional
coefficient of the system at a particular x̃ coordinate and it
remains the same for all values of ỹ for the given x̃. Similarly,
T̃ (x̃) represents temperature at a particular position x̃ in the
longitudinal direction. kB stands for the Boltzmann constant.
G̃ is a very weak constant bias acting along the transverse

direction of the system.
−→
η̃(t̃) = [η̃x(t̃),η̃y(t̃)] is a zero mean,

Gaussian, white noise, i.e.,

〈−→η̃(t̃)〉 = 0,

〈η̃i(t̃)η̃j (t̃ ′)〉 = 2δij δ(t̃ − t̃ ′), (2.2)

for i,j = x̃,ỹ.
The prefactor of η̃(t̃) in Eq. (2.1) suggests that η̃(t̃) obeys

the fluctuation-dissipation relation. The physical confinement
can be imposed on the particle’s motion by using reflecting
boundary condition at the walls of the enclosure. The walls of
the bilobal system, as shown in Fig. 1(a), can be described by
the following equation:

ω̃l(x̃) = −ω̃u(x̃) = Ly(x̃/Lx)4 − 2Ly(x̃/Lx)2 − c̃/2, (2.3)
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FIG. 1. (Color online) (a) The bilobal system with its geometrical
parameters. (b) Schematic diagram of the system subjected to local
heating. The shaded region corresponds to the heated zone. T0 is the
temperature of the low temperature bath and T1 is the temperature of
the high temperature bath. xl and xr stand for the position of the left
and right boundaries of the heated zone, respectively, and xm denotes
their mean position.

where ω̃l(x̃) and ω̃u(x̃) represent the lower and the upper
boundary functions, respectively, Lx denotes the distance
between the middle point of the bottleneck and the position
of the maximal width of the structure, Ly corresponds to
the narrowing of the boundary functions, and c̃ refers to the
remaining width at the bottleneck. Consequently, the local
half-width of the structure is given by

ω̃(x̃) = [ω̃u(x̃) − ω̃l(x̃)]/2. (2.4)

For further analysis, we use the dimensionless description
[13–17,19–24] of the system with the help of the following
scaled quantities. The length scales of the dynamics are made
dimensionless with the characteristic length Lx . This leads
to the scaled quantities x = x̃/Lx and y = ỹ/Lx , implying
c = c̃/Lx . This ensures the scaled boundary functions and the
local half-width represented as ωl(x) = ω̃l(x̃)/Lx = −ωu(x)
and ω(x) = ω̃(x̃)/Lx . The frictional coefficient γ̃ (x̃) is made
dimensionless with a reference damping constant γR at a
reference temperature TR and the dimensionless frictional
coefficient is represented as γ (x) = γ̃ (x̃)/γR . The time t̃ is
scaled as t = t̃/τ , where τ = γRL2

x/kBTR . τ is essentially
twice the time required for a particle to traverse a distance
Lx at temperature TR in the medium with damping coefficient
γR . The forces are scaled with the quantity FR = γRLx/τ , i.e.,
G = G̃τ/γRLx . In dimensionless form, the Langevin equation
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becomes

d
−→
r

dt
= −G(x)êy +

√
D(x)−→η (t), (2.5)

where D(x) is the rescaled diffusion coefficient and is
essentially the ratio of the scaled temperature T (x) = T̃ (x̃)/TR

and the scaled damping constant γ (x) = γ̃ (x̃)/γR , i.e., D(x) is
given by T (x)/γ (x). η(t) is the properly scaled Langevin force
which has been scaled by τ−1/2. A further point to note here
is that G̃, which is considered as a constant bias initially, has
become a function of x in the dimensionless description. We
obtain this space dependence of the constant force in Eq. (2.5)
since G(x) is actually G/γ (x). The spatial dependence of the
damping constant induces space dependence into the force.
However, the transverse force G̃ has been introduced in the
dynamics as a very weak bias and for numerical calculation
it can be kept as zero as well. As a consequence, its variation
does not alter the dynamics of the system from that with a
purely constant bias in practice. So, we can keep it constant
without losing any impact of the underlying physics of the
problem. The two-dimensional Langevin equation [Eq. (2.5)]
can be rewritten in two mutually perpendicular directions (x
and y directions) as

dx

dt
=

√
D(x)ηx(t),

dy

dt
= −G +

√
D(x)ηy(t). (2.6)

Here, ηx(t) and ηy(t) are the components of the Langevin force
η(t) in x and y directions, respectively. The scaled boundary

function is given by

ω(x) = [ωu(x) − ωl(x)]/2 = −ax4 + bx2 + c/2. (2.7)

The aspect ratio has been defined as a = Ly/Lx and b = 2a,
i.e., a and b are appropriately scaled constants. This particular
choice of physical confinement essentially captures analogous
features of the classical setup of a quartic bistable potential
which is considered as the standard model for the barrier
crossing problems. The two lobes represent two entropic
states of comparable stability [17]. This model has two large
symmetric cavities which are connected by a small bottleneck.
The consideration of spatial variation of temperature in this sort
of arrangement might be of considerable importance because
it has been reported [65] that within the human body, the
temperature profile depends to a great extent on the geometry
and the inhomogeneity of the body. Variable density and
heat conductivity of various tissues and local heat production
of different organs create a spatially varying temperature
profile within the body. This in turn is supposed to affect
the steady state density of various species in a given region as
population transfer through biological channels would depend
on the temperature profile of the system [1–3]. Our system
is expected to serve as the minimal model to analyze mass
transfer and steady state probability density of two states of
comparable stability in this kind of scenario. To deal with the
situation with higher complexity, a network of such systems
may be arranged in a proper manner to represent the spatially
distributed tissues and organs. Consideration of appropriate
temperature profile in this setup would be helpful to explain
the observed concentration of transported species.

B. Fokker-Planck equation in reduced dimension; temperature dependent effective entropic potential

Equation (2.6) can be alternatively written as follows:

γ (x)
dx

dt
=

√
γ (x)T (x)ηx(t), γ (x)

dy

dt
= −G +

√
γ (x)T (x)ηy(t), (2.8)

as G is a very weak force. The Fokker-Planck equation [66] corresponding to the Langevin dynamics [Eq. (2.8)] is given by

∂P (x,y,t)

∂t
= ∂

∂x
μ(x)

{[
∂

∂x
U (x,y)

]
P (x,y,t) + ∂

∂x
T (x)P (x,y,t)

}
+ μ(x)

∂

∂y

[
∂

∂y
U (x,y)

]
P (x,y,t) + D(x)

∂2

∂y2
P (x,y,t),

(2.9)

where the potential function has the form U (x,y) = Gy. Here, μ(x) = 1/γ (x) which implies that D(x) = μ(x)T (x). We arrive
at the above expression of the Fokker-Planck equation [Eq. (2.9)] since for the two-dimensional system, the scaled diffusion
coefficient is considered to be nonuniform along the x direction; a given area within the x range between xl to xr is locally heated
[Fig. 1(b)] and the temperature remains constant for all values of y at a particular x. As a consequence, the dynamics along
the x direction gets modified due to the temperature gradient [7,67,68]. The significance of the above Fokker-Planck equation
is noteworthy from a qualitative point of view. x and y are two independent degrees of freedom. For the one-dimensional case,
space dependent diffusion coefficient gives rise to a diffusion equation [67] whose spatial derivative parts resemble the partial
derivative parts along the x direction of Eq. (2.9). As the transverse direction is not subjected to spatial temperature variation,
the partial derivatives along the y direction remain unaltered in the two-dimensional Fokker-Planck equation. Equation (2.9) can
be rearranged and rewritten in the following alternative form:

∂P (x,y,t)

∂t
= ∂

∂x
D(x)exp

[
−U (x,y)

T (x)

]
∂

∂x
exp

[
U (x,y)

T (x)

]
P (x,y,t) + ∂

∂x
[μ(x)T ′(x)]P (x,y,t)

+ ∂

∂x

[
μ(x)

T ′(x)

T (x)
U (x,y)

]
P (x,y,t) + D(x)

∂

∂y
exp

[
−U (x,y)

T (x)

]
∂

∂y
exp

[
U (x,y)

T (x)

]
P (x,y,t). (2.10)

[Here, T (x) is the dimensionless temperature. It may be considered to be equivalent to kBT .]
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The direction of interest in this problem is the longitudinal direction. Therefore, following Zwanzig [11], one can integrate
the two-dimensional Fokker-Plank equation [Eq. (2.10)] over the transverse direction. This leads to the following equation:

∂

∂t

∫
dy P (x,y,t) = ∂

∂x
D(x)

∫
dy

{
exp

[
−U (x,y)

T (x)

]
∂

∂x
exp

[
U (x,y)

T (x)

]
P (x,y,t)

}

+ ∂

∂x
μ(x)T ′(x)

∫
dy P (x,y,t) + ∂

∂x

[
μ(x)

T ′(x)

T (x)

] ∫
dy U (x,y)P (x,y,t)

+D(x)
∫

dy

{
∂

∂y
exp

[
−U (x,y)

T (x)

]
∂

∂y
exp

[
U (x,y)

T (x)

]
P (x,y,t)

}
. (2.11)

Here, T ′(x) corresponds to the derivative of T (x) with respect to x. The last term in the parentheses can be integrated out to
give the flux along the y direction which vanishes at the boundary. The above description of the dynamics of the Brownian
particle can be further simplified by considering local equilibrium [11–17,19–24,36,37,41–45,48–54] along the y direction.
A considerable amount of work has been done on the modification and checking of validity of the reduction scheme of the
two-dimensional description of the dynamics along the direction of transport in several contexts [36,37,41–45,48–54]. The width
of the two-dimensional system is very small compared to its length. Besides, the temperature is nonuniform along the x direction
only and fixed over the entire y range for a particular value of x. Consequently, it is justified to assume that the motion along the y

direction settles down much faster compared to that in the x direction. The description of the dynamics in the reduced dimension
can be achieved by defining a local concentration C(x,t) along the x direction which is obtained by integrating P (x,y,t) over y [i.e.,
C(x,t) = ∫

dyP (x,y,t)] and an x-dependent effective potential A(x) as e−A(x)/T (x) = ∫
dy e−U (x,y)/T (x). This assumption leads to

the following expression of a conditional local equilibrium probability density of y at a given x: ρ(y; x) = e−U (x,y)/T (x)/e−A(x)/T (x)

and P (x,y,t) can be approximately written as a product of C(x,t) and ρ(y; x), i.e., P (x,y,t) ∼= C(x,t)ρ(y; x). Taking into account
the above relations, the dynamics of the system in the reduced dimension can be expressed as follows:

∂C(x,t)

∂t
= ∂

∂x
D(x)exp

[
−A(x)

T (x)

]
∂

∂x
exp

[
A(x)

T (x)

]
C(x,t) + ∂

∂x
[μ(x)T ′(x)]C(x,t). (2.12)

In deriving the above equation, we note that the third term of the right hand side of Eq. (2.11) vanishes because∫
dy U (x,y)P (x,y,t) = 0. One can obtain this result by integrating the function by parts and neglecting the irrelevant constant

term. The terms of Eq. (2.12) can be readjusted to represent the equation in the following form:

∂C(x,t)

∂t
= ∂

∂x
μ(x)

[
A′(x) + T ′(x) − A(x)

T ′(x)

T (x)

]
C(x,t) + ∂

∂x
D(x)

∂

∂x
C(x,t). (2.13)

The modified Fick-Jacobs equation as derived above represents the reduced description of the dynamics for the system with
irregular cross-sectional width and nonuniform temperature. This is the starting point of our analysis and can be considered as one
of the central results of our study. The first term of the right hand side of Eq. (2.13) can be considered as the effective drift term and
the second term takes care of the diffusion in the system having space dependent temperature. The interesting point to note here is
that in the Langevin equation [Eq. (2.6)] the diffusion coefficient D(x) guides the overall dynamics whereas in the Fokker-Planck
description [Eqs. (2.9)–(2.13)], μ(x) and T (x) make their presence independently. If we concentrate closely, it can be realized that
the diffusion terms in the Fokker-Planck description depend on D(x) which agrees well with the fact that the diffusion coefficient
in the Langevin dynamics is connected to the fluctuating term. However, in the drift term temperature gradient appears. The
spatial variation of temperature actually modifies the effective potential of the system. The two-dimensional Langevin dynamics
[Eq. (2.8)] reduces to the two-dimensional Fokker-Planck equation [Eq. (2.9)] by considering very high value of γ (x) [67] which
ultimately reduces to the one-dimensional Fick-Jacobs equation [Eq. (2.13)] after consideration of local equilibrium description
of Zwanzig along the transverse direction. The effective potential in this description can be extracted from the drift term as

Veff(x,T (x)) = A(x) + T (x) −
∫

dx A(x)
T ′(x)

T (x)
= A(x) + T (x) − A(x) ln T (x) +

∫
dx A′(x) ln T (x). (2.14)

The explicit expression for A(x) can be calculated using the previous relations. In the present case with a constant force acting
along the negative y direction and the boundary functions given in Eq. (2.7), the potential function A(x) reads as

A(x,T (x),G) = −T (x) ln

{
2T (x)

G
sinh

[
Gω(x)

T (x)

]}
. (2.15)

It is evident from the expression of Eq. (2.15) that the consideration of the presence of the weak force G like gravity along the
negative y direction is crucial to realize the form of the effective potential in the reduced dimension. In the very high G/T (x)
limit, the Brownian particle explores the regions in the proximity of the lower boundary of the system recovering the effect of
an energetic bistable potential. The limit G/T (x) −→ 0 corresponds to the entropy-dominated situation, i.e., the overall effects
appear due to the nontrivial influence of the boundary. G is a parameter which can be used to tune the system between the
energy-dominated and entropy-dominated regimes [17]. In the entropy-dominated situation [i.e., in the limit G/T (x) −→ 0]
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which is at the focus of our current study, the expression of A(x,T (x),G) reduces to

A(x,T (x)) = −T (x) ln[2ω(x)]. (2.16)

Therefore, the expression for the effective potential Veff ln (x,T (x) ln) [Eq. (2.14)] clearly suggests that both the effects of the
irregular cross-sectional width [appearing through the term ω(x) in A(x)] and nonuniform temperature [involving the terms T (x)]
are well represented in the dynamical equation of the Brownian particles moving in a confined space. It is also evident from the
above expression for Veff that the potential of the system is an explicit function of the temperature of the system.

C. Blow-torch effect and the relative stability of
the entropic states

The effective potential for the system where a particular area
has been heated at a higher temperature [as shown in Fig. 1(b)]
has been depicted in Fig. 2. We consider two heat baths which
are isolated from each other but connected to the system [67].
The arrangement is such that the overall system is thermalized
at a temperature T0 and an additional high temperature bath
with temperature T1 is placed within the range xl and xr .
That means whenever the Brownian particle comes within this
interval, it interacts with the high temperature bath [3,67]. The
span of the heated region is such that the particle can arrive at
a local equilibrium with the high temperature bath [3] whereas
the rest of the system is thermalized at temperature T0. For
any coordinate x, at a particular temperature T , the effective
potential Veff(x,T ) takes the following form:

Veff(x,T ) = A(x) + T = −T ln[2ω(x)] + T . (2.17)

The last two terms of Eq. (2.14) cancel each other because for a
given zone T (x) is constant. The plot of the effective potential
in Fig. 2 follows from the above expression [Eq. (2.17)] using
appropriate values of T0 and T1 for the low and the high
temperature regions. Following van Kampen’s prescription
[67], we calculate the steady state relative population density
of the two lobes. When the Brownian particle enters the hot
region at xl and leaves the region at xr , it withdraws energy
Veff(xr ) − Veff(xl) from the high temperature bath leading to
the entropy change for that bath −Veff (xr )−Veff (xl )

T1
. The low

temperature bath receives the equal amount of energy which
gives rise to an increase in entropy, given by Veff (xr )−Veff (xl )

T0
.

Therefore, Veff(xr ) − Veff(xl) amount of energy is transferred
from the high temperature bath to the low temperature bath
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FIG. 2. (Color online) Effective potential of the system subjected
to local heating. The system is in contact with the high temperature
bath (temperature T1) within the x range between xl and xr and with
the low temperature bath (temperature T0) elsewhere.

and the total entropy change for the system is given by
[Veff(xr ) − Veff(xl)][ 1

T0
− 1

T1
]. The probability of finding the

particle at the right side of xr increases in the steady state of the
system subjected to spatially varying temperature compared to
that of the system with a single temperature bath at temperature
T0, by the exponential factor of the entropy increase for the
process. The relative population density in the steady state in
this situation can be expressed as follows:

P st
right

P st
left

= P
eq
right

P
eq
left

exp

{
[Veff(xr ) − Veff(xl)]

(
1

T0
− 1

T1

)}
.

(2.18)

Here, P st
right and P

eq
right refer to the integrated probability for

the right lobe at the nonisothermal steady state and isothermal
equilibrium state, respectively. P st

left and P
eq
left denote the same

for the left lobe. Using the explicit form of Veff(x,T ) according
to Eq. (2.17), we get

P st
right

P st
left

= P
eq
right

P
eq
left

exp

[
−

(
T1

T0
− 1

)
{ln[2ω(xr )] − ln[2ω(xl)}

]
.

(2.19)

This is another key finding of this paper. The argument of
the exponential is positive implying enhancement of relative
population at the right lobe due to the heating at the left lobe.
The amplification effect appears as a result of the local heating
that alters the relative stability of the two entropic states which
are characterized by the geometry or the wall function of the
bilobal system. This may be considered as the Landauer’s
blow-torch effect in systems with entropic potential.

III. NUMERICAL SIMULATIONS IN TWO DIMENSIONS
AND DISCUSSIONS

We now examine in detail the effect of zonewise heating of
the bilobal enclosure to observe Landauer’s blow-torch effect
in physical confinement having nonuniform cross-sectional
width which gives rise to an effective entropic potential in
reduced dimension. The idea is to observe how local heating
in one entropic state of the system gives rise to the population
transfer to the other entropic state. These two states are
separated by a barrier which bears both the characteristics
of variation of cross section of the confinement, as well as
of the nonuniformity of temperature along the structure. By
entropic states, we refer to the left and the right lobes of the
bilobal enclosure. For computational purpose, full numerical
simulation of Eq. (2.6) in two dimensions along with the
appropriate boundary conditions [Eq. (2.7)] is implemented.
Thus, the motion of the Brownian particle remains essentially
free as G/D −→ 0; the only constraint imposed is that
it cannot move out of the given boundary. There is no
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conventional potential energy barrier present in the system.
The dynamics of the particles is affected only by the influence
of the boundary. Therefore, the effect of local heating which
is manifested in the altered steady state population density of
the two lobes considering a large ensemble of such system
appears solely as the influence of varying boundary functions
of the system.

It has been pointed out earlier [1] that the details of the noise
processes of the entire path connecting the competing states are
important to obtain the actual steady state population density
in these states. This fact triggers our interest to understand
how local heating of different zones of the same width of
the left lobe alters the steady state population density in the
right lobe. To this end, we quantitatively estimate two different
descriptors. The first one is the reduced probability density as
a function of x coordinate, i.e., C(x,t) = ∫ ωu(x)

ωl (x) P (x,y,t)dy.
The second one is the integrated probability of residence of the
particles in one of the two lobes. The first quantity reflects how
the probability distribution along the longitudinal direction
gets modified due to spatial variation of temperature along that
direction and the second one keeps a measure of the overall
populations of the two entropic states which are being changed
by the effect of zonal heating.

A. Reduced probability distribution

As mentioned above, the two-dimensional Langevin equa-
tion [Eq. (2.6)] is solved subjected to the boundary condition
[Eq. (2.7)] using improved Euler algorithm with 	t = 10−2.
The white, Gaussian noise terms in Eq. (2.6) have been
generated using the Box-Muller algorithm. The diffusion
coefficient present in the noise term takes care of both the
temperature as well as the damping constant of the system
as depicted by the dimensionless description of the system.
For different zones (the locally heated zone and the zones
in thermal equilibrium with the low temperature bath), we
use different and appropriate D(x) which reflects the effect
of varying temperature and viscosity of the medium. Say, the
temperature, damping constant, and the diffusion coefficient of
the original system are T0, γ0, and D0 = T0/γ0 and those of the
heated area are T1, γ1, and D1 = T1/γ1, respectively. During
the numerical solution of the Langevin dynamics [Eq. (2.6)],
we take the value of γ (x) and T (x) at the beginning of the
time step obeying the It̂o interpretation [69]. It has been argued
[70] that in systems with varying friction coefficient, both the
It̂o [69] and Stratonovich [71] descriptions may not lead to
the correct equilibrium distribution in the overdamped limit.
The “isothermal” (Hänggi) convention [72] which takes into
account the damping coefficient at the end of the time step
produces correct equilibrium distribution. However, during
our numerical simulation study for the exact two-dimensional
system, it has been observed that integrating the equations
[Eq. (2.6)] obeying It̂o’s convention gives physically consistent
data irrespective of the position of the heated zone. The
solutions obtained employing the “isothermal” description do
not exhibit proper steady state behavior when the position near
the bottleneck is heated. This may be due to the fact that the
“isothermal” convention might not be applicable to systems
having dimension higher than one to get correct equilibrium
state distribution [73]. The second point is that in our case

the variation of γ (x) or T (x) is not continuous. The particle
encounters the change of the environment not very frequently
as the span of the low temperature region is considerably large
and that of the heated area is sufficient to account for the
local thermal equilibrium. Therefore, the consideration of the
parameters at the beginning of the time step (It̂o’s description)
is supposed not to affect the correct portrayal of the steady
state behavior of the system. Recent articles [70] describe
novel methods for the simulation of Langevin dynamics in
inhomogeneous media. However, as we are not dealing with
inertial Brownian dynamics and concentrate on the particular
choice of inhomogeneity as described here, we simulate the
Langevin dynamics obeying It̂o’s prescription. Throughout
our numerical study, we have used the following values of
the parameters: a = 0.025, b = 0.05, c = 0.005, and G =
0.00001. We consider symmetric structure of the enclosure. To
study the reduced probability distribution for the system, we
consider 6 × 106 number of trajectories. It has been checked
carefully that the reduced probability density function indeed
converges for the given number of trajectories. Initially, all the
Brownian particles of the ensemble are kept at the middle of
the bottleneck and allowed to evolve for sufficiently long time
so that the ensemble attains a steady state distribution. This
particular choice of initialization has been taken into account to
ensure the equal occupancy of both the lobes immediately after
the initial time step. It is convenient to compare the relative
population transfer as a result of local heating with respect to a
symmetric initial integrated probability density for the entropic
states of comparable stability. This is actually equivalent to the
random initialization which also gives rise to equal integrated
probability density for each lobes initially. We are interested
in the steady state properties of the system. Initial condition
will have no effect on the steady state probability distribution
or integrated probability of residence of the particles in either
of the two lobes as the initial history is not retained due to
the presence of noise in the system. In presence of a single
heat bath, the particles are expected to accumulate around the
positions of the maximal width of the structure in the left and
the right lobes giving rise to two peaks of same height in the
steady state probability distribution curve. When we consider
local heating in a selected region of a lobe, say the left lobe, the
total probability density of that lobe decreases and that of the
other lobe (right lobe) increases eventually. The probability
density naturally decreases at the domain which is kept at a
higher temperature because the particles of the ensemble at
this region gain higher kinetic energy from the bath and move
faster from this area [3]. Therefore, the probability to find the
particles in this region decreases, leading to a lower probability
density of the particles in the heated zone. When the Brownian
particles are in the heated lobe (here left lobe), they move faster
towards the bottleneck. Consequently, the reduced probability
density of the particles in the right lobe increases. One point
regarding the existence of the local thermal equilibrium in
the system should be addressed here. The Brownian particles
do not carry inertia from the hot to the cold region. We
have considered the overdamped limit of the dynamics of
the Brownian particles and it does not allow for any inertia.
Therefore, the temperature profile of the system remains
unchanged. The overall effect of local heating is the altered
population density in the steady state. The interesting point of
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FIG. 3. (Color online) Probability distribution curve for the system with four different heated zones in the left lobe. The scaled diffusion
coefficients of the low temperature and high temperature regions are D0 = 0.1 and D1 = 2.0, respectively.

observation is that not only the probability density centering
the middle point of the heated zone decreases, but local humps
are apparent at the proximity of the left and right boundaries
of the hot area also. The appearance of local humps can be
understood from the feature of the effective entropic potential
which arises in the reduced description of the dynamics in the
present setup. As there is an explicit temperature dependence
of Veff , the Brownian particles feel a different potential in
the region which has been heated locally. It is evident from
Eq. (2.17) and the plot of the potential having a heated zone
(Fig. 2) that at the high temperature region, the potential
experienced by the particles is higher compared to that for
the isothermal case. This indicates that at the heated area,
the velocity of the particles gets enhanced due to increased
thermal fluctuation and the reformed potential energy curve
implying the entropic nature of the effective potential. The
feature is distinct since in the classical Landauer’s blow-torch
effect, only the velocity enhancement of the particles due to
thermal effect [3] is encountered at the hot part of the system
which reduces the probability to find the particles in that region
giving rise to the altered probability distribution. The increased
velocity of particles at the heated area causes depletion in
the local probability density centering the midpoint of that
zone, but no humps appear at the boundaries of the hot area.
In the present system having varying cross-sectional width,
the effective potential has two depressions at the left and the
right boundaries of the high temperature domain due to the
modification of the potential affected by local heating. As
a consequence, the particle spends longer time than usual
just before entering and after leaving the hot area at the

left and the right boundaries of the heated region, which it
finds to have lower potential compared to its high temperature
neighborhood. Away from the boundaries, the conventional
dynamics takes over. The temperature dependence of the
effective potential in the reduced description is reflected
in the results obtained from full numerical simulations of
the dynamics in two dimensions. The reduced probability
distribution curves for the system with four different locally
heated zones have been presented in Figs. 3(a)–3(d). All of
these curves show depleted reduced probability density in the
left lobe and rise of the same in the right lobe. Local humps
are observed in all of these cases near the boundaries of the
heated zone.

The difference in the diffusion coefficients (i.e., tempera-
ture) has been kept much higher in all the cases represented
by Figs. 3(a)–3(d) to exhibit prominently the process of
population transfer due to Landauer’s blow-torch effect in
the system characterized by varying cross section. When we
are solving the actual dynamics of the system for numerical
purpose, there is no problem at all to consider the above
difference in diffusion coefficients. Moreover, in a real
laboratory setup, two regions of such kind of system can be
held at high temperature difference by using appropriate heat
sources. For smaller temperature difference between the low
and high temperature domains, the above-mentioned effects
are observed in the probability distribution curve, but the
height of the local humps in the distribution curve becomes
smaller as expected. The probability distribution curves for
smaller temperature difference have been shown in Figs. 4(a)
and 4(b). The assumption of local equilibrium along the y
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FIG. 4. (Color online) Probability distribution curve for the sys-
tem with (a) D0 = 0.1 and D1 = 0.6 and (b) D0 = 0.1 and D1 = 0.2.

direction for reduced dynamical description also remains valid
as the effective temperature dependent potential can explain
the characteristics of the reduced probability distribution curve
for the system obtained from full numerical simulations of the
exact dynamics in two dimensions.

The results presented here are based upon the ensemble
average of the observable quantities. We stress here that the
system is ergodic. In order to verify this, we compare reduced
probability density obtained by averaging over an ensemble
of identical systems when they reach steady state and that
obtained from a single trajectory considering the distribution
of its longitudinal position variable starting from the initial
condition and evolving up to a sufficiently long time. The
comparison of the reduced probability density obtained from
these two different considerations has been depicted in Fig. 5.

B. Dependence of population transfer on the detailed kinetics
of the path connecting the entropic states

The extent of population transfer is measured in terms of the
integrated probability of residence of the particles in the left
and in the right lobes. We define the integrated probabilities as
follows:

Pi(t) =
∫ ωu(x)

ωl (x)
dy

∫ ±xr

x0

dx P (x,y,t), (3.1)

where i stands for the left or the right lobe (i = left, right).
x0 is the x coordinate of the bottleneck position. To get the
integrated probability in the left lobe, one has to integrate
the distribution function over the entire y range starting from
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FIG. 5. (Color online) Checking ergodicity: reduced probability
density curves calculated from the data of an ensemble of trajectories
at the steady state and a single trajectory taking into account its
longitudinal space variables during its evolution for the parameter set
D0 = 0.1 and D1 = 2.0; xl = −0.4 and xr = −0.25.

x0 to −xr , the extreme left end of the structure. Similarly,
for Pright(t), the limit of the integration of the x range runs
from x0 to +xr , the extreme right end of the enclosure. For
the system kept at a constant temperature, both the lobes get
equally occupied, at the steady state. This implies that the
normalized integrated probability for both the lobes attains a
value equal to 0.5 in the asymptotic limit. In case of the system
with locally heated region in the left lobe as considered in
this study, the values of Pi(t) deviate from 0.5 in the steady
state. The steady state value of Pleft(t), which is expressed
as P st

left, decreases from 0.5 and that for Pright(t) (presented
as P st

right) rises above 0.5. This has been shown in Fig. 6.
Here, Pleft(t) and Pright(t) have been plotted against time for
constant temperature throughout the system and for three
different cases where the locally heated zone lies between
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FIG. 6. (Color online) Pleft(t) and Pright(t) plotted against time
and attainment of the steady state value for the integrated probabil-
ities. The lines with hexagonal and circular symbols correspond to
the plot of Pleft(t) and Pright(t) for the system with a single heat bath
with diffusion coefficient D0 = 0.1. The other three pairs of curves
correspond to the case when the system is heated between three
different x ranges of same width and for all these cases D0 = 0.1
and D1 = 2.0. The curves which saturate below 0.5 are the integrated
probabilities for the left lobe and those saturate above 0.5 stand for
the integrated probabilities for the right lobe.
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FIG. 7. (Color online) P st
right plotted against xm for four different

values of D1. D0 has been kept fixed at 0.1 and the width |xl | − |xr |
has value equal to 0.15 for all four cases.

three different x ranges having the same width. The integrated
probabilities have been calculated taking into consideration
106 trajectories. As expected, for the system with uniform
temperature throughout its range, Pleft(t) and Pright(t) saturate
at 0.5. On the other hand, the steady state value of the integrated
probabilities varies depending upon the position of the heated
zone.

It is therefore apparent that the extent of population transfer
will depend on the position of the region which has been
kept at a higher temperature. We now examine the change
in population density in terms of the integrated probability
of residence of the particles in the right lobe. The higher
value of P st

right implies more effective transfer of particles
through the bottleneck from the left lobe as a consequence
of local heating. The variation of the P st

right with respect to the
mean position of the heated zone xm (xm is the mean value
of xl and xr ; its modulus value refers to the distance of the
midpoint of the hot domain from the bottleneck position along
the x axis) has been represented in Fig. 7 for four different
values of D1 keeping D0 fixed. The steady state integrated
probability for the right lobe (P st

right) has been averaged over
106 number of trajectories. The value of the Pright(t) has been
recorded for each xm after allowing all the particles of the
ensemble to evolve for quite a long time so that the integrated
probability for the right lobe reaches its steady state value.
The most striking aspect of the variation of P st

right against xm

is that there occur two maxima in the plot signifying that
heating around two particular domains separately of a given
lobe maximizes population transfer in the other lobe. One
maximum appears slightly away from the bottleneck position
and the other centering the position of the maximal width of the
structure in the left lobe. Furthermore, the extent of population
transfer depends on the temperature difference between the
high temperature and the low temperature regions as expected.
For higher temperature difference, the proportion of transfer
is higher. This is also evident in Fig. 7.

To gain further insight, we have examined the variation of
the mean first passage time (MFPT) against xm (Fig. 8) for
the identical situations above. To calculate the MFPT, we take
into account a large ensemble of trajectories. Initially, all the
particles are kept at the extreme left end of the structure and the
time of escape for the particle from the left lobe is measured
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FIG. 8. (Color online) MFPT plotted against xm for four different
values of D1. D0 has been kept fixed at 0.1 and the width |xl | − |xr |
has a value equal to 0.15 for all four cases.

and is averaged over the ensemble. This study is repeated for
each xm keeping the width of the heated zone fixed to get the
intended variation. It is observed that the MFPT exhibits two
minima when plotted against xm. Similar to the previous case,
one minimum corresponds to the position that lies between
the bottleneck position and the position of the maximal width
and the other one centers around the position of the maximal
width of the structure. This fact supports that heating in the
proximity of these two regions enhances the rate of escape
from the left lobe leading to maximum integrated probability
in the right lobe at the steady state.

The observed dependence of the effectiveness of the transfer
of the particles on the position of the heated region follows
exclusively from the influence of the confinement having
varying width. The positions of the extrema near the bottleneck
in both the P st

right versus xm and MFPT versus xm plot suggest
that heating around these positions helps the particles to cross
the bottleneck to maximum extent. This fact indicates that
heating at the position of the bottleneck is less efficient to make
the particles cross the entropic barrier compared to the heating
at the region which lies slightly left to it. This finding is similar
to that observed in case of the classical Landauer’s blow-torch
effect in presence of energetic barrier [8], which implies that
supplying extra energy around this part of the system orients
the particles mostly to cross the barrier by helping them to
climb uphill in the effective entropic potential curve. Providing
extra energy at the positions where orientation of the particles
towards the constricted area can be done most efficiently
enhances the efficacy of the transfer process, consequently
increasing the proportion of transfer. The second maximum in
the P st

right versus xm plot which appears near the position of the
maximal width of the structure bears pure signature of entropic
transport. It has been pointed out by Zwanzig [11] that when
a Brownian particle travels through physical confinement of
varying width, the motion of the particle gets slowed down not
only at the position of the bottleneck, but at the position of the
bulge also. In the first case, the particle takes longer time to
cross the bottleneck as it has to find its way through the narrow
region, and for the latter case (near the bulge) it gets extra
available space which it can explore through its random walk,
thereby reducing the effectiveness of the directed transport.
Therefore, the directed motion of the particle is affected at
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the position of the maximal width of the structure. Energizing
the particles in this region by using high temperature bath
drives them away from this region. As the available phase
space is more at the right side of the heated area, most of
the particles move towards the bottleneck, thereby increasing
the effectiveness of the entropic barrier crossing process.
This effect manifests itself in the second minimum of the
MFPT versus xm plot and the second maximum of the
P st

right when plotted against xm. Heating around the position
of the maximal width also affects maximum number of
particles as the population is maximum at that position.
Therefore, the steady state integrated probability density gets
maximally altered due to heating at the above-mentioned
region.

One pertinent point needs attention. The positions of the
extrema of the plots for P st

right versus xm and MFPT versus
xm are expected to overlap as the ratio P st

right/P
st
left is equal

to the ratio of the transition rates over the barrier. However,
the positions of the maxima in the P st

right versus xm plot do
not correspond exactly to the positions of the minima of
the MFPT versus xm plot. This deviation may arise due to
the fact that to calculate the MFPT, we have kept all the
particles initially at the extreme left end of the structure, i.e.,
we do not start with a Boltzmann distribution of particles
within the left lobe. Therefore, the transition rate is not
the inverse of the MFPT. Our considered initial condition
brings another time scale into the system: the time scale of
relaxation of the initial distribution to the Boltzmann distri-
bution. Consequently, the positions of the extrema in the two
above-mentioned plots do not overlap. The existence of two
minima in the MFPT versus xm plot corroborates qualitatively
the appearance of the two maxima in the P st

right versus xm

plot.
Another fact needs clarification. As we are studying the

entropic analog of Landauer’s blow-torch effect, the heated
areas of same width are considered to compare the steady
state probabilities for differently heated regions.

To examine the variation of P st
right against xm from the

viewpoint of the effective reduced dynamics, we plot P st
right with

respect to varying xm obtained from the numerical solution
of the one-dimensional Fick-Jacobs equation [Eq. (2.13)] or
the corresponding Langevin equation. This dependence has
been represented in Fig. 9. It is observed that the variation
is qualitatively the same with that obtained from numerical
findings.

IV. CONCLUSION

We have studied in detail the dependence of relative
occupancy of two competing entropic states on the modified
kinetics due to local heating in the path which connects these
two states. The two lobes of a bilobal enclosure have been
considered as the two entropic states. A portion of one of the
lobes (here, the left lobe) is kept at a higher temperature to
observe its effect on the relative stability or altered population
density in the other lobe (right lobe). This may be considered
as an entropic analog of Landauer’s blow-torch effect. We
summarize the main conclusions of this study as follows:
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FIG. 9. (Color online) P st
right vs xm plot obtained from the reduced

description of the dynamics for D0 = 0.1 and D = 2.0.

(i) On the basis of the reduced dynamical description of the
process, we derive an effective entropic potential which bears,
in addition to the characteristics of the varying cross section
of the system, a clear signature of the nonuniform temperature
along its length.

(ii) The blow-torch effect as well known in the energetic
case leads to alteration of relative stability of the two entropic
states.

(iii) The reduced probability distribution of the particles
in the direction of transport calculated by full numerical
simulation in two dimensions with appropriate boundary
condition and considering a large ensemble of trajectories
exhibits some characteristic features which can be explained
by the nature of the effective entropic potential in reduced
dimension.

(iv) The degree of population transfer in the right lobe at
the steady state due to the heating at the left lobe depends in
a very interesting way on the placement of the heated zone.
A detailed two-dimensional Brownian dynamics simulation
study reveals that there appear two maxima in the plot of
the integrated probability of residence of the particles at the
right lobe against the mean position of the high temperature
region. These two maxima correspond to the positions of the
heated area which maximize the effectiveness of the population
transfer from one entropic state to the other implying that
population transfer can be done most efficiently by heating
around these two zones.

We conclude with a note that the current investigation is
expected to have applicability in explaining phenomena related
to population transfer processes occurring in real biological
channels subjected to inhomogeneity of temperature and to
model appropriate arrangements for entropic transport in
geometry-controlled kinetics. We also believe that our findings
may be useful to study the local heating effect on the kinetics of
the chemical reactions which occur in a confined space having
varying cross section.
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