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Continuity of the entropy of macroscopic quantum systems

Robert H. Swendsen*

Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
(Received 6 August 2015; published 9 November 2015)

The proper definition of entropy is fundamental to the relationship between statistical mechanics and
thermodynamics. It also plays a major role in the recent debate about the validity of the concept of negative
temperature. In this paper, I analyze and calculate the thermodynamic entropy for large but finite quantum
mechanical systems. A special feature of this analysis is that the thermodynamic energy of a quantum system is
shown to be a continuous variable, rather than being associated with discrete energy eigenvalues. Calculations
of the entropy as a function of energy can be carried out with a Legendre transform of thermodynamic potentials
obtained from a canonical ensemble. The resultant expressions for the entropy are able to describe equilibrium
between quantum systems having incommensurate energy-level spacings. This definition of entropy preserves
all required thermodynamic properties, including satisfaction of all postulates and laws of thermodynamics. It
demonstrates the consistency of the concept of negative temperature with the principles of thermodynamics.
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I. INTRODUCTION

In recent years, there has been a renewal of interest in
the fundamental definition of the thermodynamic entropy in
statistical mechanics. An important source of that interest
has been the controversial claims that the Gibbs “volume”
entropy (defined below) is the only valid definition [1–7],
and that the concept of negative temperature is inconsistent
with thermodynamics [8–10]. Other work on classical systems
has shown how a valid definition of entropy is consistent
with negative temperatures, giving correct thermodynamic
predictions when the volume entropy does not [11–22].

The entropy of quantum systems is complicated by a
discrete energy spectrum, which has led many to regard
the entropy as being defined only at energies corresponding
to eigenstates [23,24], or as constants between eigenvalue
energies (step functions) [4–6]. In this paper, I argue that the
thermodynamic energy of macroscopic quantum systems has
a continuous spectrum of values, even though the eigenvalues
of the energy form a discrete set. To briefly summarize my
arguments, macroscopic measurements never put a many-body
system into an energy eigenstate. The small interactions that
are necessary to establish thermodynamic equilibrium between
two or more systems are sufficient to alter the discrete energy
spectra of the isolated systems. This means that the projection
of an eigenstate of the composite system of interacting
subsystems onto the energy levels of an isolated subsystem
will never produce an eigenstate of the isolated subsystem. An
isolated system will necessarily be described by an ensemble
of quantum states, including contributions from many energy
eigenvalues.

I begin by demonstrating in Sec. II that the thermodynamic
energy of an isolated quantum system that was previously in
thermal contact with another system is a continuous variable.
Section III reviews the canonical probability distribution of
energy in a system that has been in contact with a thermal
reservoir, that is, with a very large (formally, infinite) system.
I analyze the canonical distribution in terms of a Massieu

*swendsen@cmu.edu

function [25,26], in order to be able to carry out calculations
for either a monotonic or a nonmonotonic energy density of
states. The essential features of an ensemble for an isolated
system are then shown to depend on an internal temperature
variable, which leads to a method for calculating the entropy
of a macroscopic quantum system. This ensemble is argued
to apply even when the system was in contact with a small
macroscopic system, a conclusion that has recently been
confirmed by explicit calculations [27]. As examples, analytic
expressions are derived for the entropy of quantum simple
harmonic oscillators and two-level objects. The entropy of a
system of two-level objects has a nonmonotonic density of
states, and serves to demonstrate that negative temperatures
are consistent with the principles of both quantum statistical
mechanics and thermodynamics, as previously shown for
classical models in Ref. [22].

II. THERMODYNAMIC ENERGY IN QUANTUM SYSTEMS

To see the unique way in which interactions affect thermal
ensembles in quantum statistical mechanics and lead to the
thermodynamic energy being a continuous function, consider
a composite system with M macroscopic (many-body) subsys-
tems. The macroscopic observables for the composite system
are just the set of 3M variables {E,V,N} = {Ej ,Vj ,Nj |j =
1, · · · ,M}, where E, V, and N denote the sets of energies,
volumes, and particle numbers. To reduce the proliferation
of subscripts, the equations are written for a single type of
particle, but the generalization to many types of particles is
obvious. For quantum spins, the magnetization will also be
included in the macroscopic variables.

Each macroscopic subsystem j will be characterized by a
Hamiltonian Hj , when it is isolated from other subsystems.
To establish thermal equilibrium between subsystems, direct
interactions between particles in different subsystems are
necessary. These additional interactions will be denoted by the
interaction Hamiltonians L = {Lj,k|j = 1, · · · ,M − 1; k =
j, · · · ,M; }. These interactions between macroscopic subsys-
tems prove to be essential in deriving the quantum entropy.

The extension of the definition of entropy to quan-
tum systems follows the basic pattern of considering
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thermodynamic interactions between subsystems of a com-
posite system that I discussed for classical composite systems
in earlier work [16]. However, there are some subtleties
associated with the discreteness of the spectrum of energy
eigenvalues for finite systems.

In particular, the effects of interactions between subsys-
tems, denoted by L, must be treated carefully. I begin by
introducing a fairly standard notation for quantum states and
equilibrium quantum ensembles, first for isolated subsystems
and then for interacting subsystems [28].

A. Isolated quantum subsystems

First consider the case in which L = 0, so that every macro-
scopic subsystem is isolated. Denote the quantum Hamiltonian
for the j th subsystem by Hj , and the corresponding quantum
numbers by νj . The energy eigenvalue equation is then

Hj |νj 〉 = εj (νj )|νj 〉, (1)

where |νj 〉 denotes an eigenstate. I assume that for each
subsystem j , the set of |νj 〉 forms a complete, orthonormal
set.

A general quantum state of subsystem j will be denoted by
|ψj 〉. It can be expanded in the eigenstates of the subsystem,

|ψj 〉 =
∑
νj

cνj
|νj 〉, (2)

where the coefficients cνj
are complex numbers, cνj

=
|cνj

| exp (iφνj
), and are given by

cνj
= 〈νj |ψj 〉. (3)

If |ψj 〉 is properly normalized, we have∑
νj

|cνj
|2 = 1. (4)

Assuming that there is a probability distribution, Pj (ψj ),
defined on the set of quantum states, then the average of
an arbitrary operator Aj , operating on the quantum states in
subsystem j , will be given by

〈〈Aj 〉〉 =
∑
ψj

Pj (ψj )〈ψj |Aj |ψj 〉, (5)

where the double angular brackets indicate that both a
quantum expectation value and an ensemble average are being
calculated, and the summation symbol is intended to cover
whatever sums and integrals are appropriate. Using Eq. (2),
〈〈Aj 〉〉 can be written as

〈〈Aj 〉〉 =
∑
{cj }

∑
μj

∑
νj

Pj ({cj })c∗
μj

cνj
〈μj |Aj |νj 〉, (6)

where {cj } indicates a set of values of cνj
corresponding to the

quantum state |ψj 〉, and the sum over {cj } is the sum over all
quantum states in the ensemble.

In equilibrium, all phases, φj , are equally probable. Inte-
grating over the phases gives a factor of zero for all cross terms,
leaving the expression

〈〈Aj 〉〉 =
∑
νj

∑
{cj }

Pj ({c})∣∣cνj

∣∣2〈νj |Aj |νj 〉. (7)

This expression can be simplified by writing

Pj (νj ) =
∑
{cj }

Pj ({cj })
∣∣cνj

∣∣2
, (8)

so that P (νj ) � 0. This gives

〈〈Aj 〉〉 =
∑
νj

Pj (νj ) 〈νj |Aj |νj 〉. (9)

Further noting that 〈〈1〉〉 = 1, we see that∑
νj

Pj (νj ) = 1, (10)

so that Pj (νj ) acts very much like a probability. Averages
over the equilibrium quantum ensemble can be computed as if
Pj (νj ) were a probability. It is quite common to speak loosely
of Pj (νj ) as being the probability of the subsystem being in
the |νj 〉 eigenstate, but it is well known this is not correct.
Pj (νj ) is the probability that a precise measurement of the
energy would put the subsystem into the |νj 〉 eigenstate. Since
a macroscopic subsystem is generally in a state of the form
given in Eq. (2), and macroscopic measurements cannot put
a subsystem in an eigenstate, the true probability of a real
macroscopic subsystem being in an energy eigenstate is zero.
This leads to the question of what we do know about the
distribution of quantum states in interacting subsystems.

B. Interacting quantum subsystems

An important feature of interacting quantum subsystems
is that the spectrum of energy eigenvalues is not related to
the corresponding spectra for the isolated subsystems in a
simple way. The composite subsystem has new eigenfunctions
with new eigenvalues that depend on the interactions L �= 0.
As an example, consider two interacting subsystems with the
following Hamiltonian:

H1,2 = H1 + H2 + L1,2. (11)

The eigenvalue equation for this Hamiltonian can be written
as

H1,2|ν1,2〉 = ε1,2(ν1,2)|ν1,2〉, (12)

where |ν1,2〉 denotes the eigenstate and ν1,2 the quan-
tum number. The eigenstates |ν1,2〉 form a complete,
orthonormal set.

A general quantum state of the composite system of
interacting subsystems will be denoted by |�1,2〉. It can be
expanded in the eigenstates of the composite system,

|�1,2〉 =
∑
ν1,2

Cν1,2 |ν1,2〉, (13)

where the Cν1,2 ’s are complex numbers:

Cν1,2 = 〈ν1,2|�1,2〉. (14)

If |�1,2〉 is properly normalized, we have∑
ν1,2

∣∣Cν1,2

∣∣2 = 1. (15)
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C. Energy distribution of an individual
subsystem due to interactions

Given the eigenstates and eigenvalues of the composite
system of interacting subsystems and the probability distribu-
tion P1,2(ν1,2), we can compute the energy distribution in the
individual subsystems. If the composite system is in a state
|�1,2〉, the projection onto the eigenstate |ν1〉 of the isolated
subsystem 1 is

〈ν1|�1,2〉 =
∑
ν1,2

Cν1,2〈ν1|ν1,2〉. (16)

The expectation of the energy E1 of subsystem 1, given that
the composite system is in state |�1,2〉, is

〈E1〉�1,2 = 〈�1,2|H1|�1,2〉
=

∑
μ1

∑
ν1

〈�1,2|μ1〉〈μ1|H1|ν1〉〈ν1|�1,2〉. (17)

Because |ν1〉 is an eigenfunction of H1, Eq. (17) becomes

〈E1〉�1,2 =
∑
ν1

〈�1,2|ν1〉〈ν1|H1|ν1〉〈ν1|�1,2〉, (18)

or, using Eq. (16),

〈E1〉�1,2 =
∑
ν1

∣∣Cν1,2

∣∣2|〈ν1|ν1,2〉|2E1(ν1). (19)

Averaging over the probability distribution of the states of
the composite system gives

〈〈E1〉〉 =
∑
ν1

E1(ν1)
∑
ν1,2

P1,2(ν1,2)
∣∣Cν1,2

∣∣2|〈ν1|ν1,2〉|2. (20)

This can be simplified by defining

p1(ν1) =
∑
ν1,2

P1,2(ν1,2)
∣∣Cν1,2

∣∣2|〈ν1|ν1,2〉|2, (21)

where 1 � p1(ν1) � 0 and
∑

ν1
p1(ν1) = 1. This gives

〈〈E1〉〉 =
∑
ν1

E1(ν1)p1(ν1). (22)

The value 〈〈E1〉〉, including both quantum expectation values
and ensemble averages, corresponds to the thermodynamic
energy, U1, so that we can also write

U1 =
∑
ν1

E1(ν1)p1(ν1). (23)

The most important feature of Eqs. (22) and (23) is that they
demonstrate that subsystems that interact within a composite
system are not in energy eigenstates, even if the composite
system was (incorrectly) assumed to be in an eigenstate. This,
in turn, implies that the thermodynamic energy of a quantum
subsystem in equilibrium with another quantum subsystem can
vary continuously, even though the energy spectra are discrete.
U1 remains a continuous variable when subsystems in thermal
equilibrium are separated.

It is appropriate to compare the magnitudes of typical
energy spacings with typical thermal fluctuations of the energy.
In an example presented below, we will consider a subsystem
composed of N two-level quantum objects, with a level spacing
of ε. Characteristic average energies are of the order of Nε,

so that the relative size of the level spacing in comparison
with the total energy is of the order of 1/N . In contrast,
relative fluctuations of the energy are typically of the order
of 1/

√
N . For a macroscopic subsystem with N ≈ 1020, the

thermal fluctuations are roughly 1010 larger than the energy
level spacing.

When isolated systems with mutually incommensurate
energy-level spacings are brought together, even very small
interactions L between the systems will have an important
effect. The interacting systems will have a single energy
spectrum that differs from that of either of the isolated
systems. As a result, there is nothing to prohibit quantum
subsystems with incommensurate energy-level spacings from
exchanging energy and being in thermal equilibrium with each
other. Indeed, the explicit forms for the entropies of model
subsystems that are derived in Sec. IV can be used to predict
thermal behavior due to interactions between macroscopic
subsystems with incommensurate energy-level spacings.

Another consequence of Eq. (23) is that the concept of
a microcanonical ensemble must be modified in quantum
statistical mechanics, as discussed in the next subsection.

D. Separated quantum subsystems

When two or more interacting classical subsystems are
separated and isolated, they will each go into a microscopic
state with a specific energy. Naturally, the value of that energy
can only be predicted to within the thermal fluctuations of the
energy before separation. Nevertheless, it clearly makes sense
to describe an isolated classical subsystem by a microcanonical
ensemble with a specific value for the energy, even if that value
is unknown.

The situation when quantum subsystems are separated is
quite different. Each subsystem will go into a quantum state
that can be expressed as a linear combination of eigenstates, as
shown in Eq. (2). However, Eq. (23) shows this quantum state
will not be in an energy eigenstate, so the subsystems cannot
be described by a microcanonical ensemble with a specific
value for the energy.

This distinction between classical and quantum statistical
mechanics is related to the fact that the set of all classical
microcanonical ensembles includes all microscopic states,
while the set of all quantum microcanonical ensembles
does not include states described by linear combinations of
eigenstates.

As demonstrated in the next section, it is still possible to
compute the fundamental relation, Sj = Sj (Uj ,Vj ,Nj ), for
each subsystem by using the canonical ensemble, which is
valid for quantum statistical mechanics. Explicit examples of
such calculations are then given in Sec. IV.

III. CALCULATING THE ENTROPY THROUGH
THE CANONICAL ENSEMBLE

To determine the average thermodynamic energy we must
calculate the “probabilities,” pj (νj ), that were defined in
Eq. (21). The simplest way to do this is through the canonical
ensemble, which will give us a thermodynamic potential that
contains all thermodynamic information for the subsystem of
interest.
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A Legendre transform will then give the entropy as a
function of the thermodynamic energy. Because I am interested
in using a formalism that is also valid for subsystems with
nonmonotonic entropies, I will use a Massieu function to
derive the entropy [25,26]. Since a Massieu function might
be somewhat less familiar than the more common Helmholtz
free energy, it will be reviewed in the subsection following that
on the canonical ensemble.

A. Canonical ensemble

If we put the subsystem of interest, which we will pick to
be j = 1, into equilibrium with a reservoir that has a known
continuous density of states, ωR(ER), the value of p1(ν1) will
be determined by the proportionality

p1(ν1) ∝ ωR[ET − E1(ν1)], (24)

where ET = ER + E1(ν1) is the total energy of the reservoir
and subsystem 1. Taking the logarithm of each side and
expanding ωR gives

ln p1(ν1) = ln ωR(ET ) − E1(ν1)

[
∂

∂ET

ln ωR(ET )

]
− x ln Z′ + . . . , (25)

where Z′ is a constant. The higher-order terms that are
indicated by the dots in Eq. (25) are proportional to the ratio
of E1 to the much larger values of ET , and in the limit of
an infinite reservoir, they vanish. Although this calculation
is based on finding the mode of the probability distribution,
rather than the mean, the assumption of an infinite reservoir
is sufficient to make the mean and mode agree. Interactions
between finite subsystems will be discussed elsewhere, but
the effects are proportional to the inverse of the number of
particles and are not measurable for macroscopic subsystems.

Defining the inverse temperature

β = ∂

∂ET

ln ωR(ET ), (26)

where β = 1/kBT , Eq. (25) becomes

ln p1(ν1) = ln ωR(ET ) − βE1(ν1) − ln Z′, (27)

or

p1(ν1) = 1

Z′ ωR(ET ) exp [−βE1(ν1)]. (28)

Since ωR(ET ) does not depend on ν1, we can simplify the
expression by defining a new constant Z = Z′/ω2(E1,2),
which gives

p1(ν1) = 1

Z
exp [−βE1(ν1)]. (29)

This is, of course, is just the canonical distribution for
subsystem 1 for an inverse temperature β = 1/kBT . The
partition function Z = Z(β) in Eq. (29) is given by the
normalization condition,

Z =
∑
ν1

exp [−βE1(ν1)]. (30)

Note that the only property of the reservoir that enters
into this equation is the inverse temperature β, which is

the only property of the reservoir needed to determine the
thermodynamics of subsystem 1.

The average energy of subsystem 1, which can be identified
with the thermodynamic energy, U1, is

U1(β) =
∑
ν1

E1(ν1) p1(ν1)

= 1

Z(β)

∑
ν1

E1(ν1) exp [−βE1(ν1)]. (31)

B. Equilibrium between finite systems

An important concern for practical applications is how the
values of p1(ν1) for subsystem 1 in Eq. (29) are affected by
replacing the infinite reservoir R, used in Eq. (24), by a finite
subsystem 2. The higher-order terms in Eq. (25) no longer
vanish, but they are small.

It is not really necessary for Eq. (29) to be valid for all
values of E1(ν1). Because the values of p1(ν1) will only be
significantly different from zero within the thermal fluctuations
δE1, it is only necessary for Eq. (29) to be valid over a range
of energies of the order of δE1. As long as the ratio δE1/U2 is
small, Eq. (29) will be accurate. From a consideration of the
magnitude of the fluctuations, the condition of validity is that

δE1

U2
≈

√
N1

N2(N1 + N2)

 1. (32)

This condition will be easily satisfied for N2 � N1. For
the opposite case of subsystem 1 being in equilibrium with
a relatively small subsystem 2, so that N2 
 N2, Eq. (32)
becomes δE1/U2 ≈ 1/

√
N2. This condition can also be

satisfied if subsystem 2 is macroscopic.
As a result, it doesn’t matter much for the distribution

of energies whether a subsystem is in equilibrium with
a large subsystem or a small one—as long as they are
macroscopic. This is consistent with general experience of
measured temperatures and experimental confirmations of
the zeroth law of thermodynamics. Further confirmation has
recently been provided by explicit calculation, showing that
macroscopic systems are described by a canonical ensemble
after separation from another finite system [27].

The next step is to explore the consequences of
Eqs. (29), (30), and (31) for the entropy through the use of
a Massieu function.

C. Massieu functions

It is well known that the canonical partition function is
related to the Helmholtz free energy, F = U − T S, by the
equation

ln Z(β,V,N ) = −βF (T ,V,N ), (33)

where T is the temperature and β = 1/kBT . The Helmholtz
free energy is, of course, the Legendre transform of the funda-
mental relation U = U (S,V,N ) with respect to temperature,
which we will denote as F (T ,V,N ) = U [T ], indicating the
Legendre transform by the square brackets around the new
variable T [25,26].

Although the use of the thermodynamic potentials de-
rived from the fundamental equation U = U (S,V,N ) through
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Legendre transforms are familiar to all students of ther-
modynamics, they are not appropriate for calculating the
properties of nonmonotonic entropy functions. The reason is
that if S = S(U,V,N ) is not monotonic in U , the function
cannot be inverted to find U = U (S,V,N ). However, we can
still use Massieu functions, which are Legendre transforms
of S = S(U,V,N ) [25,26]. It will be particularly useful to
define a dimensionless entropy, S̃ = S/kB , in forming Massieu
functions.

From the differential form of the fundamental relation for
dS, we can see that

dS̃ = β dU + βPdV − βμdN, (34)

where P is the pressure, V is the volume, μ is the chemical
potential, and N is the number of particles. The inverse
temperature β is found from the usual equation, which can
be written as

β =
(

∂S̃

∂U

)
V,N

. (35)

The Legendre transform (Massieu function) is given by

S̃[β] = S̃ − βU = −β(U − T S) = −βF, (36)

so that

S̃[β] = ln Z(β,V,N ). (37)

The differential form of the Massieu function S̃[β] is then

dS̃[β] = −Udβ + βPdV − βμdN. (38)

This immediately gives us(
∂S̃[β]

∂β

)
V,N

= −U = −
(

∂(βF )

∂β

)
V,N

, (39)

where the last equality is a well-known thermodynamic
identity [25,26].

D. Inverse Legendre transform of S̃[β] to find S(U)

To carry out the inverse Legendre transform of S̃[β] to find
S(U ), use Eq. (39) to find U = U (β). Since U is a monotonic
function of β, even for a nonmonotonic density of states, we
can invert this equation to obtain β = β(U ). From Eq. (36),
we can find

S̃ = S̃[β] + β(U )U. (40)

Finally, the entropy with the usual dimensions is given by

S = kBS̃. (41)

E. Alternative calculation of the entropy S(U) from β = β(U)

Since β = β(U ) was found by inverting U = U (β), the en-
tropy can also be calculated by integrating the thermodynamic
identity in Eq. (35) to find

S = kB

∫ U

Umin

β(U ′)dU ′, (42)

where Umin is the minimum value of the thermodynamic energy
U . Both methods produce the same results.

The next section discusses the application of these methods
to calculate S(U ) for either a monotonic entropy or a
nonmonotonic entropy.

IV. EXAMPLES OF THE ENTROPY
OF QUANTUM SYSTEMS

This section contains explicit calculations of the entropy of
quantum systems, as illustrations of the methods described in
the previous section.

The first example is a system of quantum simple harmonic
oscillators, which has a monotonic dependence of the entropy
as a function of energy.

The second example is a system composed of two-level ob-
jects. This system has a nonmonotonic entropy and illustrates
how negative temperatures can arise in a quantum system. For
completeness, I will discuss two kinds of two-level systems.

A clear distinction should be made between macroscopic
systems composed of microscopic objects (simple harmonic
oscillators, two-level objects, etc.), as discussed in this section,
and the composite systems discussed in Secs. II and III, which
were composed of macroscopic subsystems.

A. A system composed of quantum simple harmonic oscillators

Consider a system composed of N simple harmonic
oscillators. For simplicity, we will assume that the frequencies
of all oscillators are the same, so that the energy levels of the
kth oscillator are

Ek(nk) = �ω(nk + 1/2), (43)

where � is Planck’s constant, ω is the angular frequency, and
nk = 0,1,2, . . . The partition function of the complete system
of N oscillators is well known to be

ZSHO = exp(−β�ωN/2)[1 − exp(−β�ω)]−N, (44)

so that

S̃SHO[β] = ln ZSHO

= − 1
2Nβ�ω − N ln[1 − exp(−β�ω)]. (45)

The energy is given by the negative partial derivative of
S̃SHO[β] with respect to β, as in Eq. (39):

USHO = 1
2 �ωN + N�ω[exp(β�ω) − 1]−1. (46)

1. Finding SSHO by Legendre transform

To make the following equations more compact, define

ÛSHO = USHO − 1
2 �ωN. (47)

The next step is to invert ÛSHO = ÛSHO(β), to find β =
β(ÛSHO). To make the notation still more compact, we will
express the results in terms of a dimensionless energy variable

x = ÛSHO/N�ω = USHO − 1
2 �ωN

N�ω
, (48)

which gives

β = 1

�ω
ln [1/x + 1] = 1

�ω
ln

[
1 + x

x

]
. (49)
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The inverse Legendre transform, S̃SHO[β] as a function of
x, is

S̃SHO[β] = − 1
2N ln [1/x + 1] + N ln (1 + x) (50)

Using Eq. (40), the entropy is found to be

SSHO = kBS̃SHO = NkB[−x ln x + (1 + x) ln(1 + x)].

(51)

It is readily confirmed that the same result is obtained by
numerical integration of the inverse temperature. It is also
obvious from Eq. (51) that SSHO is exactly extensive, as
expected for a system of independent oscillators.

In the limit of β → ∞ (or T → 0) the energy goes to its
minimum value, USHO → �ωN/2, and x → 0. In this limit,
SSHO → 0, as expected from the third law of thermodynamics
(Nernst theorem).

B. A system of two-level quantum objects

The next example illustrates the thermodynamics of a
system with a bounded energy spectrum and a nonmonotonic
entropy. This system displays negative temperatures.

Consider a collection of N two-level quantum objects,

H2-level = ε

N∑
k=1

nk, (52)

where ε is the energy difference between the two levels in each
object, and nk = 0 or 1. The partition function Z2-level can be
found by standard methods:

Z2-level = [1 + exp(−βε)]N . (53)

This gives

S̃2-level[β] = ln Z2-level = N ln[1 + exp(−βε)], (54)

and, using Eq. (39),

U2-level = Nε(exp(βε) + 1)−1. (55)

1. Finding S2-level(U) by Legendre transform

As before, we simplify the notation by defining a dimen-
sionless energy

y = U2-level

Nε
. (56)

The same type of calculation used for the simple harmonic
oscillators gives the inverse temperature as

β = 1

ε
ln

[
1

y
− 1

]
= 1

ε
ln

[
1 − y

y

]
. (57)

A little algebra then gives

S2-level = −NkB[y ln y + (1 − y) ln(1 − y)]. (58)

Integration of the inverse temperature produces the same
result as the Legendre transform.

As was the case for the entropy of quantum oscillators
in Eq. (43), the expression for S2-level in Eq. (58) is exactly
extensive as expected.

S2-level gives positive temperatures for y < 0.5, and neg-
ative temperatures for y > 0.5, as expected. The entropy is

symmetric for y ↔ 1 − y. The entropy goes to zero in the
limits y → 0 and y → 1, also as expected.

C. Independent Ising spins

Since a system composed of noninteracting Ising spins
is isomorphic to the two-level system discussed above, its
entropy can be obtained with little effort.

Consider the Hamiltonian

Hspins = −b

N∑
j=1

σj , (59)

where σj takes on the values +1 and −1, and the parameter
b represents an applied magnetic field. The mapping between
the variables nj , which take on the values 0 and 1, and the
spins is

σj = 2nj − 1, (60)

and the energies map as

U2-level

Nε
= Uspins

2Nb
+ 1

2
. (61)

Defining a dimensionless energy for the spin system by

r = Uspins

Nb
, (62)

Eq. (61) becomes

y = r + 1

2
, (63)

where y is the dimensionless energy for the two-level system
defined in Eq. (56). This gives the entropy of the spin system
as

Sspins = −NkB

2
[(1 − r) ln(1 − r)

+ (1 + r) ln(1 + r) − 2 ln 2]. (64)

Sspins has positive temperatures for r < 0, and negative
temperatures for r > 0, as expected, with an obvious symmetry
for r ↔ −r . The entropy goes to zero in the limits r → −1
and r → +1, also as expected.

A slight modification of the derivations given above would
also allow the calculation of the entropy of a system composed
of two-level systems or simple harmonic oscillators with
arbitrary distributions of energy-level spacings.

Now that these examples of derivations of the entropy of
quantum systems are complete, they can be tested against exact
results and compared with the predictions of the expressions
for the entropy of quantum systems proposed in Refs. [4–6].

V. COMPARISON OF S2-level WITH SG AND SB

In this section, I’ll compare S2-level, the entropy of a system
of two-level objects as a continuous function of energy, with
two alternative expressions for the entropy that have been
proposed. Defining ω(En) as the degeneracy of the energy
level En labeled by quantum number n, and

�(En) =
∑

Em�En

ω(Em), (65)
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the two alternatives are defined on the discrete set of energy
eigenvalues as

SB = kB ln ω(En), (66)

which is called the Boltzmann entropy, and

SG = kB ln �(En), (67)

which is called the Gibbs entropy in Refs. [4–6]. Both SB

and SG are discrete functions of energy, and SG is claimed to
represent the correct thermodynamic entropy in Refs. [4–6].

Although Ref. [4], for example, states that �(EN ), and
therefore SG, “is a priori only defined on the discrete set of
eigenvalues {En},” they do present “a heuristic procedure”
for obtaining an expression for the entropy as a continuous
function of energy.

In the next subsection, I will consider the relationship
between SB and SG for finite N and compare their values to the
exact entropy for a two-level system, S2-level, as discussed in
Sec. IV.2. The subsequent subsection will compare the predic-
tions of S2-level with those of SG,2-level for the equidistribution
of energy between two subsystems of two-level objects.

A. Comparison of S̃2-level with SG and SB

For a system composed of N two-level objects, the
degeneracy of the nth energy level, and therefore the value
of ω(En), is given by

ω(En) = N !

n!(N − n)!
, (68)

with �(En) then found from Eq. (65).
Figure 1 compares a plot of S2-level, as given in Eq. (58),

with the Boltzmann entropy, SB,2−level, which is given by
the logarithm of ω(En), as in Eqs. (66) and (68), and the
corresponding values of SG,2-level from Eq. (67).

FIG. 1. The solid line is a plot of the entropy per object,
S2-level/N , of a collection of N two-level objects, as a function of the
dimensionless thermodynamic energy U/Nε, as given in Eq. (58).
Since S2-level is exactly extensive, this plot is valid for all values of
N . The circles show the values of SB/N , as defined in Eqs. (66)
and (68), and the squares show SG/N , as defined in Eqs. (67), both
for N = 10. Both SB and SG are defined only on the discrete set of
energy eigenvalues.

For any finite N , even a smoothed version of SB,2−level

(circles in Fig. 1) falls below the curve representing S2-level. As
N increases, SB,2−level approaches the correct entropy, but they
only agree in the limit that N → ∞.

The squares in Fig. 1 representing SG,2-level also show that
a smoothed version will not agree with S2-level for finite N .
Even for N → ∞, SG,2-level will only agree with S2-level for
U � Nε/2. For U > Nε/2, SG,2-level goes to a constant value.
For U = Nε/2, SG,2-level = kBN ln 2, although there is only a
single eigenstate with this energy, so that the entropy might be
expected to vanish. In Refs. [4] and [6], it is claimed that the
behavior of SG,2-level for U > Nε/2 is correct. I will investigate
that claim in the following subsection.

B. Comparison of S̃2-level with a continuous volume entropy

Comparison of S2-level with the volume entropy as used
by its advocates is difficult because their expressions for the
entropy of a quantum system are only defined on a discrete set
of energy values [1,4]. However, their basic claim is that the
logarithm of the integral of the density of states gives the true
entropy, which always has positive temperatures. I calculate
the volume entropy, from the continuous entropy function in
Eq. (58), using the same procedure used in Ref. [4]. The
density of states is found from ω = exp(S/kB), ω is integrated
to obtain � as in Eq. (65), and the volume (Gibbs) entropy
is SG = kB ln �. The predictions of the volume entropy are
then tested against the expressions of the entropy derived in
Sec. IV, and both are compared with exact results in the next
subsection.

C. Comparison between predictions of the partition of energy
between subsystems in equilibrium for different entropies

Consider thermal equilibrium between two two-level sub-
systems with the same level spacing ε, but differing in size by
a factor of f . Subsystem 1 contains f N two-level objects, and
subsystem 2 contains N objects. Even without calculation,
it is obvious that equipartition of energy between the two
subsystems in equilibrium requires

U1

f N
= U2

N
. (69)

The prediction of S̃2-level comes from setting the tempera-
tures equal. Using Eq. (57),

βj = 1

ε
ln

[
fjNε

U2−level,j
− 1

]
= 1

ε
ln

[
1

yj

− 1

]
, (70)

for j = 1 or j = 2, and f1 = f , while f2 = 1. Since ε is
the same in both subsystems, it is clear that the condition of
equilibrium is y1 = y2, which is equivalent to Eq. (69). This
confirms that S̃2-level correctly predicts equipartition for these
subsystems with nonmonotonic ω(y).

The numerical computations for the equilibrium predictions
of the volume entropy have been carried out for test cases
and plotted in Fig. 2. For comparison, the exact condition for
equilibrium, which is a straight line given by Eq. (69), is also
shown. This exact equilibrium condition is identical to that
predicted by S2-level. For values of the energy less than half
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FIG. 2. Plot of the predictions of the volume entropy are
compared with those of the entropy given by S2-level in Eq. (58)
for the distribution of energy between two subsystems of two-level
objects in thermal equilibrium. The exact condition of equipartition
of energy is indicated by the straight line, which is also the prediction
of S2-level. The three curves giving the volume entropy predictions are
for subsystem sizes [N1,N2] of [10,1], [100,10], and [1000,100]. In
each case, the value of N2 is given in the legend. Larger deviations of
the curves for the volume entropy from the exact results correspond
to larger subsystems. Increasing the ratio of the subsystem sizes also
increases the violation of equipartition of energy.

the maximum energy, all predictions are in good agreement
with the equipartition of energy. However, for values of the
energy more than half the maximum energy, the predictions
of the volume entropy deviate significantly from the correct
equilibrium conditions.

The origin of the errors made by the volume entropy can
be traced back to the size dependence of the temperature TG

given by the volume entropy: the larger the subsystem, the
higher TG. Since subsystem 1 is larger than subsystem 2, it
also has a higher value of TG at equilibrium than subsystem
2. Equal values of TG in the two subsystems can only be

achieved if subsystem 2 has a higher energy than appropriate
for equilibrium, leading to the erroneous predictions of the
volume entropy shown in Fig. 2.

VI. CONCLUSIONS

I have demonstrated that the entropy of a macroscopic
quantum system is a continuous function of the thermody-
namic energy, as opposed to the step functions and δ functions
proposed by other authors [1–7], and I have given an explicit
procedure for calculating S = S(U ).

The expressions for the entropy of simple harmonic
oscillators in Eq. (51) and two-level systems in Eqs. (58)
and (64) satisfy the postulates of thermodynamics. They are
fundamental thermodynamic relations that completely charac-
terize the correct thermodynamic properties of these systems.
Because the fundamental relation of a thermodynamic system
can be shown to be unique, any valid definition of the entropy
of macroscopic quantum systems must be equivalent to the
one presented in this paper.

The thermodynamic entropy is not equivalent to a smoothed
version of either the Boltzmann or Gibbs entropies for finite
systems.

An interesting feature of the definition of entropy presented
here is that subsystems with incommensurate energy eigenval-
ues can be in equilibrium with each other. It is, of course,
well known experimentally that differences in microscopic
energy-level spacings do not prevent equilibration, but this
fact has not been obvious from earlier proposed expressions
for the entropy of macroscopic systems.

Finally, I have shown that an explicit calculation of the
entropy of two-level objects confirms the validity of the
concept of negative temperatures.
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