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We consider the diffusive motion of a particle performing a random walk with Lévy distributed jump lengths
and subject to a resetting mechanism, bringing the walker to an initial position at uniformly distributed times. In
the limit of an infinite number of steps and for long times, the process converges to superdiffusive motion with
replenishment. We derive a formula for the mean first arrival time (MFAT) to a predefined target position reached
by a meandering particle and we analyze the efficiency of the proposed searching strategy by investigating criteria
for an optimal (a shortest possible) MFAT.
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I. INTRODUCTION

Limited random walks, with sudden termination of a
trajectory, are frequently analyzed in descriptions of motion in
porous media, biological tissues, composite materials, and dy-
namic networks and of extreme, catastrophic events like gam-
bler’s ruin, chemical reactions, and species extinction [1–5].
Quite often, however, the absorption events and disappearance
of trajectories are followed by resets or restart activities of
the system, e.g., the relocation of searching paths in animal
foraging, the search for target location by repair proteins, or
the return to the initial position after an unsuccessful search
for an address by an individual lost in a vast city [6–8].

A random walk with restart is also known as a graph mining
technique, widely used in the machine learning community for
page ranking or web search models and cryptology [9–12]. In
this approach the frequency of visits paid to a given node
can be analyzed as a random walk on a graph. It is described
as an ordered sequence of visits to vertices with a source
(initial) vertex probability �p0. For Markov chain models of
transitions between subsequent locations on a graph described
by a matrix �, reset events inject additional randomness to the
walk �pi+1 = (1 − c)� �pi + c�si with c being the probability of
resetting per step and �si representing an arbitrary probability
vector added at resetting.

Many intriguing facets of the process in which a Brownian
particle is stochastically reset to its initial position with a
constant rate have been investigated by Evans and Majum-
dar [8]. The stationary state of such a process has been shown
to be described by a non-Gaussian distribution which, due
to a nonvanishing steady state current directed towards the
resetting position, violates the detailed balance condition.
The temporal relaxation towards this nonequilibrium steady
state has been shown to exhibit a dynamical transition [13].
Moreover, it has been proved [8] that there exists an optimal
resetting rate that minimizes the average hitting time to the
target. Extensions to space depending rate, resetting to a
random position with a given distribution and to a spatial
distribution of the target, have been also considered in

Ref. [14]. Brownian diffusion in external potentials have been
further analyzed in a recent study by Pal [15].

In a somewhat different context, similar random walks with
stochastic resets have been analyzed by Durang et al. [16],
who posed the problem of interacting particles subject to a
stochastic return to the initial configuration in the coagulation-
diffusion process. The particles perform random hops to
nearest-neighbor sites such that upon the encounter of two
particles, the arriving particle disappears. The stochastic reset
is described then by a given set of probabilities for having some
consecutive empty sites. A Markov monotonic continuous-
time random walk model in the presence of a drift and Poisson
resetting events has been addressed in an elegant work by
Montero and Villarroel [17], who derived general formulas for
the survival probability and the mean exit time.

While most of the works related to random walks with
resets are based on continuous and discretized version of a
Wiener process, relatively few studies have been devoted to
resetting the accompanying generalized Wiener motion with
discontinuous Lévy jumps. Lévy flights and Lévy walks [18]
have been claimed to be observed in many foraging animal
species [19–28], which has led to theoretical analysis showing
an optimality of Lévy flights or Lévy walks in different
setups [20,29–33]. The summary of those results can be
found in a recently published book [34]. The optimization
of a mean first passage time (MFPT) in a discrete time
model of Lévy flights with stochasting resetting has been
addressed in Ref. [35], where it has been shown that the
optimal parameters admit jumps (i.e., discontinuous changes)
as functions of a distance to the target. Hereafter, by analyzing
statistics of first arrival times (FAT) of the continuous-time
version of the model, we demonstrate parameter-dependent
transition between the optimal Gaussian and non-Gaussian
search strategies.

In this work we concentrate on a variant of the model, in
which a one-dimensional jump-like searching process with
resetting events is analyzed as a renewal Markov model with
Lévy jumps. We assume that a random searcher starts its
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motion at x0 = 0 and tries to find the object located at some
position x. The walker does not memorize its former locations,
and the steps undertaken at any instant in time are statistically
independent and drawn from a symmetric stable distribution
with a stability index α ∈ (0,2]. Furthermore, at random times
following the Poisson point process, the searcher decides
to instantaneously reset to the initial position. We derive
an expression for the transition probability density of such
process, analyze the existence and character of the long-time
stationary distribution, and discuss optimal conditions for the
mean first arrival time (MFAT).

The paper is organized as follows: Section II introduces
the model and discusses the structure and stationary solutions
of evolution equations for corresponding probability distri-
bution functions. The mean first arrival time in the model is
introduced in Sec. III and its optimization is further analyzed
in Sec. IV, which presents the most important results of
this work. We summarize the paper and add conclusions in
Sec. V.

II. TIME EVOLUTION AND TRANSITION PROBABILITY

We start with an analysis of the integral equation that
governs the evolution of the probability density function for
the process {X(t),t � 0}:

W (x,t |x0,t0)dx

≡ Prob{x < X(t) � x + dx|X(t0) = x0}. (1)

In the course of time W (x,t |x0,t0) is subject to possible reset
events to x = 0 or jumps (Lévy flights). Resets are independent
from flights and occur in time according to Poisson statistics
with an average expectation time for the occurrence of the
event given by r−1. Note that for the purpose of analysis, we
have untied the initial and resetting positions. We denote the
former as x0 and keep the latter at the origin. The overall
process is time homogeneous, i.e., W (x,t |x0,t0) = W (x,t −
t0|x0,0) ≡ W (x,t − t0|x0), so that the propagator satisfies the
equation (for the derivation and a detailed discussion, see
Ref. [36])

W (x,t |x0) = e−rtW0(x,t |x0) +
∫ t

0
dτe−rτ rW0(x,τ |0).

(2)

The first term on the right-hand side (RHS) of the
above renewal equation represents the survival of the prob-
ability mass without resetting events, whereas the second
term describes the evolution after the last reset. The func-
tion W0(x,τ |x0,t0) denotes the probability density function
(PDF) of the process when the resetting mechanism is
switched off. In this case the random walk propagator fulfills
equation

W0(x,t |x0) = δ(x − x0)

[
1 −

∫ t

0
�(τ )dτ )

]
+

∫ t

0
�(t − t ′)

×
∫ +∞

−∞
p(x − x ′)W0(x ′,t ′|x0)dx ′dt ′, (3)

where �(t) is the waiting time PDF, independent of the jump
length PDF p(x − x ′). In the Fourier-Laplace space

W (k,s) ≡ F[L[W (x,t); t → s]; x → k],

the integral Eq. (3) takes the form of

W0(k,s|x0) = 1 − �(s)

s

1

1 − �(s)p(k)
, (4)

where L[f (t)] ≡ ∫ ∞
0 exp(−st)f (t)dt . We further assume

that �(t) has a well-defined mean value, τ0 = ∫ ∞
0 t�(t)dt ,

and p(x) is the PDF of the Lévy stable form, so that its
characteristic function reads

F[p(x)] = exp[−σα|k|α], (5)

with the stability index 0 < α � 2. The resulting process
is Markovian, with the variance diverging for α < 2 and
fractional moments [37] scaling like

〈|x(t)|q〉 ∝ (Dt)q/α, (6)

where D = σα/τ0. The asymptotic behavior of W0(k,s|x0,0)
can be deduced by taking the limit k → 0 and s → 0, which
implies

�(s) ≈ 1 − sτ0 + · · · , p(k) ≈ 1 − D|k|α. (7)

After proper rescaling of the waiting times and jumps [37], the
diffusion limit of the integral Eq. (3) is obtained in the form of
a space fractional Fokker-Planck equation (FFPE),

∂

∂t
W0(x,t |x0) = D

∂α

∂|x|α W0(x,t |x0), (8)

with ∂α

∂|x|α denoting the symmetric Riesz space fractional
derivative which represents an integrodifferential operator
defined as [38,39]

∂α

∂|x|α f (x) = −1

2 cos(πα/2)
(2 − α)

× ∂2

∂x2

∫ ∞

−∞

f (x ′)
|x − x ′|α−1

dx ′, (9)

which has a particularly simple form in the Fourier space

F
[

∂α

∂|x|α f (x)

]
= −|k|αF[f (x)]. (10)

The total propagator of the process W (x,t |x0) can then be
obtained from Eq. (2). In the Laplace domain this equation
has the form

W (x,s|x0) = W0(x,s + r|x0) + r

s
W0(x,s + r|0). (11)

In the case of Lévy flights W0(k,s|x0) = eikx0

D|k|α+s
. Hence

W (k,s|x0) is given by

W (k,s|x0) = eikx0 + r
s

D|k|α + s + r
(12)

and obeys the differential equation

sW (k,s|x0) − eikx0

= −D|k|αW (k,s|x0) − rW (k,s|x0) + r

s
. (13)
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The inverse transformation gives the FFPE describing the
evolution of the total probability distribution

∂

∂t
W (x,t |x0) = D

∂α

∂|x|α W (x,t |x0) − rW (x,t |x0) + rδ(x),

(14)

with initial condition W (x,0|x0) = δ(x − x0). Equation (14)
is analogous to the Fokker-Planck equation defining a model
of diffusion with stochastic resetting [8]. The difference lies
in the fact that instead of a second-order spatial derivative,
characteristic of normal (Gaussian) diffusion, we are dealing
now with a nonlocal fractional derivative, which describes
Lévy flights. Note that the model analyzed in this paper
includes the other one as a special case, for α = 2.

Having calculated the propagator in the Fourier-Laplace
space, it is straightforward to obtain a characteristic function
of the stationary distribution. For the sake of simplicity, we also
introduce a length scale λα ≡ D

r
. By definition, the stationary

PDF can be then derived from the relation

ps(k; λ,α) ≡ lim
s→0

sW (k,s|x0)

= rW0(k,s = r|0) = 1

1 + |λk|α . (15)

The resulting function, Eq. (15), is known as the Linnik
distribution [40,41], which is a special case of the family
of geometric stable PDFs, approximating a distribution of
normalized sums of independent and identically distributed
random variables

SN =
N∑
i

xi, (16)

where the number of terms N is sampled from a geometric
distribution, i.e., P (N = k) = (1 − p)k−1p. Summation of
that type has been used, among others, in modeling energy
release of earthquakes, water discharge over a dam during
a flood, or avalanche dynamics [42]. The Linnik PDF can
be expressed in terms of elementary functions only for
α = 2, in which case it becomes a well-known Laplace
distribution:

ps(x; λ,2) = 1

2λ
e− |x|

λ , (17)

with a zero mean and a variance Var[x2] = 2λ2. For α = 1 the
closed-form expression for the corresponding Linnik PDF can
be obtained (cf. Appendix A) in terms of special functions
Si(x) ≡ ∫ x

0
sin tdt

t
and Ci(x) ≡ − ∫ ∞

x
cos tdt

t
, and in a scaled

form reads

λps(λx; 1,1) =
(

1

2
− Si(x)

π

)
sin |x| − 1

π
Ci(|x|) cos x.

(18)

When passing to the analysis of the first arrival times in a
subsequent section, we note here that the result (15) has been
obtained earlier in Ref. [43] for a discrete time counterpart of
the resetting model.

III. THE PROBLEM OF THE FIRST ARRIVAL TIME

For the stochastic process defined by Eqs. (1) and (2),
a question of interest is in the estimation of the waiting
time before the first event of a magnitude greater than a
given threshold is observed. However, as has been discussed
elsewhere [44–46], the superdiffusive nature of Lévy flights
strongly influences the statistics of first passage times over
the threshold. In particular, due to long-range Lévy jumps
occurring with an appreciable probability, the trajectory of
the process may cross the threshold numerous times without
actually hitting it. In consequence, the statistics of first arrival
times at a predefined barrier is different from the statistics of
first passages over it.

Following Refs. [1,44], we introduce the first arrival time
PDF pf a(t,x), which describes the distribution of times
Tf a in terms of the integral equation for the propagator
W (x,t |0,0):

W (x,t |0,0) =
∫ t

0
dτ pf a(τ,x)W (x,t |x,τ ). (19)

The above formula can be easily interpreted: It simply states
that the process which at time t finishes up at x had to get to that
point for the first time at some time τ ∈ (0,t). After that it could
move freely until at time t , when it came back to the very same
point. The assumption of time homogeneity (W (x,t |x,τ ) =
W (x,t − τ |x,0)) explains a convolution operator on the RHS
of Eq. (19). The function pf a is a probability density function
of its first argument. The second argument denotes that the first
arrival to a position x is evaluated. For readability, we skip D,
r , and α in the parameter list. From now on, we also assume
that the initial and reset positions coincide.

By transforming Eq. (19) into the Laplace space a simple
algebraic relation is obtained:

W (x,s|0) = pf a(s,x)W (x,s|x). (20)

It is important to notice that W (x,s|x) �= W (0,s|0), as the
resetting mechanism introduces space inhomogeneity. Our aim
is to derive a formula for the mean first arrival time (MFAT),
which can be obtained from pf a(s,x) as follows:

〈Tf a(x)〉 = − ∂

∂s
pf a(s,x)|s=0 = 1 − pf a(s,x)

s

∣∣∣∣
s=0

. (21)

We proceed by inserting the propagator, Eq. (11), and the
algebraic relation between the propagator and pf a(s), Eq. (20),
into the formula for MFAT, Eq. (21). After straightforward
algebraic manipulations we arrive at

〈Tf a(x)〉 = 1

r

(
W0(x,s = r|x)

W0(x,s = r|0)
− 1

)

= 1

r

(
ps(0; λ,α)

ps(x; λ,α)
− 1

)
. (22)

Note that for simplicity we use a shortened notation W0(x,t) ≡
W0(x,t |0,0). Equation (22) shows that the MFAT can be
expressed either in terms of the Laplace transform of the
propagator of the standard Lévy α-stable process without
resetting, or in terms of the stationary PDF of the process
with the resetting mechanism switched on. This result is very
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general, since in the derivation no particular form of W0(x,t |x0)
has been assumed.

We further focus on the special case of Lévy flights.
In general, the propagator of a Lévy stable process cannot
be expressed in terms of an elementary function of x.
Representations in terms of the Fox functions [47] and in
terms of the generalized hypergeometric functions [48] are
known, but they are not useful in our case. We can, however,
calculate W0(x,s = r|x) and deduce from its form the range
of the stability parameter α that guarantees finiteness of the
evaluated MFAT:

W0(x,s|x) = 1

2π

∫
R

dk

∫ ∞

0
dte−st e−D|k|αt

= 

(

1
α

)



(
1 − 1

α

)
παD

1
α s1− 1

α

= 1

α sin π
α
D

1
α s1− 1

α

. (23)

For any x �= 0, the propagator W0(x,r|0) is finite, since it
is an integral of an oscillating function with an amplitude
decreasing to zero, and can be rewritten as an alternating
series. We therefore conclude from Eq. (23) that the MFAT
diverges for α � 1 and remains finite for 1 < α � 2. That
apparent finiteness of the MFAT in case of Lévy flights
is rather surprising, taking into account the discontinuous
character of superdiffusive trajectories and thus the possibility
of overshooting (i.e., jumping over the target).

A. Asymptotic behavior

The average 〈Tf a(x)〉 cannot be expressed in terms of
elementary functions for arbitrary α. Nevertheless, we can
learn something about its behavior for large and small
distances x to a target. By taking a well-known expression for
the asymptotic expansion of α-stable distributions [47] and
transforming it to the Laplace space, or otherwise, directly
expanding

1

D|k|α + s
=

∞∑
n=0

(−D|k|α)n

sn+1
(24)

and transforming this back from the Fourier space term by
term, we obtain an asymptotic expansion of the propagator W0

in the Laplace space (see also Refs. [49,50] for more formal
derivations):

W0(x,s|0,0) = 1

π

∞∑
n=1

(−1)n+1 sin
(π

2
nα

)Dn
(nα + 1)

sn+1xnα+1
.

(25)

This expression is correct for α ∈ (1,2). For α = 2 we do not
need the asymptotic expansion since in this case we have a
closed-form expression:

W0(x,s|0,0) = 1

2
√

Ds
e−|x|

√
s
D (for α = 2). (26)

One can easily verify that Eqs. (22) and (23) together with
Eq. (26) give the same result as the one derived in Ref. [8].
We truncate the series at the first term and so obtain the large

x behavior of the MFAT:

〈Tf a(x)〉 ∝
{

xα+1 ; 1 < α < 2

ex
√

r
D ; α = 2

. (27)

We may also expand the MFAT around x = 0 using the
known expansion of the Linnik distribution [49,50]. This leads
to

〈Tf a(x)〉 ≈ α sin π
α

2 sin π(α−1)
2 
(α)

1

r
1
α D1− 1

α

xα−1 + O(x2α−2).

(28)

IV. OPTIMIZATION OF THE MFAT

Given a distance to a target x, one could be tempted to
determine the optimal search kinetics of this location. We
choose MFAT as an objective function and minimize it in the
space of parameters (r,α). We will denote derived parameters
of the efficient strategy as r∗(x), α∗(x), respectively, and the
corresponding optimal MFAT as T ∗(x).

A. Fair comparison

Since we want to compare Lévy flights with different
stability indices α, it is important to carefully choose the
parametrization of the family of jump distributions. One
commonly used is φ(k) = e−|k|α , which in our case means
fixing D = 1 for every α. Alas, this choice is very arbitrary and
based on simplicity of a characteristic function for symmetric
stable distributions. As an alternative option, we propose here
a straightforward and consistent approach based on fractional
moments. Let us define a random variable ξα to be a position
of the process without resetting at time t = 1 (this fixes the
time unit). The pth fractional moment may be expressed as

λ
p

0 = 〈|ξα|p〉 = D
p

α f (α,p), (29)

where the condition p < α has to be satisfied in order for the
fractional moment to be finite. Function f (α,p) is known and
reads [51]

f (α,p) = 2p+1

(

p+1
2

)



( − p

α

)
α
√

π

(− p

2

) . (30)

We want to keep λ0 constant (e.g., λ = 1) so our D will depend
on α and p. The most natural choice of p in our case is p = 1
since it does not exclude any solution (in line with findings
of Sec. III, we refer to cases with α > 1 assuring finiteness of
MFAT) and it induces an L1 norm that is commonly used in
many applications. This choice leads to the expression

D(α) =
(

π

2

(
1 − 1

α

)
)α

. (31)

In the following we will refer to this method of comparison,
based on the choice p = 1, as the fair comparison. This is in
contrast to the naive comparison based on the simplicity of
characteristic function (D = 1).
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B. Asymptotic analysis

From the asymptotic behavior of the MFAT several conclu-
sions may be drawn: The prefactor in Eq. (28) is bounded for
α ∈ (1,2]. Consequently, for given nonzero r and D it is always
possible to find x small enough, so that α = 2 minimizes the
MFAT. In other words, Brownian motion is expected to be the
optimal strategy at small distances to the target. In contrast, as
it can be inferred from the asymptotic behavior, Eq. (27), for
large enough distances the MFAT increases with x much faster
for α = 2 than for α < 2. In this case, the Lévy motion with
α < 2 minimizes the MFAT, thus indicating a more efficient
kinetics of space exploration to detect a target.

C. Random distribution of target sites

In many natural scenarios, living organisms navigate to
unpredictable or randomly distributed resources. In other
words, positions of the target are not precisely known. How
is the kinetics of random search with resetting affected by the
location of targets in an unknown environment? In order to
address this point, we further explore the MFAT under the
constraint that the searcher knows only the mean (expected)
distance to the target. Accordingly, instead of a fixed x in
the evaluation of the MFAT, we use the PDF that satisfies the
maximum entropy principle, i.e., a Laplace distribution p(x)
of target positions is assumed. The MFAT in this more general
setting can be calculated by averaging over possible distances:

〈Tf a(λt )〉 =
∫ ∞

−∞
dx〈Tf a(x)〉p(x)

= 1

2λt

∫ ∞

−∞
dx〈Tf a(x)〉e− |x|

λt . (32)

Even though 〈Tf a(λt )〉 is a different function from 〈Tf a(x)〉, for
readability we keep the same symbol for the MFAT averaged
over the distribution of targets and denote that by use of a
different argument only.

As explained in the following example, such averaging over
random distances to a target leads to modification of the MFAT
and becomes crucial for the optimal strategy planning. Let us
assume Brownian diffusion α = 2 with the Laplace PDF of
target positions characterized by the mean distance to the target
〈|x|〉 = λt . In that case the MFAT is given by the formula

〈Tf a(λt )〉 = 1

r

1
λ
λt

− 1
, (33)

where λ =
√

D
r

. Clearly, the MFAT is finite for λ � λt and
optimization of Eq. (33) yields the value of the resetting
frequency r∗

2 (λt ) = D

4λ2
t

. If a searcher does not know the
distribution of target locations but was able to estimate
via several measurements the mean distance to the target,
〈|x|〉 ≈ λt , he might be prompted to use that fixed position for
further optimization of the MFAT, 〈Tf a(x = λt )〉. The derived
optimal r∗, see Eq. (B1), when applied to the system with
Laplace distributed distance to target, would then lead to an
infinite MFAT. This apparent inconsistency demonstrates that
for the proper minimization of arrival times, the actual form
of distance-to-target distribution p(x) is indispensable.

It can be easily shown that for heavy-tailed distance-to-
target distributions, the Brownian strategy always gives an
infinite MFAT. In contrast, strategies with Lévy-distributed
jumps (α < 2) may provide efficient algorithms for searching,
for which the MFAT remains finite as long as the p(x)
distribution is characterized by a finite variance. A simple
example illustrating this case is optimization of the MFAT
given by Eq. (32) with the Student’s t-distribution of distances
to the target:

p(x) = 

(

ν+1
2

)
√

νπ

(

ν
2

)
λt

(
1 + x2

νλ2
t

)− ν+1
2

. (34)

In this case the integral in Eq. (32) is convergent if and only if
condition α < ν − 1 holds. Numerical integration of Eq. (32)
for ν = 2.7 and ν = 4 leads to MFAT functions displayed in
Figs. 5 and 6.

D. Scaling

Optimal parameters r∗(x), α∗(x) and optimal MFAT T ∗(x)
depend on x and D. For the sake of simplicity, from now on
we fix D. It will be useful to take advantage of dimensional
analysis to calculate the scaling behavior of the optimal r∗ and
MFAT for a given α. Let r∗

α(x) and T ∗
α (x) be the optimal r and

the optimal MFAT for fixed x, α, and D. Up to an arbitrary
multiplicative constant, the only combination of x and D that
has the dimension of time is t = xα

D
. This leads to the following

scaling equations:

T ∗
α (x) = T ∗

α (1)xα

(35)

r∗
α(x) = r∗

α(1)

xα
.

One easily verifies that these equations hold, by calculating the
derivative of the MFAT [Eq. (22)] with respect to r , comparing
it to 0, and rewriting the corresponding equation such that it
contains only a function of rxα . Scaling Eqs. (35) also imply
similar relations to be fulfilled by T ∗(λt ):

T ∗
α (λt ) = T ∗

α (1)λα
t

(36)

r∗
α(λt ) = r∗

α(1)

λα
t

.

The above relations are used in a numerical algorithm for
optimization, as explained in details in Appendix B.

E. Results

A comparison between analytical prediction, Eq. (22), and
numerical stochastic simulations has been performed and
the results are displayed in Fig. 1, demonstrating a perfect
agreement between both approaches. Additionally, Fig. 2
presents the analytically derived MFAT functions in 2-dim
(α,r) parameter space.

The MFAT diverges as r → 0 and r → ∞ (cf. Figs. 1
and 2). Accordingly, a minimum of the MFAT with respect to
r can be found in the interval [0,∞) and its position depends
on the stability index α characterizing underlying diffusive
process.

For small x MFAT values are systematically higher for
non-Gaussian diffusion (α < 2) than for the Gaussian case
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FIG. 1. Comparison between MFATs obtained by numerical
integration of the analytical formula (22) (lines) and by averaging
over N = 105 realizations of a simulated process. Different lines
(from the top to the bottom) correspond to α = (1.4,1.6,1.8,2). For
the sake of simulation not only time has to be discretized (δt), but
also a finite target size is needed. For each α the target size is chosen
separately to match the analytical result at x = 1, r = 1. The same
target size is further used across different values of x and r . Estimated
error bars are smaller than the markers used in the plots and hence
have not been displayed.

and the same resetting rates. Also, as displayed in Fig. 1, the
MFAT has a more pronounced, deeper minimum in function of
r for Lévy diffusion with heavier tails (i.e., lower α’s), which
suggests that the Gaussian strategy is more robust to variations
of r . This is, however, no longer true for large x (cf. Fig. 2).
In that case MFAT values for α = 2 are higher than that for

2 5 8
1.7

1.85
2
0

10

20

r

(a)

α

<
T

>

0.02 0.06 0.11.6
1.8

2
0

500

1000

r

(b)

α

<
T

>

0.01 0.02 0.031.5
1.75

2
0

1000

2000

3000

r

(c)

α

<
T

>

0.5 1 1.5
x 10

−31.4
1.7

2
0

5

10

x 10
4

r

(d)

α

<
T

>

FIG. 2. (Color online) The MFAT as a function of the parameters
(α,r) for different values of the distance to an immobile target x =
(1,10,20,100). Contour plots beneath the surfaces help to guide an
eye towards the minimum.
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FIG. 3. Optimal parameters (α∗,r∗) and the MFAT as functions
of the distance to a target x.

α < 2 and the same r , at least in the vicinity of the optimal r∗
α .

Moreover, in this limit Lévy flights become more resilient to
changes in r , especially in the range r � r∗

α .
Results displayed in Fig. 2 have been further analyzed to

derive minimal values of the MFAT with respect to a pair
of parameters (α,r) for different values of a distance to a
target, x. Consecutive Figs. 3 and 4 show outcomes of the
optimization procedure described in Appendix B for the cases
of the immobile target located at a distance x, and the target
with position described by Laplace distribution with an average
distance to a target λt , respectively.

No qualitative difference in the derived optimal MFAT
values has been found between the naive and the fair
comparisons. We therefore present results of the numerical
optimization of 〈Tf a(x)〉 and 〈Tf a(λt )〉 for the fair comparison
only.
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FIG. 4. Optimal parameters (α∗,r∗) and the MFAT as functions
of λt . The target position is a random variable with a Laplace PDF of
distances and an average distance to target λt .
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FIG. 5. Optimal parameters (α∗,r∗) and the MFAT as functions of
λt . The target position is given by a Student’s t-distribution, Eq. (34),
with ν = 4 and an average distance to target λt .

As expected, for small x (λt ) Gaussian diffusive motion
(α∗ = 2) is the optimal searching strategy. With growing
distance to a target x (or λt ) the minimum of 〈Tf a〉 becomes
shallower, up to some point x∗ ≈ 10.8 (λ∗

t ≈ 3.25), beyond
which Gaussian diffusion is not efficient anymore and the op-
timal stability index switches to values α∗ < 2. Corresponding
values of bifurcation points x∗ and λ∗

t have been obtained by
means of a numerical optimization procedure and are marked
in Figs. 3 and 4 with a cross sign.

The described scenario of the continuous transition be-
tween the Gaussian and non-Gaussian optimal strategies is
qualitatively similar to the one investigated in Ref. [52]. In
that article yet another variant of a one-dimensional Lévy
flight search strategy has been analyzed: The optimization
of the random search for targets has been performed with
respect to the average over inverse search times. The model
has been enriched with a nonzero drift term (representative
of an external bias or former experience of the searcher)
and no resetting mechanism has been included. Despite these
differences, their plot of the optimal α∗ as a function of
the initial position x (see Fig. 3, Ref. [52]) at vanishing
drift strength looks very similar to ours findings in Figs. 3
and 4: There exists a finite region (of relatively small x’s) in
which the Brownian diffusion is the most efficient strategy
and the optimal α∗ is always larger than 1. It seems that these
observations are generic features of the analyzed optimal first
arrival times.

We have also investigated the impact of the heavy-tailed
distribution of distances to the target on the efficiency of the
searching. The analysis of the the optimal MFAT performed
in this case is illustrated in Figs. 5 and 6. Presented plots
indicate that the heavy-tailed distribution of distance-to-target
excludes Gaussian diffusion, α = 2, from the set of possible
optimal search strategies. Moreover, in line with the analysis
of Sec. IV C, for Lévy flights a condition α < ν − 1 has to
be met in order to perform a successful search with a finite
MFAT.
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FIG. 6. Optimal parameters (α∗,r∗) and the MFAT as functions
of λt . Target position is given by a Student’s t-distribution, Eq. (34),
with ν = 2.7 and an average distance to target λt .

V. CONCLUSIONS

Not only animal foraging patterns but also memory re-
trievals of humans [53] and fluctuations of their spontaneous
activity [54] exhibit scaling statistics. The problem devised
in this paper models a mechanism of stochastic resetting, or
relaxation of a diffusive searching process to a predefined
threshold, and as such can be well adapted to many natural
scenarios of exploration processes such as, e.g., quests for
food in a given territory [55], translocation and recruitment
of repair proteins seeking for a disrupted DNA strand to be
repaired [56], optimal computer-aided web search [12], or
statistics of recall periods in retrospective memory [53].

The efficiency of a search may be defined and analyzed by
use of different measures, like, e.g., the number of encounters
of searchers and targets per unit of time, the mean inverse
search time [52], or the exploration range of space per unit
of time. Here, we have focused on the efficiency measure
expressed by the mean time to reach an immobile target, the
MFAT.

The first arrival time statistics has been analyzed for the
one-dimensional problem with a constant resetting rate r . The
acts of trajectory relocation have been assumed independent
from the free (super)diffusive motion described by Lévy jumps
with the exponent 0 < α � 2. Despite the discontinuity of
trajectories, typical for Lévy flights, the MFAT remains finite
iff α > 1 with a rich characteristics of optimal (minimal)
times T ∗(x). By use of the designed optimization method
(Sec. IV), we have been able to derive the optimal parameters
r∗(x) and α∗(x) for the range of target positions x. We have
shown that the randomized distribution of targets with some
average distance to a target results in a severe reduction
of distances for which Gaussian search remains the optimal
strategy. Moreover, our analysis of optimal searching times
for exponential distribution of distances to a target (Sec. IV C)
clearly indicates that not only first moment of that distribution
but rather its actual form is needed for a proper optimization
planning: An optimization procedure based solely on the
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information about the average distance to a target would result
in the optimal r∗, leading to an infinite MFAT.

Altogether, the proposed optimization scheme and scaling
analysis can be further exploited, e.g., for two- and three-
dimensional searching scenarios. Another plausible modifica-
tion of the proposed procedure could be an implementation
of Lévy walks, with coupled space-time distributions, or
truncated Lévy flights, penalizing very long jumps.
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APPENDIX A: LINNIK DISTRIBUTION

The derivation of the Linnik PDF, expressed in terms of
ps(x,λ,1) in Eq. (18), proceeds as follows. Since ps(x,λ,1)
as a function of x is even, without loss of generality, we can
assume that x � 0:

f (x) = πps(x,1,1) = 1

2

∫
R

dk
e−ikx

1 + |k|

=
∫ ∞

0
dk

∫ ∞

0
ds cos (kx)e−s(1+k)

=
∫ ∞

0
ds

se−s

x2 + s2
=

∫ ∞

0
dt

te−tx

1 + t2

= − d

dx

∫ ∞

0
dt

e−tx

1 + t2
≡ − d

dx
g(x). (A1)

One can verify that g(x) is a solution of the equation

g′′(x) + g(x) = 1

x
, (A2)

which is a second-order inhomogeneous linear differential
equation with constant coefficients. We can easily solve it by
using the method of variation of parameters. Two constants
in the general solution are calculated from the boundary
conditions g(0) = π

2 and limx→∞ g(x) = 0. The solution

reads

g(x) =
(

π

2
− Si(x)

)
cos x + Ci(x) sin x, (A3)

which, after differentiation, leads to formula (18).

APPENDIX B: NUMERICAL SCHEME

The optimization problem at hand could not be solved
analytically. We have thus solved it numerically. Scaling
formulas Eq. (35) allow for very fast numerical optimization,
by reducing numerical calculation of the MFAT to one value
of x for each α and r . The algorithm then proceeds as
follows: For each α we perform numerical integration by use
of the reverse Fourier transform of the Linnik distribution,
Eq. (15), for a given value x, e.g., x = 1, and a few values
of r . We fit a quadratic function to the calculated points
and find the minimum of that function. Next we refine the
interval of r values, centering it at the estimated minimum
and, consecutively, we reduce its length. This procedure is
repeated until the desired accuracy is achieved. We end up with
a quadratic function which, by means of its vertex coordinates,
defines our T ∗

α (1) and r∗
α(1). Scaling equations, Eq. (35), allow

us to extend these results to arbitrary x.
When we start the calculation for a new value of α, we face

the problem of choosing a proper interval of values of r . Since
we fit a quadratic function, it is important that the interval
contains the optimal r . For this reason, we can make use of
the optimal r∗

prev that was calculated in a previous step, for a
value of α close to the new one. Accordingly, we choose an
interval of r which contains r∗

prev. The formula for the optimal
resetting frequency for the Brownian motion case is known [8]
and reads:

r∗
2 (x) = Dz2

x2
, (B1)

with z ≈ 1.5936. Therefore, when performing numerical
analysis, we have started our calculations from α = 2. In the
very last step we find, for each x, an α parameter for which
the smallest optimal MFAT is obtained. This is our global
minimum. The numerical scheme used for the optimization of
〈Tf a(λt )〉 is analogous.
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