
PHYSICAL REVIEW E 92, 052118 (2015)

Linear response and modified fluctuation-dissipation relation in random potential

Fattah Sakuldee* and Sujin Suwanna
MU-NECTEC Collaborative Research Unit on Quantum Information, Department of Physics,

Faculty of Science, Mahidol University, Bangkok 10400, Thailand
(Received 6 July 2015; revised manuscript received 1 October 2015; published 16 November 2015)

In this work, a physical system described by the Hamiltonian Hω = H0 + Vω(t) consisting of a solvable model
H0 and external random and time-dependent potential Vω(t) is investigated. Under the conditions in which, for
each realization, the potential changes smoothly so that the evolution of the system follows the Schrödinger
dynamics, and that the average external potential with respect to all realizations is constant in time, an adjusted
equilibrium state can be defined as a reference state and the mean dynamics can be derived from taking the average
of the equation with respect to the configuration parameter ω. It provides extra contributions from the deviations
of the Hamiltonian and evolves the state along the time by the Heisenberg and Liouville–von Neumann equations.
Consequently, the Kubo formula and the fluctuation-dissipation relation (FDR) are modified in the sense that the
contribution from the information of randomness and memory effects from the time dependence is also present.
The modified Kubo formula now has a contribution from two terms. The first term is an antisymmetric cross
correlation between two observables measured by a probe as expected, and the latter term is an accumulation of
the propagation of the effects from the randomness. When the considered system is in the adjusted equilibrium
state at the time the measurement probe interacts, the latter contribution vanishes, and the standard FDR is
recovered.
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I. INTRODUCTION

The fluctuation-dissipation relation (FDR) is one of the
most well-known formulas in statistical physics, especially in
weakly perturbed systems around equilibria. The relation was
first coined by Callen and Welton in 1951 [1] and was later
developed by Kubo in 1957 [2]. It states that the rate of energy
dissipation, which one can measure, can be described via a
fluctuation of the system in terms of the correlation among
the group of considered quantities [1–4]. The relation can be
successfully applied to physical implementation, such as in a
measurement process in experiment, since one can perturb the
system to obtain a response function and infer its properties to
understand the behaviors of the considered system.

However, reports over recent decades have indicated that
the FDR does not hold appropriately in many situations,
such as glassy or driven systems [3,5–22]. In a system with
sufficiently slow change toward equilibrium, possibly due
to the composition of many complicated effects concerning
interactions, the FDR could be modified into a quasi-FDR
in which the correlation and response functions are extended
into more general forms [3,5]. Such extensions cover, both
theoretically and experimentally, many cases of models that
concern, for instance, long-time relaxation, structural glasses
[6,7], spin glasses [8–13], the Ising model with dipolar inter-
actions [14], the spin-boson model [15], and the Glauber-Ising
chain [16]. A driven system is another type of Hamiltonian
model that is separate from the standard FDR for a different
reason, namely the time dependence of the Hamiltonian.
Nonetheless, such a system provides similar characteristics to
those of the glassy class, i.e., the significantly slow evolution
toward equilibrium or steady state. In essence, the effects of
the time-dependent Hamiltonian can arise from the memory
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content of the dynamics, which prevents the system from lying
in or near the equilibrium component [17–22].

In the literature, the derivations of such deviations of the
FDR and the Kubo formula can be obtained by modifying the
linear-response formulation with perturbation from a bath [2];
interested readers can consult Refs. [4,23–26] and references
therein for further information on various modifications.
Almost all of those references presented similar modifications
of the standard FDR, i.e., an extra term was added to the
equation.

In this work, we introduce an alternative mechanism to
obtain modification of the Kubo formula and the FDR by
employing the role of random, time-dependent potential. We
consider a family of nonautonomous, or driven, systems with
random potential interacting with an external bath (e.g., a
measuring probe), and we investigate how the FDR is modified
in such systems. A crucial point of our work is the choice
of the reference state, called the adjusted equilibrium state,
which is defined as Gibbs’ state obtained by averaging over
all random realizations of the Hamiltonian. The contribution
to the modification of the FDR arises in two terms. The
first term comes from the system’s interaction with the bath,
which is expected from the cross correlations generated
during the dynamics. The second term comes from the
propagation of noisy terms at later times, which perturbs the
aforementioned cross correlations. With the chosen reference
state, the modified FDR is derived. In the limiting case in which
the fluctuation is absent, the contribution from the second term
diminishes, leaving only that from the first term, as commonly
obtained in other approaches to modify the FDR.

This article is organized into four sections. In Sec. II,
a framework of the random Schrödinger-type dynamics is
formulated, the reference state is defined, and the equations
for the mean dynamics are derived. In Sec. III, the derivations
of the Kubo formula and the modified FDR are presented. In
Secs. II and III, we focus on the mathematical arguments and
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relations, leaving the discussion of the physical interpretation
and relevance to Sec. IV, where we also discuss our results
as they pertain to the work of other authors available in the
literature. Finally, the conclusions are summarized in Sec. V.

II. FORMULATION

To incorporate the effects from the noisy background into a
quantum model, we employ the usual formalism of a random
Hamiltonian that is constructed to be a random operator acting
on Hilbert space, and it is also time-dependent to reflect the
nonautonomy of the underlying physical implementation. In
the following subsections, we propose a model of a system
with random potential and practical conditions to define a
new reference state of the dynamics, under the assumption
that the mean Hamiltonian is time-constant. Thereafter, we
introduce a mean dynamics, which is an average of all
possible governing equations, leading to the nonhomogeneous
governing equations of quantum states and operators. More
importantly, the mean equation and the chosen reference state
will be foundations for the analysis to obtain the modified
Kubo formula and the FDR in the next section.

A. A Model

We consider a system described by a time-dependent
Hamiltonian,

Hω(t) = H0 + Vω(t), (1)

where H0 is a fixed Hamiltonian and Vω(t) is a random
potential operator defined by Vω(t)ϕ = vω(t)ϕ for each ϕ in
Hilbert space H, where vω(t) is a smooth function of t . For the
sake of brevity, let Hω denote Hω(t), where the parameter ω

indicates a configuration or realization in probability space
(�,μ), with a measure μ. In this sense, the Hamiltonian
H0 can be viewed as the background Hamiltonian of our
system, e.g., a sample in an experiment, submerged in a
noisy environment whose effects are reflected in the random
potential Vω(t). Conceptually, we imagine a composite system
S, which can be decomposed as S = S0 ∪ Sω, where S0 is a
considered system (e.g., a sample in an experiment) and Sω

is a (virtual) external system (e.g., the noisy environment in
the experiment) connecting to S0, with the effects from Sω

encoded in the potential Vω(t). This means that Sω possesses
random fluctuation, making it a reservoir that supplies or
extracts energy by a random amount of vω(t) at time t . This
causes the measured total energy of the composite system
S to depend on time t . In our consideration, the composite
system S is also in weak contact with a reservoir B (e.g.,
another measurement probe or a controlled environment) with
a parameter β = 1/kBT , where T is the bath temperature.

We assume that H0 is a solvable Hamiltonian of the
considered system S0, equipped with a set of eigenfunctions
{φk} in Hilbert space H corresponding to eigenvalues {Ek},
where k = 1,2, . . . ,d := dimH. For such a system, one can
obtain an equilibrium state or Gibbs state that maximizes the
von Neumann entropy among all states with a given energy E0

[27,28] as

σβ := e−βH0

Tr[e−βH0 ]
=

d∑
k=1

(
e−βEk∑d
j=1 e−βEj

)
|φk〉〈φk|. (2)

We note that σβ is equilibrium only for the case vω(t) = 0
at all time t . In this case, E0 = 〈H0〉σβ

:= Tr[σβH0], where
〈A〉ρ = Tr(ρA) is an average of the operator A over a
state ρ. On the contrary, for the system governed by Hω,
it becomes more complicated to find an equilibrium state
(if it exists) from a given energy because the Hamiltonian
Hω is time-dependent; hence, the energy Tr[σβHω(t)] of the
system in the state σβ is no longer a constant of motion. In
particular, for a realization ω, the state of the form e−βHω

Tr(e−βHω )
is not an equilibrium state for all time. Moreover, since Hω

also depends on a configuration ω, one may not obtain the
same result from different realizations or measurements. In
this work, we impose additional assumptions to define an
appropriate constant of motion to construct another version
of an equilibrium state for the overall evolution, including the
effects of the anomalous potential Vω(t).

B. Equilibrium state

We denote by Eω(Xω) := ∫
�

Xωdμ(ω) the expectation or
ω average of random variable Xω with respect to the measure
μ on the probability space (�,μ). In a physical sense, this
corresponds to taking the average value of X over all possible
realizations of noisy environments. To construct an appropriate
equilibrium state, we assume that

V := Eω[Vω(t)] is constant in time. (3)

From the condition (3), we find that H0 and V are
time-independent and are also constants of motion. Thus, the
equilibrium state in this case, called the adjusted equilibrium
state, can be written as

σ ′
β = e−β(H0+νV)

Tr(e−β(H0+νV))
, (4)

where β and ν are Lagrange multipliers, as formulated in
Ref. [27]. Without loss of generality, we set ν = 1 by absorbing
the scaling into the random part of the Hamiltonian. Note that
the parameter β must be equal to the inverse temperature of
the bath when Vω(t) = 0 for all time t .

Moreover, by employing the equivalence between the
Schrödinger and Heisenberg pictures, for an evolution of the
operator A �→ A(t) and its dual evolution for a state ρ �→ ρ(t),
one obtains

〈A〉ρ(t) = Tr[ρ(t)A] = Tr[ρA(t)] = 〈A(t)〉ρ. (5)

Exact forms of the evolution maps will be discussed in the
following subsection.

C. Dynamics of operators and states

For a fixed configuration ω, the dynamics of the system in
this specific realization is well-defined formally since vω(t)
is assumed to be a smooth function. The evolution of an
observable operator A and its dual dynamics, respectively,
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are

d

dt
Aω(t) = iLt

ω[Aω(t)] := i[Hω,Aω(t)], (6)

d

dt
ρω(t) = −iLt

ω[ρω(t)] = −i[Hω,ρω(t)]. (7)

Formally, the evolution can take the form

Uω(t,t ′) = T exp

(
−i

∫ t

t ′
Hω(τ )dτ

)
,

where T is a time-ordering operator, with its reverse time-
ordering operator denoted by T [29]; here, we set Uω(t,0) :=
Uω(t) for simplicity. Similarly, we also define the dynamics
generated by the mean Hamiltonian H = H0 + V. The mean
dynamics of the operators A and ρ can be obtained by taking
the averages of Eqs. (6) and (7) over all configurations. This
yields

d

dt
A(t) = i[H,A(t)] + iCt (H,A)†, (8)

d

dt
ρ(t) = −i[H,ρ(t)] − iCt (H,ρ), (9)

where A(t) and ρ(t) denote the ω average of the solutions
Aω(t) and ρω(t) in Eqs. (6) and (7), respectively, and

Ct (H,·) := Eω([δHω(t),Uω(t) · U†
ω(t)]) (10)

with δHω(t) := Hω(t) − H. Note that Ct (H,·) is a nonho-
mogeneous contribution from the mean deviation of the
configurations about the mean Hamiltonian H. We remark
that Eq. (9) has a formal solution,

ρ(t) = e−itLρ(0) + ηρ(t), (11)

where

ηρ(t) := i

∫ t

0
e−i(t−s)LCs(H,ρ)ds. (12)

One can see that, from Eq. (10), Ct (H,·) takes an argument as
an initial observable operator in the Heisenberg picture or an
initial state in the Schrödinger picture; see the discussion in
Sec. IV A. Moreover, from Eq. (9), one can see that the term
Ct (H,ρ) = Ct (V,ρ) contains information on the dependence
between the Hamiltonian and the density operator or the state.
In particular, Ct (H,·) vanishes when δHω(t) commutes with
Aω(t) and ρω(t) at any time t .

III. MODIFIED KUBO FORMULA AND
FLUCTUATION-DISSIPATION RELATION

After construction of the model and derivation of the mean
dynamics, we consider a linear-response theory and apply
the obtained mean dynamics to explore the effects of the
randomness that is contained in the nonhomogeneous term
in Eq. (9). Our analysis follows a similar procedure to that
in Ref. [30] and the original linear-response formalism of
Kubo [2]; see Sec. III A. Ultimately, we will show that the
contribution from the randomness of the composite system, as
an accumulation of the propagation of the nonhomogeneous
(noisy) term in the mean dynamics, will result in the modified
Kubo formula and the FDR in Sec. III B. Finally, a limiting

condition to obtain the standard Kubo formula is given, and the
same restriction will be applied in order to obtain the modified
FDR, which is expressed in a frequency representation of the
response function.

A. Effects from the bath

From Eq. (9), we obtain an ensemble average of a physical
quantity corresponding to the operator A. By employing the
equivalence between the Heisenberg and Schrödinger pictures,
we need to investigate only the dynamics of the state ρ.
Henceforth, we will consider the linear-response formulation
as defined in Ref. [2] to find the behaviors of the system when
it is in weak contact with a bath. First, we define a small
interaction term with the bath as

Lt
I (·) := [B,·]hB(t), (13)

where B is an operator representing the effects from the bath,
and hB is its corresponding c number. Adding this term to
Eq. (9) leads to a perturbed dynamics,

d

dt
ρ(t) = −i

(
L − Lt

I

)
ρ(t) − iCt (H,ρ), (14)

where L is the Liouville operator corresponding to the mean
Hamiltonian H. Equation (14) admits a formal solution that
can be written as

ρ(t) = e−itLρ(0) + i

∫ t

0
e−i(t−s)LLs

I ρ(s)ds

+
[
ηρ(t) + i

∫ t

0
e−i(t−s)LLs

I ηρ(s)ds

]
+ O

(
h2

B

)
. (15)

In the case in which the initial state ρ(0) is an adjusted
equilibrium state σ ′

β , it follows that e−itLσ ′
β = σ ′

β . Combining
Eqs. (5) and (15) and performing an iteration to calculate the
average of the observable A, we obtain

〈A(t)〉ρ = 〈A〉σ ′
β
+ i

∫ t

0
[Tr(σ ′

β[A(t),B(s)])hB(s)]ds

+ Tr

[
ησ ′

β
(t)A + i

∫ t

0
e−i(t−s)LLs

I ησ ′
β
(s)Ads

]

+O
(
h2

B

)
. (16)

From the expression above, one can see that an average value
of a physical quantity is deviated not only by perturbation from
a bath (the second term on the right-hand side), but also by the
nonhomogeneous term ησ ′

β
(t) in the third term and coupling

between the bath and random effects in the fourth term. In the
sense that the bath is a measurement probe, a linear response
that is related to a measured quantity will be deviated by those
effects. We will discuss this interesting point in more detail in
Sec. IV A.

B. Modified Kubo formula and fluctuation-dissipation relation

Now we consider a linear-response function, which is
defined by

χAB(t,t ′) = ∂〈A(t)〉ρ
∂hB(t ′)

∣∣∣∣
hB=0

. (17)
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Then we obtain from Eq. (16), for 0 � t ′ � t , that

χAB(t,t ′) = 2iθ (t − t ′)[Tr(σ ′
β[A(t),B(t ′)]) + �AB(t,t ′)],

(18)

where

�AB(t,t ′)

:= 1

2
Tr

[(∫ t ′

0
e−i(t−t ′)L[B,e−i(t ′−s)LCs(H,ρ)]ds

)
A

]
,

(19)

and θ (t) is a Heaviside function defined by θ (t) = 1 for t � 0
and θ (t) = 0 for t < 0.

In a physical sense, the term Tr(σ ′
β[A(t),B(t ′)]) can be re-

lated to an antisymmetric correlation [4], where the correlation
is usually defined as a two-epoch time correlation function
between operators A and B in a given state. In this case,

CAB(t,t ′) := 〈A(t)B(t ′)〉σ ′
β
. (20)

One can then define symmetric and antisymmetric correla-
tions, respectively, by

C−
AB(t,t ′) := 〈[A(t),B(t ′)]〉σ ′

β
, (21)

C+
AB(t,t ′) := 〈{A(t),B(t ′)}〉σ ′

β
, (22)

where {A,B} := AB + BA. Thus, the modified form of the
Kubo formula can be written as

χAB(t,t ′) = 2iθ (t − t ′)[C−
AB(t,t ′) + �AB(t,t ′)]. (23)

We remark that, from a typical setup of a linear response,
hB(t) is set to be zero for t < t ′ and then turned on at t ′ to
preserve the causality of the measurement, i.e., the effect from
the probe cannot influence the system before they are in contact
at the time t = t ′ [30,31]. In other words, from Eq. (19), it can
be said that the system is in an adjusted equilibrium state at
the initial time t = 0 and evolves until t = t ′. Then, it makes
weak contact with the bath, and they evolve together until the
present time t . All relevant information on the evolution of the
system and of the concerned operators is therefore contained
in Eq. (23).

Now consider the conditions to obtain the standard FDR
from Eq. (23). Using the shorthand notation (t,t ′) → (t) when
t ′ = 0, so that CAB(t,t ′) → CAB(t), we obtain

CAB(t) = Tr[σ ′
βA(t)B]

= Tr[U(t)BU†(iβ)U†(t)A]

Tr[U(iβ)]
, (24)

or equivalently,

CAB(t) = CBA(−t − iβ). (25)

One can see that the relation above is another version of the
Kubo-Martin-Schwinger (KMS) condition, and the evolution
along imaginary time arises here. It is important to note
that, in Eq. (24), the operator A(t) can be written as a
Heisenberg operator U†(t)AU(t), where U(t) = e−itH is a
unitary evolution generated by the mean Hamiltonian H,
because the contribution from ησ ′

β
(t ′) vanishes at t ′ = 0.

Furthermore, one can verify that �AB(t) = 0 [32], and Eq. (23)
becomes

χAB(t) = 2iθ (t)C−
AB(t). (26)

To see the modification of FDR, we consider the Fourier
transform of Eq. (26). Toward that end, we define the Fourier
transform of an integrable function g(t) as

ĝ(λ) ≡ F[g(t)] := 1√
2π

∫ ∞

−∞
e−itλg(t) dt,

where λ is a real number. It can be verified that the complex
conjugate of C−

AB(t) is equal to C−
AB(−t). Consequently, the

imaginary part of the linear-response function χ̂AB(λ) in the
frequency domain can be written as

Imχ̂AB(λ) = Ĉ−
AB(λ) (27)

= (1 − e−βλ)ĈAB(λ) (28)

as a direct consequence of Eq. (25). Similarly, one finds that

Ĉ+
AB(λ) = (1 + e−βλ)ĈAB(λ). (29)

Finally, we obtain

Imχ̂AB(λ) = tanh

(
βλ

2

)
Ĉ+

AB(λ), (30)

which corresponds to the power of energy dissipation as noted
in Ref. [30]. The modified fluctuation-dissipation relation in
Eq. (30) is structurally similar to the standard FDR given in
Refs. [2,30] in the sense that it is extracted from a new Gibbs
state, namely the adjusted equilibrium state σ ′

β . However, we
emphasize that only the average of the random potential affects
the adjusted equilibrium state, resulting in the shifting of the
measured energy. For the case V = 0, despite having external
random fluctuation, the adjusted equilibrium σ ′

β coincides with
σβ , and Eq. (30) is exactly the standard FDR as expected.

IV. DISCUSSION

In this section, we will discuss our proposed model and
its connection to the previous work in the literature. From
our ideas of investigating a family of systems with random
fluctuation, constructing an adjusted equilibrium state, and the
mean dynamics, there are interesting results and tools to enable
a better understanding of the dynamics out of equilibrium. The
main topics for discussion are the consequences and interpreta-
tion of these ideas, especially the adjusted equilibrium, which
is imperative in our derivations of the modified Kubo formula
and the FDR. Also, a suggestion regarding an extension of this
work from the viewpoint of stochastic path integrals and a brief
discussion on the adiabaticity of the dynamics concerning the
probability formulation are included at the end of this section.

A. Contribution from the random term

According to the derivation of the modified FDR in
Sec. III B, it is advantageous to use the mean dynamics in
Eq. (9), as this enables us to review a great deal of previous
work regarding the modified FDR. For example, the correlation
in the standard FDR is replaced by a composition of the former
correlation, which involves the system’s interaction with the
bath, and another term that appears from the nonautonomous
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effects due to the random term. As is often suggested in the
literature, the role of the latter term is to explain the behaviors
of the considered system out of the equilibrium regime. One
idea is that the extra contribution to the response function
is due to the dynamical activity; the time-symmetric part
of the action from the bath vanishes in equilibrium due to
the causality argument (that is, the response must not occur
before a measurement [33]). However, when the system is out
of equilibrium or there are other parameters not considered,
the dynamical activity seems to result in a certain amount of
energy dissipation [23–25,34]. This has also been interpreted
as the total entropy production from the dynamics, where the
correlation term in the FDR is treated as the entropy production
of the medium or the considered system analogous to S0

[26,31].
In our case, the extra term arises from the presence of the

nonhomogeneous term

Ct (H,ρ) = Eω([δHω(t),ρω(t)])

in the governing equation of the mean dynamics. One can see
that it stores information on the external random potential at
any time through which the system evolves. Recall Eq. (19),

�AB(t,t ′)

= 1

2
Tr

[(∫ t ′

0
e−i(t−t ′)L[B,e−i(t ′−s)LCs(H,ρ)]ds

)
A

]
, (31)

for the explicit form of the extra term in the Kubo formula. It
can be seen that all actions along the dynamics are included in
the expression at the time in which they act. There are two time
evolutions therein. One evolves and accumulates the effects
from the nonhomogeneous term Cs(H,ρ), interacting with a
bath via the operator B, from time s to the measurement time t ′.
The other evolution, i.e., e−i(t−t ′)L, causes the system and bath
to evolve together until the final time t ; see Fig. 1. Therefore,
it reflects the memory effects of the whole evolution, equipped
with the nonhomogeneous term from the random potential,
resulting in the measured response function. In essence, the
added random term disturbs the measured quantity, causing it
to deviate from a modeled value in any experiment. Other than
in the limit t ′ → 0, taking the state to the adjusted equilibrium
state at the measurement time, as shown in Eq. (26), the
standard FDR in Eq. (30) is valid.

Furthermore, since the extra term �AB(t,t ′) appears in the
Kubo formula as a deviation from an antisymmetric correlation
that one can expect from the usual measurement process
without a noisy environment, it can therefore quantify the
degree of the deviation (violation) from the standard FDR.

⊗ ⊗ ⊗⊕

FIG. 1. Schematic illustration of the system’s time evolution. The
system is in the adjusted equilibrium σ ′

β at time t = 0, and it begins
to contact with the bath at time t = t ′. During time 0 � s � t ′, the
system experiences random effects from the nonhomogeneous term
that accumulate until time t ′.

In this sense, the nonhomogeneous term Ct (H,ρ) plays an
important role as it is the integrand for �AB(t,t ′). Simply
speaking, the average deviation of random realizations affects
the deviation of the modified FDR from the standard one.

B. Reference state

The crucial concern of this work, as already mentioned, is
that the equilibrium state, which maximizes the von Neumann
entropy, is not well-defined because of a lack of information
over the entire time domain. Although the Gibbs state can be
defined for the specific Hamiltonian at the specific time, the
time dependence of the Hamiltonian results in ambiguity of
the equilibrium state in the model since the Gibbs state defined
here inherits the time dependence from the Hamiltonian. In
other words, when the Hamiltonian changes, the preferred
direction of the dynamics in the state space, which is expected
to reach a state of maximum entropy, also changes. Thus,
the equilibrium state in this sense depends on time and the
dynamics as equilibration becomes questionable.

However, in the literature, this definition of the equilibrium
state is still used for other proposes. For example, one can
define an instantaneous equilibrium state, an accompanying
state (in a closed system), or a poised state [35–38], each of
which corresponds to the Hamiltonian at a specific time and
for a specific configuration ω in our formulation, i.e., the Gibbs
state of the form e−βHω

Tr(e−βHω ) . From this point of view, the dynamics
of the system can be viewed as a deviation of the trajectories of
the states driven by the random and time-dependent dynamical
equations from those of the accompanying state. Since the
preferred direction of the dynamics changes with respect to
the accompanying state, the deviation therefore involves the
entropy production along the path dynamics [36]. In fact, the
accompanying states do not constitute the reference states in
the same manner as the attractors of the governing dynamics,
but instead their trajectories can be viewed as attracting paths
for the sake of maximizing entropy production.

Another advantage of using the accompanying state is
well demonstrated in Ref. [38]. There is a formulation of
the fluctuation relation of the nonautonomous Lindblad-like
dynamics. In that work, the accompanying state, defined as
an element in the kernel of the Lindblad-like generator, is
proven to satisfy a modified dynamics given by another set of
governing equations. After using perturbation, the fluctuation
relation is derived in terms of the accompanying states and their
time derivatives. Consequently, the standard FDR is recovered
from the obtained fluctuation relation in the linear-response
regime where the Lindblad-like generator is reduced to the
time-independent Lindblad generator. [See Eqs. (21) and (39)
and the subsequent discussion in Ref. [38].]

Unlike in Ref. [38], we consider the nonautonomous system
governed by a family of Schrödinger-type or Liouville–von
Neumann equations with random realizations of the potential.
After determining the expectation over all the realizations
to obtain the mean dynamics, the resulting equation is still
nonautonomous, but the effects from the randomness are
gathered in the nonhomogeneous term Ct (H,ρ). The ambiguity
of the Gibbs state suggests that the definition of the external
potential alone is inadequate to analyze the dynamics and
the reference state. Therefore, we assume that the averaged
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energy taken over all realizations of the Hamiltonian is a
constant of motion [39], so that we can construct a single
adjusted equilibrium state, which is the Gibbs state of the
mean Hamiltonian H, as the reference state. It can be seen
that the adjusted equilibrium state satisfies the definition of
the accompanying state for the mean Hamiltonian. Ultimately,
when the system is in weak contact with the bath, we obtain
the modified Kubo formula in Eq. (23), which is reduced to
the standard FDR in Eq. (30).

Indeed, it is shown that even when the time dependence is
dropped for the mean Hamiltonian, making the homogeneous
part time-independent, the violation of the standard FDR
can be obtained from the random effects residing in the
nonhomogeneous part of the mean dynamics. Moreover, the
adjusted equilibrium state can well describe whether the
violation of the standard FDR occurs and to what degree, as
we already discussed following Eq. (23). This suggests that the
adjusted equilibrium state is a good candidate for the reference
state of the time-dependent dynamics with a time-independent
energy.

C. Additional random potential as unobserved
degrees of freedom

We revisit the model under consideration: Hω(t) = H0 +
Vω(t), where H0 is a constant (background) Hamiltonian
and Vω(t) is a potential operator acting on a wave function
ϕ by Vω(t)ϕ = vω(t)ϕ, where vω(t) is a random smooth
function. The presence of the random external potential
introduces unknown degrees of freedom. Unlike the bath
or reservoir model, all dynamical properties of the external
system Sω, such as the relaxation time, the dimension, or
the volume, are not specified in a way that enables the
considered system S0 to evolve to equilibrium. This idea is
analogous to having unobserved degrees of freedom. A similar
model was analyzed by Budini et al. in Ref. [40] to derive
the non-Markovian master equation, which suggests that the
presence of additional degrees of freedom, e.g., a random
disturbance in the composite system, provides memory effects
in the master equation [40].

In this work, we can see the inherited memory effects in
Eq. (16) and its consequent Kubo formula in Eq. (23) when em-
ploying the time-dependent random potential instead of using
the Hermitian operators to capture the unobserved degrees of
freedom associated with the system with random coupling, as
was done in Ref. [40]. Indeed, one can formulate a similar
scheme by setting Vω(t) = λωQ, where Q is a Hermitian
operator and λω is a random real number representing the
coupling constant, and by using the non-Markovian master
equation instead of Eq. (9). In our case, it can be seen that the
potential can be reduced to being time-independent, and the
adjusted equilibrium state can be defined because the average
over all the realizations of the Hamiltonian yields a constant
of motion.

D. Nonhomogeneous part as a generator of random dynamics

Now we introduce a possible extension of our formulation.
Since the commutator obeys the Lie structure, the term Ct (H,·)
can be analyzed as a Lie derivative. Then, the deviated

Hamiltonian δHω(t) := Hω(t) − H appearing in Ct (H,·) will
generate another dynamics, and its derivative represents
changes of a physical quantity related to randomness. For
example, for a particular realization ω, let us consider

[δHω(t),·]
as an operator on Hilbert space. For definiteness, let B0(H)
denote an algebra of all bounded operators on H together with
the Hilbert-Schmidt inner product (A,B) = Tr[A†B]. In this
sense, the set of trace class operators B1(H) := {A ∈ B(H) :
Tr(A) < ∞} forms a separable Hilbert space H̆ ([41], p. 33),
and any density operator ρ can be viewed as a vector in H̆.
Then [δHω(t),·] defines an action on H̆ denoted by Rω(·) :=
i[δHω(t),·], so that

(ρ,Rω(ρ)) = i Tr(ρ[δHω(t),ρ]) = 0

following the cyclic invariance of the trace function. By the
Lumer-Phillips theorem, the operator Rω(·) is dissipative and
can be a generator of a contraction semigroup on H̆ (Theorem
2.5 in [42]). However, the semigroup given here is determined
up to a configuration ω, as is a dynamical parameter (denoted
by τω) of the evolution. Therefore,

∂ρ

∂τω

= Rω(ρ), (32)

yielding another governing equation for the density operator ρ.
In the case of a countable number of configurations, Eqs. (8)
and (9) become a multidimensional problem in parameters.
When the number of configurations is uncountable, the
description of the problem in this direction can be considered
as a version of the path integral or stochastic dynamics, whose
derivations can potentially be used to investigate the dynamics
of dissipative systems.

E. Adiabaticity of dynamics

There remain interesting topics concerning the adiabatic
property of the dynamics which can simply be quantified by
the entropy function S(ρ) := −Tr(ρ ln ρ). First of all, let us
consider the case Ct (H,ρ) = 0, which occurs, for instance,
when the random fluctuation is absent. Thus, only the effect
from the bath contributes to the entropy production. With
perturbation from the bath, the entropy production can be
expressed as [43]

EntB(t) := −iβhB(t)Tr{ρ(t)[H,B]}, (33)

where the reference state is chosen to be the adjusted
equilibrium state σ ′

β . Because the entropy production above
is of linear order of hB, the evolution is still close to the
adiabatic regime where the entropy production is identically
zero. On the contrary, for the case Ct (H,ρ) �= 0, the evolution
map corresponding to Eq. (9) may not admit group or even
semi-group properties in general. The definition of entropy
production in Eq. (33) is therefore not well-defined for
this case, and one can expect nonadiabatic effects in some
situations.

Although the exact form of the entropy production becomes
more complicated for the mean dynamics due to the fact that it
is out of equilibrium, we can show that the entropy production
in our case is increasing with time. To demonstrate this point,
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consider again Eq. (7). Because the entropy function is concave
and invariant under a unitary transformation [28], it follows
that

S[ρ(t)] = S{Eω[ρω(t)]} � Eω{S[ρω(t)]}
= Eω{S[ρ(0)]} = S[ρ(0)].

Hence, the difference of the entropy S[ρ(t)] − S[ρ(0)], treated
as the overall entropy production along the dynamics up
to time t , is non-negative. In particular, the equality holds
for the δ distribution (a single path with probability 1)
or when the entropy function is linear. Since the entropy
function is nonlinear and usually the distribution over the
configuration space is non-δ, the overall entropy production
is strictly positive, yielding that the mean dynamics is strictly
nonadiabatic.

Apart from the mean dynamics, the evolution of the system
is unitary for a specific realization ω, and the entropy is
unchanged. However, when one cannot know exactly in which
state the system lies, i.e., when one cannot know exactly the
equation of the dynamics by which the system is governed,
the unknown random potential will affect the dynamics, and
the mean dynamics is preferred. For example, an experimenter
can do a number of measurements in which each one is
significantly different from the rest since they are governed
by different Hamiltonians resulting from random effects. One
can say that the average of the measurements will reflect
the information on the mean Hamiltonian, and the random
contribution will appear in the modified Kubo formula.

V. CONCLUSION

In conclusion, we consider a family of Liouville–von
Neumann equations indexed by configurations in a probability

space to represent a system inheriting random fluctuation. By
taking the average over all random realizations, the mean
dynamics is obtained as another Liouville–von Neumann
equation but with a nonhomogeneous term. The homogeneous
term is consistent with the mean behavior of all realizations,
while the nonhomogeneous one corresponds to the effects of
the noisy environment. Under the condition that the average
of the Hamiltonians over all realizations, called the mean
Hamiltonian, is constant in time, we can construct a suitable
reference state, called the adjusted equilibrium state, which
is simply the Gibbs state for the mean Hamiltonian. After
the system is in contact with a bath and a perturbation is
taken in a linear order, we obtain a linear-response function,
and consequently the modified Kubo formula and the FDR,
with two contributions from different causes. One is an
antisymmetric cross correlation between two observables
expected from the contact with the bath, while the other
arises from the existence of randomness. The latter can be
expressed as an accumulation of the nonhomogeneous term
in the governing equation of the mean dynamics, signaling
the propagation of a noisy environment and interacting with
the cross correlation at later times. Furthermore, we find that
the modified Kubo formula yields the modified FDR in the
case in which the probe contacts the system when the latter
has not yet reached an equilibrium state, but instead is in an
adjusted equilibrium state. When random fluctuation is absent,
the standard FDR and Kubo formula are recovered as expected.
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[16] G. Verley, R. Chétrite, and D. Lacoste, Modified fluctuation-
dissipation theorem for general non-stationary states and appli-
cation to the Glauber–Ising chain, J. Stat. Mech.: Theor. Exp.
(2011) P10025.

[17] F. Zamponi, G. Ruocco, and L. Angelani, Generalized fluctua-
tion relation and effective temperatures in a driven fluid, Phys.
Rev. E 71, 020101 (2005).

[18] D. V. Averin and J. P. Pekola, Violation of the Fluctuation-
Dissipation Theorem in Time-Dependent Mesoscopic Heat
Transport, Phys. Rev. Lett. 104, 220601 (2010).

[19] A. Caso, L. Arrachea, and G. S. Lozano, Local and effective
temperatures of quantum driven systems, Phys. Rev. B 81,
041301 (2010).

[20] L. Y. Chen, Nonequilibrium fluctuation-dissipation theorem of
Brownian dynamics, J. Chem. Phys. 129, 144113 (2008).

[21] R. Mauri and D. Leporini, Violation of the fluctuation-
dissipation theorem in confined driven colloids, Europhys. Lett.
76, 1022 (2006).

[22] D. Lobaskin and S. Kehrein, Violation of the fluctuation-
dissipation theorem and heating effects in the time-dependent
kondo model, J. Stat. Phys. 123, 301 (2006).

[23] M. Baiesi, C. Maes, and B. Wynants, Nonequilibrium linear re-
sponse for markov dynamics, I: Jump processes and overdamped
diffusions, J. Stat. Phys. 137, 1094 (2009).

[24] M. Baiesi, E. Boksenbojm, C. Maes, and B. Wynants, Nonequi-
librium linear response for markov dynamics, II: Inertial
dynamics, J. Stat. Phys. 139, 492 (2010).

[25] M. Baiesi and C. Maes, An update on the nonequilibrium linear
response, New J. Phys. 15, 013004 (2013).

[26] U. Seifert and T. Speck, Fluctuation-dissipation theorem in
nonequilibrium steady states, Europhys. Lett. 89, 10007 (2010).

[27] A. Katz, Principles of Statistical Mechanics (Freeman, San
Francisco, 1967).

[28] A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50,
221 (1978).

[29] J. J. Sakurai, Modern Quantum Mechanics (Revised Edition),
1st ed. (Addison Wesley, Reading, MA, 1993).

[30] G.-L. Ingold, Dissipative Quantum Systems, in Quantum Trans-
port and Dissipation (Wiley-VCH, Weinheim, 1998), Chap. 4.

[31] T. Speck, Driven soft matter: Entropy production and the
fluctuation-dissipation theorem, Prog. Theor. Phys. Suppl. 184,
248 (2010).

[32] Here, one can see that the resulting equation can be approached
by another reason or assumption, for instance when one forces
the system so that ρω(t) always lies on its mean state ρ(t)—
which is an alternative expression for mean-field approximation.

[33] C. Maes, S. Safaverdi, P. Visco, and F. van Wijland, Fluctuation-
response relations for nonequilibrium diffusions with memory,
Phys. Rev. E 87, 022125 (2013).

[34] E. Lippiello, M. Baiesi, and A. Sarracino, Nonequilibrium
Fluctuation-Dissipation Theorem and Heat Production, Phys.
Rev. Lett. 112, 140602 (2014).

[35] L. Pucci, M. Esposito, and L. Peliti, Entropy production in
quantum Brownian motion, J. Stat. Mech.: Theor. Exp. (2013)
P04005.

[36] S. Deffner and E. Lutz, Nonequilibrium Entropy Production
for Open Quantum Systems, Phys. Rev. Lett. 107, 140404
(2011).

[37] P. Hänggi and H. Thomas, Stochastic processes: Time evolution,
symmetries and linear response, Phys. Rep. 88, 207 (1982).

[38] R. Chetrite and K. Mallick, Quantum fluctuation relations
for the lindblad master equation, J. Stat. Phys. 148, 480
(2012).

[39] In this sense, the nonhomogeneous part of the governing
equation (9) of the mean dynamics will be time-independent and
does not yield the fluctuation relation as obtained in Ref. [38].
This can be seen by the fact that the adjusted equilibrium state
is the same as the accompanying state of the mean Hamiltonian,
but the fluctuation relation Eq. (22) in Ref. [38] produces a trivial
equality 1 = 1 when A is the identity.

[40] A. A. Budini and H. Schomerus, Non-Markovian master equa-
tions from entanglement with stationary unobserved degrees of
freedom, J. Phys. A 38, 9251 (2005).

[41] T. Heinosaari and M. Ziman, The Mathematical Language of
Quantum Theory: From Uncertainty to Entanglement (Cam-
bridge University Press, Cambridge, 2011).
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