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Microscopic theory of heat transfer between two fermionic thermal baths mediated by a spin system
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In this paper we have presented the heat exchange between the two fermionic thermal reservoirs which are
connected by a fermionic system. We have calculated the heat flux using solution of the c-number Langevin
equation for the system. Assuming small temperature difference between the baths we have defined the thermal
conductivity for the process. It first increases as a nonlinear function of average temperature of the baths to a
critical value then decreases to a very low value such that the heat flux almost becomes zero. There is a critical
temperature for the fermionic case at which the thermal conductivity is maximum for the given coupling strength
and the width of the frequency distribution of bath modes. The critical temperature grows if these quantities
become larger. It is a sharp contrast to the Bosonic case where the thermal conductivity monotonically increases
to the limiting value. The change of the conductivity with increase in width of the frequency distribution of the
bath modes is significant at the low temperature regime for the fermionic case. It is highly contrasting to the
Bosonic case where the signature of the enhancement is very prominent at high temperature limit. We have also
observed that thermal conductivity monotonically increases as a function of damping strength to the limiting
value at the asymptotic limit. There is a crossover between the high and the low temperature results in the
variation of the thermal conductivity as a function of the damping strength for the fermionic case. Thus it is
apparent here that even at relatively high temperature, the fermionic bath may be an effective one for the strong
coupling between system and reservoir. Another interesting observation is that at the low temperature limit, the
temperature dependence of the heat flux is the same as the Stefan-Boltzmann law. This is similar to the bosonic
case.
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I. INTRODUCTION

The technological advancement is accelerated very rapidly
by the use of novel submicron and nanosize electrical devices.
Molecular devices already demonstrated include molecular
wire, field effect transistors, single electron transistor, molec-
ular diodes, rectifiers, and switches [1,2]. Localized Joule
heating would control the functionality and the reliability
of such devices. Therefore, understanding of heat transport
through the microscopic system is a focal theme in the field of
nonequilibrium statistical mechanics [3–6]. Heat conduction
in condensed matter is a long-standing problem which has
attracted renewed interest recently both theoretically [7] and
experimentally [8], especially in quantum systems, due to the
growing interest in the energy transport at the nanoscale,
whose understanding is an important step toward utilizing
nanostructures for possible energy applications [9]. Recently
heat transport at the microscopic level has been studied based
on either the classical or the quantum Langevin equation
of motion [10]. Most of these studies have considered heat
transferred between the bosonic thermal baths mediated by
a bosonic system [11]. The objective of the present study
is investigation of the heat transfer between two fermionic
thermal baths by a fermionic system based on the microscopic
description of the thermal baths and the system. We have
calculated heat flux using solution of the c-number Langevin
equation for the system [12]. Assuming small temperature
difference between the baths we have defined thermal conduc-
tivity for the process. It first increases as a nonlinear function
of average temperature of the baths to a critical value then
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decreases to a very low value such that the heat flux almost
becomes zero. A similar result has been demonstrated in
Ref. [4]. Here the thermal conductivity has been calculated
based on the Schrödinger dynamics. Subunits are coupled
by an energy exchanging next-neighbor interaction, chosen
to be a (normalized) random Hermitian matrix allowing for
any possible transition such as to avoid any bias. Thus this
method is not as fully microscopic a description as the present
approach. Then one may say that the present study may give
better understanding about the heat flux in the microscopic
system as well as giving the justification of the approximation
scheme [4]. The critical temperature grows if the width of
the frequency distribution of the bath modes rises or the
coupling between the system and reservoirs is enhanced. It
is in sharp contrast to the bosonic case where the thermal
conductivity monotonically increases to the limiting value.
The change of the conductivity with increase in width of
the frequency distribution of the bath modes is significant
at the low temperature regime for the fermionic case. It is
highly contrasting to the bosonic case where the signature of
the enhancement is very prominent at the high temperature
limit. We have also observed that the thermal conductivity
monotonically increases as a function of damping strength
to the limiting value at the asymptotic limit. There is a
crossover between the high and the low temperature results
in the variation of the thermal conductivity as a function of the
damping strength for the fermionic case. Thus it is apparent
here that even at relatively high temperature, the fermionic
bath may be an effective one for the strong coupling between
system and reservoir. Another point to be noted here is that
at the low temperature limit, the temperature dependence of
the heat flux is the same as the Stefan-Boltzmann law. This is
similar to the bosonic case.
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The layout of the present paper is as follows: First, we
have described the model in Sec. II. Then we have studied
the temperature dependence of the heat flux in Sec. III. In
the next section we have presented a comparative study on
heat flux and the related quantities for both the fermionic
and the bosonic cases, respectively. The paper is concluded in
Sec. V.

II. MODEL

To study the present problem we consider two independent
macroscopic fermionic thermal baths [13–20], 1 and 2, which
are held at fixed temperatures T1 and T2, respectively. The
two baths are connected by a two level system. The reservoirs
are represented by the assembly of two level [21] independent
systems at thermal equilibrium. In what follows we consider
that the two level system is linearly coupled to these thermal
environments. The Hamiltonian for the system [21] can be
written as

ĤS = �ω0Ŝz. (1)

Ŝz in the above equation corresponds to the Pauli population
difference operator. It is related to the other operators for the
system through the following commutation relations:

[Ŝ†,Ŝz] = −Ŝ†, (2)

[Ŝ,Ŝz] = Ŝ, (3)

and

[Ŝ†,Ŝ] = 2Ŝz. (4)

Here we have used Ŝ† = Ŝx + iŜy and Ŝ = Ŝx − iŜy . Thus
Ŝ† and Ŝ are well known creation and annihilation operators,
respectively. The anticommutation rules between the spin- 1

2
operators are given by

Ŝ†Ŝ + ŜŜ† = 1. (5)

The above anticommutation relation has the immediate
consequence that spin- 1

2 particles or two level atoms obey
the Fermi-Dirac statistics. From the commutation relation (2)
and the anticommutation relation (5) one can define a number
operator, N̂ = Ŝ†Ŝ. It is related to Ŝz through the following
relation:

Ŝz = N̂ − 1
2 . (6)

Then the system Hamiltonian takes the following form:

ĤS = �ω0
(
N̂ − 1

2

)
. (7)

The eigenvalue equation for the number operator may be
written as N̂ |n〉 = n|n〉 with n = 0,1. The general state with
no quanta is represented by |0〉, which satisfies N̂ |0〉 = 0
and ĤS |0〉 = �ω0(N̂ − 1

2 )|0〉 = −�ω0
2 |0〉. The state with one

quanta is denoted by |1〉 which obeys N̂ |1〉 = 1 and ĤS |1〉 =
�ω0(N̂ − 1

2 )|1〉 = +�ω0
2 |1〉. Thus �ω0 is the energy difference

between the two levels of the system. To avoid any confusion
we should mention here the following point. Although mass
does not appear in Eq. (1) it does not mean that the system
has no mass. The signature of mass may be embedded in
the energy difference. For example, the energy difference
between the two levels (corresponding to the z component

of the spin angular momentum of an electron) in the presence
of a magnetic field depends on the mass of the electron. It is
also true for the spin − 1

2 nucleus. Here the mass of the nucleus
is incorporated in the quantity of Bohr magneton. The energy
difference between the two levels for the system depends on
the Bohr magneton [21]. Finally, the above Hamiltonian may
also correspond to the massless fermionic system [22] having
two levels in the presence of a magnetic field.

We now consider the Hamiltonian for the thermal bath.
Following Eq. (1) one can write the Hamiltonian for the νth
thermal reservoir as

ĤRν = �

∑
k

ωνkŜzνk; ν = 1 and 2. (8)

�ωνk in the above equation is the energy difference between
the two levels of the kth independent mode in the νth bath. The
operator for the z component of the spin angular momentum
is Ŝzνk . It has the same characteristics as described above for
the system. Finally, the Hamiltonian for the system-reservoir
interaction is given by [12]

ĤSRI = �

∑
ν,k

gνk

{
g′

νk

ωνk

Î − (Ŝ†
νk + Ŝνk)(Ŝ† + Ŝ)

}
. (9)

The coupling between the system and the kth mode in the νth
thermal bath is represented by the coupling constant gνk . g′

νk is
a frequency scaling factor which is a necessity for the correct
normalization of the spin-coherent state (it will be used shortly
to describe both the system and the thermal reservoirs in terms
of c number). Î in the above equation is the identity operator.
To have the classical looking c-number Hamiltonian in terms
of the coherent state variables, the identity operator has been
chosen in terms of system operators as [12]

Î = Ŝ†2 + Ŝ2 + Ŝ†Ŝ + ŜŜ†. (10)

Here the relations Ŝ†2 = 0 and Ŝ2 = 0 have been used. The
consequence of the inclusion of the identity operator with the
above expression in the interaction Hamiltonian will be clear
after we derive the physically meaningful c-number Langevin
equation of motion for the system in the presence of thermal
baths. The remaining sum in the Hamiltonian (9) implies that
in the system-reservoir interaction bilinear coupling has been
assumed. With these the total Hamiltonian which may describe
the heat transfer between the two fermionic thermal baths
through a fermionic two level system is

Ĥ = ĤS + ĤR1 + ĤR2 + ĤSRI . (11)

The above Hamiltonian for the system-reservoir model
is general in the sense that it is applicable both for the
two level fermion with or without mass. Now we are in a
position to write a c-number Hamiltonian from Eq. (11) by
quantum mechanical averaging [12,23]. To make the present
study self-sufficient, a brief note on the method is given
here. We start considering the initial state to be product
separable as

|ξ 〉
∏
ν,k

|μνk〉,

|ξ 〉 and |μνk〉 being the spin coherent states of the system
and the kth component of the νth bath respectively, where a
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normalized spin coherent state may be defined as

|μ〉 = (1 + |μ|2)−S

2S∑
n=0

(
2S!

n!(2S − n)!

)1/2

μn |n〉

= (1 + |μ|2)−S exp(μŜ) |0〉. (12)

Here μ runs over the entire complex plane and {|n〉},n =
0,1, . . . 2S are the eigenfunctions of Ŝz such that Ŝz|n〉 =
(S − n)|n〉. The state |0〉 in Eq. (12) denotes the ground state
with the maximum spin projection S. The next step is to
perform the quantum mechanical averaging of Eq. (11) with
the normalized product separable coherent state utilizing the
relations [23,24]

〈μ|Ŝ†|μ〉 = C̃(S,|μ|)μ, 〈μ|Ŝ|μ〉 = C̃(S,|μ|)μ�,

〈μ|n̂|μ〉 = C̃(S,|μ|)|μ2. (13)

Here C̃(S,|μ|) = 2S
1+|μ|2 and n̂ is the spin deviation operator,

S − Ŝz, having the same set of eigenfunctions [{|n〉}, n =
0,1, . . . 2S] as Ŝz. The set of c numbers {μ,μ�} obtained from
the matrix elements as shown in Eq. (13) would be useful
in constructing some fictitious coordinates [{r}, {ανk}] and
momenta [{ρ}, {βνk}] like quantities as

ανk =
√

C̃(Sνk,|μνk|)�
2ωνk

(μ�
νk + μνk),

βνk = i

√
C̃(Sνk,|μνk|)�ωνk

2
(μ�

νk − μνk),

(14)

r =
√

C̃(Sνk,|ξ |)�
2ω0

(ξ� + ξ ),

ρ = i

√
C̃(S,|ξ |)�ω0

2
(ξ� − ξ ).

The c-number Hamiltonian may be expressed in terms of
those fictitious coordinates and momenta variables as

H = ρ2

2
+ 1

2
ω2

0r
2 + 1

2

∑
ν,k

β2
νk + 1

2

∑
ν,k

ω2
νk

(
ανk − cνkr

ω2
νk

)2

.

(15)

where cνk=
√
gνkg

′
νk ω0 ωνk C̃(S,|ξ |) or g′

νk

√
ω0 ωνk

C̃(S,|ξ |)
C̃(Sνk,|μνk |) ,

the fictitious coupling constant between the system and the
kth atom of the νth bath. Thus using the Radcliffe coherent
states [23], we get a c-number Hamiltonian that is identical
with the Hamiltonian for a bosonic particle in contact with
two bosonic thermal baths.

A. c-number Langevin equation

From the Hamiltonian as described in Eq. (15), the
equations of motion for the system and the bath variables
may be written as

ṙ = ρ,
(16)

ρ̇ = −ω2
0r +

∑
ν,k

cνkανk − r
∑
ν,k

c2
νk

ω2
νk

,

and

α̇νk = βνk,
(17)

β̇νk = −ω2
νkανk + cνkr.

It may be noted here that the above equations are quite
similar to the classical equations of motion. The similarity
is expected for the bosonic case (having the system and
the bath modes with harmonic oscillator) according to the
Ehrenfest theorem. Here the similarity appears even for the
system-reservoir model with spin angular momentum by virtue
of the Hamiltonian (15) which is a manifestation of coherent
state representation both for the system and the reservoirs
[23]. But the distribution of initial conditions for the state
variables of the bath modes makes them different from a
standard problem of coupled classical oscillators. Shortly we
will introduce the relevant distribution function for initial
conditions. Another point to be mentioned here is that if the
number of accessible states for the bath mode is very very
large (as happens for boson [24]) at the high temperature limit
then the above equations exactly correspond to the coupled
classical oscillators.

We now eliminate the bath variables form the equation
of motion for the system following the standard procedure
[11,25–27] which gives the Langevin equation of motion.
Using the well known Laplace transformation and back
transformation technique, we solve Eq. (17) to get

ανk(t) = ανk(0) cos(ωνkt) + βνk(0)

ωνk

sin(ωνkt)

+ cνk

ωνk

∫ t

0
dt ′r(t ′) sin[ωνk(t − t ′)] (18)

and

βνk(t) = −ωνkανk(0) sin(ωνkt) + βνk(0) cos(ωνkt)

+ cνk

∫ t

0
dt ′r(t ′) cos[ωνk(t − t ′)]. (19)

Combining Eqs. (16) and (18), we derive the c-number
Langevin equation:

ρ̇ = −ω2
0r − γ (t)r(0) −

∫ t

0
dt ′γ (t − t ′)ρ(t ′) + η(t), (20)

where

γ (t) =
∑
ν,k

c2
νk

ω2
νk

cos(ωνkt) (21)

and

η(t) =
∑
ν,k

cνk

[
ανk(0) cos(ωνkt) + βνk(0)

ωνk

sin(ωνkt)

]
(22)

are the time dependent damping and the noise, respectively.
The Langevin equation implies that the deterministic force
derived from the system is not affected by the interaction
Hamiltonian and the damping is homogeneous. Thus the
inclusion of the identity operator (10) in the interaction
Hamiltonian leads us to avoid any nonphysical situations. We
now consider the noise term. To have η(t) as an effective c-
number noise, it is necessary to assume a canonical distribution
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of Gaussian form for statistical averaging, 〈. . . 〉s , over the
c-number bath variables {ανk(0) and βνk(0)} as

Pνk(ανk(0),βνk(0)) = N exp

⎡
⎣−βνk(0)2 + ω2

νkανk(0)2

�ωνk tanh
(

�ωνk

2kBTν

)
⎤
⎦,

(23)

where N is the normalization constant. Equation (23) is the
counterpart [28] of the Wigner canonical distribution function
[29] for the bosonic bath. The only difference between the
two lies in the width of the distribution function. For the
fermionic bath, it is [ �ωνk

2 tanh ( �ωνk

2kBTν
)], whereas for the Wigner

distribution it is [ �ωνk

2 coth ( �ωνk

2kBTν
)]. At zero temperature, both

the distributions merge to a single value, the differences being
noticeable at finite temperatures. At high Tν , the bosonic bath
reaches the classical limit, but not the other one. The width
of the above distribution function for the fermionic bath mode
becomes zero at this temperature limit. This is due to the
following fact. The population difference between the two
levels of each bath mode of the thermal bath is zero at very
high temperature. Then no net transition occurs between the
levels. It suggests only one allowed value of the fictitious
coordinate. Similarly there would be only one value for the
momentum also. Thus the bath becomes inert at this regime
and the system loses its diffusive behavior. This is reflected in
the above distribution function. Thus the present calculation is
valid for the positive thermodynamic temperature. However,
the above distribution in c number bath variables implies that
η(t) arising out of the two-level bath modes must satisfy the
relations

〈η(t)〉s = 0 (24)

and

〈η(t)η(t ′)〉s = 1

2

∑
ν,k

c2
νk

ω2
νk

�ωνk tanh

(
�ωνk

2kBTν

)
cos[ωνk(t − t ′)].

(25)

B. Solution of the c-number Langevin equation:
Response function

The c-number generalized Langevin equation (20) may be
solved to obtain the time dependent coordinate r(t) of the
particle as

r(t) = ρ(0)χ (t) + r(0)χ̇(t) +
∫ t

0
dt ′η(t − t ′)χ (t ′), (26)

where

χ (t) = L−1{χ̃ (s)}

= L−1

{
1

s2 + ω2
0 + sγ̃ (s)

}
. (27)

Here L−1 denotes Laplace inversion and γ̃ (s) is the Laplace
transform of γ (t), i.e., γ̃ (s) = ∫ ∞

0 dt exp(−st)γ (t). χ (t) in
Eq. (26) is the response function or susceptibility having the
properties χ (0) = 0 and χ̇(0) = 1.

We now consider the following Drude-Ullersma model [30–
32] for the frequency dependence of the coupling coefficients:

ωνk = k�ν cνk =
√

2γνω
2
νkD

2
ν�ν

π
(
ω2

νk + D2
ν

) . (28)

where k = 1,2,3 . . . ,Nν and �ν are the mode spacing con-
stant. In the present calculation we have considered the
thermodynamic limit, i.e., Nν → ∞ and �ν → 0. Dν in the
above equation is the characteristic cutoff frequencies for
the baths. For simplicity, we consider that D1 = D2 = D.
Another parameter γν corresponds to the coupling constant
between a given reservoir and the mediator. Putting these in
Eq. (21) and replacing the summation by integration over all
bath modes, we get the memory kernel as

γ (t) = 2γ0

π

∫ ∞

0

D2

ω2 + D2
cos(ωt)dω = γ0D exp(−D|t |)

(29)

with γ0 = ∑
ν γν . Thus the above equation suggests that

the frequency distribution of the bath modes follows the
Lorentzian form and the width of the distribution function
grows with increase in cutoff frequency D. For the above form
of time dependent friction, Eq. (27) becomes

χ̃ (s) = s + D(
s2 + ω2

0

)
(s + D) + γ0Ds

. (30)

We may now express the response function as

χ (t) =
∑

n

χn exp(−μnt). (31)

Here μn are the roots of the equation (μ − D)(μ2 + ω2
0) +

γ0Dμ = 0 and χn are defined as χn = [ s+D

3s2+2Ds+ω2
0+γ0D

]
s=−μn

.

In the limit D � ω0, we get

μ1,2 = 1

2τρ

(1 ∓ q) , μ3 = D − 1/τρ � μ1,2 (32)

with

χ1 = −χ2 ≈ τρ

q
, χ3 ≈ 0, (33)

where q = √
1 − 4τρ/τr , 1/τρ = γ0, 1/τr = ω2

0/γ0. Thus, μ1

and μ2 are real for τρ/τr = ω2
0τ

2
ρ � 4. Here τr and τρ char-

acterizes the relaxation times for coordinate and momentum
respectively, provided τr � τρ . On the other hand, when
τρ/τr > 4, μ1,2 = 1/2τρ ∓ i/τ0. Here τ0 =

√
ω2

0 − γ 2
0 /4 de-

notes the oscillation time in this case.
It may be mentioned here that one can also solve Eqs. (16)

and (17) in the following way. These equations can be written
together in matrix notation as

dR

dt
= AR(t), (34)
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where

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r

ρ

α11

β11

·
·
α1N

β1N

α21

β22

·
·
α2N

β2N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(35)

and A is a (2N + 2) × (2N + 2) square matrix. Here N is the
number of modes for each bath. We have assumed that both
baths have the same number of modes. However, the element
of the matrix A can be determined from Eqs. (16) and (17).
For example, A11 = 1, A1j = 0 when j = 2, . . . ,(2N + 2).
To solve the Eq. (34) we transform it into the following form:

dR

dt
= BR(t), (36)

where

R = MR, (37)

B = MAM−1, (38)

Thus Eq. (36) implies that the equations of motion are
decoupled through the diagonal matrix B. The solution of
Eq. (36) can be written as

Ri(t) = Ri(0)eλi t , i = 1, . . . ,(2N + 2). (39)

Ri(t) in the above equation is the ith element in the column
matrix R and λi corresponds to the matrix element Bii of the
diagonal matrix B. Using the above equation in Eq. (37) we
get

Ri =
2N+2∑
j=1

(M−1)ijRj (0)eλj t , i = 1, . . . ,(2N + 2). (40)

Thus for i = 1, one may write that

r =
2N+2∑
k=1

2N+2∑
j=1

(M−1)1j e
λj tMjkRk(0). (41)

Comparing Eq. (26) with the above equation one may get
the following correspondence between the two methods:

χ̇(t) =
2N+2∑
j=1

(M−1)1j e
λj tMj1, (42)

χ (t) =
2N+2∑
j=1

(M−1)2j e
λj tMj2, (43)

and∫ t

0
dt ′η(t − t ′)χ (t ′) =

2N+2∑
k=3

2N+2∑
j=1

(M−1)1j e
λj tMjkRk(0).

(44)

Using the solution (26) of the Langevin equation of motion
we will calculate the thermal conductivity of the system in the
next section.

III. THERMAL CONDUCTIVITY

The rate of change of energy of the νth thermal bath may
be given as

d

dt

∑
k

〈
β2

νk

2
+ 1

2
ω2

νkα
2
νk

〉
= −〈Pν〉, (45)

where 〈Pν〉 is the power dispersed in the νth bath [11]. After
the transient period the above equation becomes

〈Pν〉 = 〈Pν〉(1) + 〈Pν〉(2), (46)

where

〈Pν〉(1) = −
∑

k

cνk

[
cos(ωνkt)

∫ t

0
dt ′χ (t − t ′)〈η(t ′)βνk(0)〉

−ωνk sin(ωνkt)
∫ t

0
dt ′χ (t − t ′)

〈
η(t ′)ανk(0)

〉]
(47)

and

〈Pν〉(2) = −
∑

k

c2
νk

[ ∫ t

0
dt ′χ (t − t ′)

×
∫ t

0
dt ′′ cos[ωνk(t − t ′′)]

〈
η(t ′)r(t ′′)

〉]
. (48)

To reach Eq. (46) we have used Eqs. (19) and (26)
respectively. Performing the statistical averages using the
distribution function (23), Eq. (47) may be simplified as

〈Pν〉(1) = �

2

∑
k

c2
νk tanh

(
�ωνk

2kBTν

)

×
∫ t

0
dt ′χ (t − t ′) sin[ωνk(t − t ′)]. (49)

Making use of Eq. (28) and replacing the summation over
the bath frequency modes by integration we get

〈Pν〉(1) = �γνD
2

π

∑
n

χn

∫ ∞

0
dω

ω3 tanh
(

�ωνk

2kBTν

)
(
μ2

n + ω2
)
(D2 + ω2)

.

(50)

Similarly one can simplify Eq. (48) as

〈Pν〉(2) = −γνD
2

[ ∫ t

0
dt ′χ (t − t ′)

×
∫ t

0
dt ′′S(t − t ′′)〈η(t ′)r(t ′′)〉

]
, (51)
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where

S(t) = 2

π

∑
k

ω2
νk

ω2
νk + D2

≡ 2

π

∫ ∞

0
dω

ω2 cos(ωt)

ω2 + D2
= 2δ(t) − D exp(−D|t |),

(52)

and

〈η(t)r(t ′)〉 =
∫ t ′

0
dτ 〈η(t)η(τ )〉χ (t ′ − τ ). (53)

Making use of Eq. (25) into the above equation we obtain

〈η(t)r(t ′)〉 = �

2

∑
ν,k,n

c2
νkχn

μ2
n + ω2

νk

tanh

(
�ωνk

2kBTν

)

×
[

sin[ωνk(t ′ − t)] + μn

ωνk

cos[ωνk(t ′ − t)]

]
.

(54)

Incorporating the above result in Eq. (51) and evaluating the
integrals for steady-state values one can write that

〈Pν〉(2) ≈ −�γνD
4

π

∑
m,n,ν ′

γν ′χmχn

×
∫ ∞

0
dω

ω3 tanh
(

�ωνk

2kBTν′

)
(ω2 + μmμn)(

μ2
m + ω2

)(
μ2

n + ω2
)
(D2 + ω2)2

. (55)

Since at the steady-state regime the power acquired by
one thermal bath is equal to that lost by the other, we
may represent the steady-state heat current as JF

st = 〈P1〉 =
−〈P2〉 = 1

2 〈P1 − P2〉. Thus JF
st may be written as

JF
st = 1

2
[〈P1〉 − 〈P2〉]

= 1

2
[〈P1〉(1) − 〈P2〉(1)] + 1

2
[〈P1〉(2) − 〈P2〉(2)]. (56)

From Eqs. (50) and (55) one can write that

γ

2γ1γ2
〈P1〉 = −�D2

π

∑
n

χn

∫ ∞

0
dω

ω3
[
nF

1 (ω) − nF
2 (ω)

]
(
μ2

n + ω2
)
(D2 + ω2)

,

(57)

where nF
ν (ω) = 1

exp ( �ω
kB Tν

)+1
is the average occupation num-

ber of mass less fermion in the ν-th thermal reservoir at
temperature Tν . Due to quantifying the average energy of
a fermionic bath mode (having energy difference between
the two level �ω) in terms of massless fermion with zero
chemical potential, nF

ν is free from the quantity, viz. the
chemical potential. Zero chemical potential for the system
having massless fermion may be evident from the fact that
the number of this kind of particle only depends on the
temperature like the number of photon or phonon. Because
of the temperature dependence of the number, the chemical
potential is zero for the thermodynamic system with assembly
of photons or phonons. The mean phonon occupation number
[nB(ω)] for the bosonic thermal reservoir (with the assembly

of independent harmonic oscillator) at temperature T is given
by

nB
ν (ω) = 1

exp
(

�ω
kBT

) − 1
. (58)

This is the same as the mean photon occupation number in
black body radiation. Thus the above expression is valid for
both the reservoirs with massless boson (photon) and harmonic
oscillator having mass. Similarly, the mean fermion occupation
number, nF

ν (ω) = 1
exp ( �ω

kB Tν
)+1

, is also valid for the fermionic

reservoirs having two level modes with mass or without mass.
The validity is implied in the Hamiltonian for the system-
reservoir model. Thus the outcome of the present study should
be valid for both reservoirs.

We now come back to Eq. (57). From this equation the
formula for the steady-state heat flux can be written as

JF
st = −2�D2γ1γ2

πγ

∑
n

χn

∫ ∞

0
dω

ω3
[
nF

1 (ω) − nF
2 (ω)

]
(
μ2

n + ω2
)
(D2 + ω2)

.

(59)

For γ1 = γ2, the above equation becomes

JF
st = − �D2

2πτρ

∑
n

χn

∫ ∞

0
dω

ω3
[
nF

1 (ω) − nF
2 (ω)

]
(
μ2

n + ω2
)(

D2 + ω2
) . (60)

If we assume the temperature difference between the two
baths to be smaller compared to their average temperature, i.e.,
|T1 − T2| � (T1 + T2)/2 ≡ T , the thermal conductivity may
be expressed as

KF = − lim
�T →0

Jst

�T

= −τ 2
h kBD2

8πτρ

∑
n

χn

∫ ∞

0
dω

ω4sech2
(

�ω
2kBT

)
(
μ2

n + ω2
)
(D2 + ω2)

,

(61)

where �T = T2 − T1 and τh = �/kBT . Now one may com-
pare the above results with the heat transfer between two
bosonic thermal bath mediated by a harmonic oscillator.
Following Ref. [11] the formulas for the heat current and the
thermal conductivity can be written as

JB
st = − �D2

2πτρ

∑
n

χn

∫ ∞

0
dω

ω3
[
nB

1 (ω) − nB
2 (ω)

]
(
μ2

n + ω2
)
(D2 + ω2)

(62)

and

KB = −τ 2
h kBD2

8πτρ

∑
n

χn

∫ ∞

0
dω

ω4cosech2
(

�ω
2kBT

)
(
μ2

n + ω2
)
(D2 + ω2)

.

(63)
where nB

ν (ω) = 1
exp ( �ω

kB Tν
)−1

is the mean phonon occupation

number for the νth bosonic thermal reservoir at temperature
Tν . In the following section we will demonstrate differences
(if any) between thermal conductivities of the two cases.
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IV. A COMPARATIVE STUDY BETWEEN BOSONIC
AND FERMIONIC CASES

A. Effect of average temperature of thermal baths on thermal
conductivity of the system

In Fig. 1 we have demonstrated variation of thermal
conductivity as a function of average temperature of the
coupled thermal baths. It shows that the fermionic thermal
bath (FTB) has a generic role to include optimum behavior in
the thermal conductivity. At small T , the thermal conductivity
first grows rapidly as a function of T for both bosonic and
fermionic cases. If the average temperature is appreciably large
then KB converges to the limiting value but KF decreases to
zero value after passing through a maximum. One can account
for all these quantitatively considering different temperature
limits of the above analytical results.

At the low average temperature regime, we have �ω
kBT

� 1.
Evaluating the integral in Eq. (62) at this limit we get

Jst ≈ − 7π3k4
B

240�3τρ

(
T 4

1 − T 4
2

)∑
n

χn

μ2
n

.

From the Laplace transform of Eq. (31) we have

d

ds
[χ̃(s)] = −

∑
n

χn

(s + μn)2 . (64)

d
ds

[χ̃(s)] for s = 0 may be evaluated from Eq. (30) as

d

ds
[χ̃ (s)]s=0 = γ0

ω4
0

. (65)

Thus Eq. (64) may be simplified as

JF
st = 7π3k4

B

240�3τ 2
ρω4

0

(
T 4

1 − T 4
2

)
(66)

and

KF ≈ 7π3k4
B

60�3τ 2
ρω4

0

T 3. (67)

Similarly, for the bosonic case the heat flux and the thermal
conductivity at low T limit can be written as

JB
st ≈ π3k4

B

30�3τ 2
ρω4

0

(
T 4

1 − T 4
2

)
, (68)

KB ≈ 2π3k4
B

15�3τ 2
ρω4

0

T 3. (69)

Equation (68) implies that the temperature dependence of
the heat flux at the low temperature regime for the bosonic
case is the same as the Stefan-Boltzmann law. This result
was established in Ref. [11]. Based on Eq. (66) it is to be
noted here that at the low temperature limit, the temperature
dependence of the heat flux for the fermionic case is also
the same as the Stefan-Boltzmann law. Another point to be
mentioned here is that an increase in thermal conductivity as a
function of average temperature of the thermal baths follows
the identical T dependence at the deep quantum regime for
both cases. These can be understood in the following way. At
low temperature, the transition probability to the excited states
of the bath modes is very very small. Therefore, although the
bosonic bath modes possess an infinite number of states still
they behave similar to the fermionic bath modes which have
only one excited state. The signature of the infinite number of
excited states of the bosonic bath mode is implied through the
appearance of a dimensionless higher numerical factor in both
the heat flux and the thermal conductivity for the bosonic case
compared to the other case.

We now consider the high temperature limit. At this regime,
�ω
kBT

� 1, then Eq. (61) reduces to

KF ≈ �
2D2

8πkBτρT 2

[∑
n

−χn

∫ ∞

0
dω

ω4(
μ2

n + ω2
)
(D2 + ω2)

]
.

(70)

Similarly, the thermal conductivity at high temperature for
the bosonic case can be written as

KB ≈ −kBD2

4τρ

∑
n

χn

D + μn

, (71)

indicating that at this limit, KB is independent of temperature.
Since χ1 = −χ2, χ3 = 0, and μ1 < μ2, KB is positive. Thus
the above two equations suggest that the nature of the
thermal conductivity is drastically different for the two cases
at the high temperature limit. For the fermionic case, the
heat conductance decreases as KF ∝ 1/T 2 with increase
in the mean temperature of the thermal baths. This is a
generic signature of the fermionic thermal bath. The present
calculation is valid for positive thermodynamic temperature.

FIG. 1. (Color online) Variation of heat conductance with average temperature (T ) of baths for the parameter set � = 1.0, kB = 1.0,
ω0 = 0.01. (a) Fermionic baths, (b) bosonic baths (units are arbitrary).
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FIG. 2. (Color online) (a) Plot of massless average fermion occupation number vs bath temperature for fermionic bath. (b) Plot of the rate
of change of massless average fermion occupation number with bath temperature vs bath temperature for fermionic bath. (c) Plot of average
phonon occupation number vs bath temperature for bosonic bath. (d) Plot of the rate of change of average phonon occupation number number
with bath temperature vs bath temperature for bosonic bath. In each case, the parameter set is � = 1.0, kB = 1.0 (units are arbitrary).

The population inversion between the two levels for each
bath mode is not allowed. With increase of temperature the
population difference decreases and it becomes zero at the high
temperature limit. Then the thermal bath would be inert and the
magnitude of the thermal conductivity of the system is zero.
Thus for the fermionic case, there is a critical temperature.
Below it, the thermal conductivity increases with an increase
in T . To understand these aspects in further detail, the variation
of average occupation number of massless fermion or boson at
the excited state with the temperature has been demonstrated in
Fig. 2. In the same figure we have also demonstrated their rate
of change with temperature. At the low temperature regime, an
increase of nF

ν , nB
ν and their rate of change with temperature is

due to the enhancement of the transition probability between
the respective levels with energy difference �ω. It suggests
that at the low temperature regime, the difference between
the nF

ν for the high temperature thermal bath and the same
which is for the low temperature thermal bath is enhanced
with increase in temperature. Then the thermal bath with the
higher temperature will be more active to transfer heat to
the low temperature thermal bath through the mediator. This
is the reason for the increase of thermal conductivity with
increase in average temperature between the thermal baths.
But if the temperature of the thermal bath is appreciably
large then the population difference between the two levels
of bath mode having an energy difference �ω goes to zero
with a limiting value of the transition probability as well
as nF

ν . This converging behavior suggests a maximum in

the variation of dnF
ν

dTν
as a function of Tν . Thus at the high

average temperature of the thermal baths, the fermionic bath
becomes inert and the thermal conductivity of the system is
zero. Because of these behaviors the frequency distribution
of the bath modes and the coupling strength between the
system and the thermal reservoir sets a critical temperature
at which thermal conductivity of the system is maximum
as shown in Fig. 1. As the frequency distribution becomes
wider with increase in D [33] the enhancement of the rate
of change of population with temperature sustains up to
an appreciably high temperature for the bath modes having
higher frequencies. Therefore the critical average temperature
increases as the width of frequency distribution of the bath
modes grows which is reflected in Fig. 1(a). It is also
reflected in this figure that for a given D, with increase of
coupling strength the contribution from the bath modes of
higher frequency may become important to grow the critical
temperature. Shortly we will demonstrate explicitly the role
of these two quantities to control the thermal conductivity of
the microscopic system. Before leaving this part we would
explain the monotonic increase of thermal conductivity for
the bosonic case. In the bosonic case, there is no restriction
on the average phonon occupation number nB , as shown in
Fig. 2. At high temperature, the energy of the system becomes
continuous as occurs in a classical system. Therefore, dnF

dTν
is

independent on temperature at this regime. Then the difference
between the two bosonic thermal baths is also temperature
independent. Thus the thermal conductivity of the system
which mediates the two bosonic thermal baths does not depend
on the temperature at the high temperature limit as shown in
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FIG. 3. (Color online) Variation of heat conductance with Debye cutoff frequency (D) for the parameter set � = 1.0, kB = 1.0, ω0 = 0.01.
(a) Fermionic baths, (b) bosonic baths (units are arbitrary).

Fig. 1(b). Similarly, if there is no upper limit for the number of
accesses of states to each bath mode of the fermionic thermal
bath (as happens for the constituents of the Fermi gas) then
the bath mode would behave as a classical system at the
high temperature limit. Then the rate of change of energy
of the thermal bath with temperature would be a constant and
the thermal conductivity of the system would be similar to
the bosonic case. We now come back to Fig. 1(b). It suggests
that the converging behavior of the thermal conductivity
depends on both D and γ0. One can easily account for this
based on the frequency distribution and contribution from the
modes of higher frequency as discussed above.

Now we would like to mention that the unexpected
difference in behavior of thermal conductivity of the fermionic
system at the high temperature limit compared to the bosonic
case can be verified experimentally considering systems like
spin chains as demonstrated in Refs. [4,34]. The experimental
verification may have very important consequences. People
are thinking to develop a Si-based nuclear spin quantum
computer [35,36]. A two level spin system here may have
an important role to transfer the heat which is associated with
the computer function. The failure of the two level system
to transfer heat may result in local heating that may create
an additional problem through the structural deformation of
the constituents in the computer. It suggests that the quantum
computer should be run carefully at very low temperature.
A similar problem may happen in devices which contain
magnetic materials. Another implication of the present study

is that at high temperature, the contribution to the heat transfer
from the free electron as a two level system in the metals and
spintronics in the presence of a magnet is very very small.

B. Role of width of frequency distribution of bath modes
on thermal conductivity of the system

Figure 1 implies that the width of the frequency distribution
of the bath modes has an important role to control the
thermal conductivity of the microscopic system. In Fig. 3 we
have demonstrated how the thermal conductivity varies with
D which measures the width of the frequency distribution
of the bath modes. It shows that the thermal conductivity
monotonically increases to a limiting value as a function of D

for both the bosonic and the fermionic cases. This is a signature
of involvement of bath modes having higher frequency in the
system reservoir interaction with increase in the width of
the distribution function. For very large D all the bath
modes are included and therefore the thermal conductivity is
independent of it at the asymptotic limit. It is to be noted here
that the change of thermal conductivity with D is significant
at the low temperature regime for the fermionic case as the
thermal bath becomes inert in the high temperature situation.
This is in contrast to the bosonic case where the transition
between the two levels of the bath mode having higher
frequency is favored by the increase in the temperature. It
is a clear justification of the above mentioned argument which
claims to explain the enhancement of the thermal conductivity

FIG. 4. (Color online) Variation of heat conductance with damping constant (γ0) for fermionic bath for the parameter set � = 1.0, kB = 1.0,
ω0 = 0.01. (a) fermionic baths, (b) bosonic baths (units are arbitrary).
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(TC) with increase in the width of the frequency distribution
of the bath modes. For any temperature regime, it is further
enhanced by strengthening of coupling between the system
and the thermal reservoir. Due to involvement of bath modes
of higher frequencies with increase in D, the change of TC
as a function of D is significant at high temperature for the
bosonic thermal baths. This is implied in Fig. 3.

C. Effect of damping strength on thermal conductivity
of the system

Finally, in Fig. 4 we have demonstrated the variation
of thermal conductivity as a function of damping strength
for both the fermionic and the bosonic cases. In both the
cases, the conductivity monotonically increases to the limiting
value at the asymptotic regime for the damping strength.
The converging behavior appears as a signature of balance
among the energy flow rate, the contribution from the bath
modes of higher frequency, and the energy dissipation effect.
The contribution from the bath modes of higher frequency
is justified by the enhancement of the conductivity with the
increase in width of the frequency distribution of the bath
modes. Another point to be mentioned here is that there is
a crossover between high and low temperature results for
the fermionic case. Thus it is apparent in Fig. 4(a) that even
at relatively high temperature the fermionic bath may be an
effective one for the strong coupling between the system and
the reservoir.

V. CONCLUSION

We have studied the dynamics of a fermionic system which
is coupled to the two fermionic thermal baths. Here we
have used the Radcliffe coherent states. It leads to getting
a c-number Hamiltonian that is identical with the Hamiltonian
for a bosonic particle in contact with two bosonic baths. Based
on this Hamiltonian description we have calculated thermal
conductivity of the system in a very simple way. We compare
our results with the thermal conductivity of a bosonic system
which is coupled to the two bosonic thermal baths. This
includes the following important observation.

(i) At the low temperature limit, the temperature depen-
dence of the heat flux for both the bosonic and the fermionic
cases is the same as the Stefan-Boltzmann law.

(ii) For fermionic thermal baths, the thermal conductivity
first rapidly grows as the average temperature of the baths rises
up to a critical value and then it decreases (KF ∝ 1/T 2) with
increase in the mean temperature of the thermal baths. But in
the bosonic case, the conductivity monotonically increases
to the asymptotic limiting value. At the low temperature
regime, the variation of thermal conductivity with the tem-
perature is quite similar for both cases. Thus the results
are drastically different at the high temperature regime as a
generic signature of the fermionic thermal bath. There is a
critical temperature for the fermionic case at which the thermal
conductivity is maximum for the given coupling strength
and the width of the frequency distribution of bath modes.
The critical temperature grows if these quantities become
larger.

(iii) Thermal conductivity increases with increase in D

which measures the width of the frequency distribution
function for the bath modes. This is further enhanced by the
strengthening coupling between the system and the thermal
reservoir. This behavior is significant at the low temperature
regime for the fermionic case. It is highly contrasting to the
bosonic case where the signature of the enhancement is very
prominent at the high temperature limit.

(iv) Thermal conductivity monotonically increases as a
function of damping strength to the limiting vale at the
asymptotic limit. There is a crossover between high and low
temperature results for the fermionic case. Thus it is apparent
that even at relatively high temperature the fermionic bath may
be an effective one for the strong coupling between the system
and the reservoir.
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