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Nonequilibrium structure in sequential assembly
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The assembly of monomeric constituents into molecular superstructures through sequential-arrival processes
has been simulated and theoretically characterized. When the energetic interactions allow for complete overlap of
the particles, the model is equivalent to that of the sequential absorption of soft particles on a surface. In the present
work, we consider more general cases by including arbitrary aggregating geometries and varying prescriptions of
the connectivity network. The resulting theory accounts for the evolution and final-state configurations through
a system of equations governing structural generation. We find that particle geometries differ significantly from
those in equilibrium. In particular, variations of structural rigidity and morphology tune particle energetics
and result in significant variation in the nonequilibrium distributions of the assembly in comparison to the
corresponding equilibrium case.
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I. INTRODUCTION

Self-organization and assembly of primitive building blocks
into superstructures drive the development of novel prod-
ucts that find use in diverse technological and biological
applications [1]. Polymerization [2–4], nucleation [5–7], and
micellization [8,9] are typical routes by which molecular
subunits assemble into a structured state. The control of such
processes allows for the development of molecular machinery
with desired structural and dynamical properties [10,11]. In the
self-assembly of soft materials [12–14], exotic phase behavior,
such as quasicrystalline states [15–17] and cluster crystals
[18–25], are observed. Thus, the geometries, and corre-
sponding energetic connectivity networks, of the resulting
assemblies can be harnessed for use in tailored materials with
unique properties.

In equilibrium systems, the assembled geometries can be
complex [26–29]; however, the underlying theory is very
mature and contingent only on equilibrium thermodynamic
arguments. In contrast, the theory for nonequilibrium systems
is significantly less advanced [30]. Here, we develop theory
for the structure and dynamics of an assembly process in
which small motifs are placed sequentially to build larger
structures. This insertion mechanism generates assemblies that
differ from those generated by systems at thermodynamic
equilibrium [31–33], and we describe this process through a
set of governing equations with specified rates. The generality
of this model allows it to be characteristic of many kinds of
arrival phenomena. For example, it can describe adsorption on
a substrate [34–36] or in a static framework [37] and therein
can be used to optimize the routes for a targeted structure
because of the differences between sequential and equilibrium
assembly processes.

II. THEORY AND METHODS

In the arrival-initiated assembly process, we consider the
sequential insertion of N particles to K initially empty binding
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sites. When a new particle arrives at the binding sites, there
are three possible outcomes: (1) the particle binds to an
unoccupied site, (2) the particle binds to an occupied site,
or (3) it does not bind to the chosen site and is available for
binding to another site in the next step. All these cases may
be specified through the binding probability pn, where n is the
occupation number of the site (that is, the number of particles
that already occupy the site). If the particle is rejected, the
attempt of adding a new particle to the set of binding sites
is repeated until it is accepted by a binding site. Any kind of
motion of bound particles, position exchange, diffusion, etc.,
is not allowed. The correlations between different sites are also
neglected.

The parameter � = N/K describes the average number of
particles in a site. If N < K , � corresponds to the occupied
site fraction (SF) for sites that are at most singly occupied
(for which pn = 0 for n > 0) arising from the so-called
hard sphere interaction. For higher occupancy, the actual
occupied SF is defined as φ = K ′/K , where K ′ is the number
of occupied sites. We also introduce partial site fractions
φn for the sites occupied by n particles. By construction,
φ = φ1 + φ2 + · · · + φN = 1 − φ0, where φ is the probability
that a randomly chosen site is occupied by at least one particle.

The probability Pn that a new particle will ultimately be
accepted into a site already holding n particles is proportional
to the product of the probability φn that the new particle lands
on one of the sites with the occupation number n and the
probability pn that it is accepted by this site, that is,

Pn = Qφnpn, (1)

where Q is the constant of proportionality. The coefficient Q

is calculated readily from the fact that
∑

Pn = 1:

Q =
(

N∑
n=0

φnpn

)−1

. (2)

The “occupation” probabilities Pn from Eq. (1) depend on the
ratios pi/pj rather than on the “site acceptance” probabilities
pi themselves. Thus, pi’s can be replaced by rates or relative
occupation numbers if they are known.
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The average density �(m) = m/K is a function of the
number m of added particles and has a maximal value
(= N/K). Each accepted (added) particle leads to a small
increase in � by �� = 1/K . In the same time, the partial
SFs can increase or decrease by the same amount but with
different probabilities. Namely, the SF of empty sites φ0 will
be decreased by �� with the probability P0 upon adding one
more particle, whereas φN can only be increased by the same
amount with the probability PN−1. Given that m particles have
already been added to the system, the master equations for the
average SFs read

φ0(m + 1) = φ0(m) − P0(m)��,

· · ·
φj+1(m + 1) = φj+1(m) + Pj (m)�� − Pj+1(m)��, (3)

· · ·
φN (m + 1) = φN (m) + PN−1(m)��.

It is notable that for large values of � the system does not
necessarily reach equilibrium or a steady state. This is possible,
however, at some specific pi values when, for example, they
depend on the configuration and tend to zero as � → ∞. In
the current work we focus on nonequilibrium distributions and
do not address such cases.

In the thermodynamic limit, the numbers of sites and
particles are very large, and m is directly connected to the
achieved site occupation � = m/K . From this it follows that
system (3) can be rewritten as

dφ0(�) = −P0(�)d� (4a)

· · ·
dφj+1(�) = [Pj (�) − Pj+1(�)]d� (4b)

· · ·
dφN (�) = PN−1(�)d�. (4c)

Substitution of Pn from Eq. (1) into system (4) gives

dφ0 = −Qφ0p0d�

· · ·
dφj+1 = Q(φjpj − φj+1pj+1)d�

· · ·
dφN = QφN−1pN−1d�.

(5)

The corresponding differential equations are

dφ1

dφ0
= s1

φ1

φ0
− 1, (6a)

dφ2

dφ0
= s2φ2 − s1φ1

φ0
,

· · · (6b)

where sn ≡ pn/p0. With the initial conditions φ0 = 1, φ1 =
φ2 = · · · = 0 at m = 0 these equations allow one to obtain the
partial occupied quantities φn for n > 0 for a given φ0. Thus,
when the relative probabilities pi/p0 remain constant during
the assembly process, Eq. (6a) has the following solution:

φ1 = (
φ

s1
0 − φ0

)/
(1 − s1). (7)

Substitution into Eq. (6b) under the same conditions has the
solution

φ2 = s1

(1 − s1)(1 − s2)

(
φ0 − 1 − s2

s1 − s2
φ

s1
0 + 1 − s1

s1 − s2
φ

s2
0

)
.

(8)

In the “hard sphere” regime, when p1 = 0, particles cannot
occupy the same site, so that the fractions of the total number
of sites covered by one and two particles reduce to φ1 = 1 − φ0

and φ2 = 0, respectively.
The general solution of system (6) is of the form

φn =
n∑

k=1

a
(n)
k φ

sk

0 + b(n)φ0, (9)

where the coefficients a
(n)
k and b(n) are obtained after substi-

tuting Eq. (9) into Eqs. (6):

a
(n)
k = 1

sn

sk

1 − sk

n∏
i=1,i �=k

si

si − sk

,

b(n) = 1

sn

n∏
i=1

−si

1 − si

.

(10)

For the highest occupancy term φN , the coefficients a
(N)
k

and b(N) must be evaluated in the limit pN = 0 as it is
not possible for the (N + 1)th particle to bind to the site
with highest occupancy. Note that φN can also be found
after calculating the occupancies of lower orders as φN =
1 − φ0 − φ1 − · · · − φN−1.

If there is no preferential binding, each pi is the same
constant for all i and can be set arbitrarily to 1 as only the
ratios pi/pj play a role. In this case, Q = 1 and the solution
for the occupied SF of the first equation in system (5) is φ =
1 − φ0 = 1 − exp(−�). It corresponds exactly to the Poisson
limit [38,39] wherein Eqs. (7) and (8) reduce to

φ1
p1→p0−−−−→ −φ0 ln φ0 = � exp(−�),

φ2
p1→p0−−−−→
p2→p0

φ0

2
ln2 φ0 = �2

2
exp(−�).

(11)

This Poisson distribution is also recovered for all terms, φn =
�n exp(−�)/n! , directly from system (5) as si → 1 ∀ i. This
is a known solution for clustering by irreversible filling [40,41]
at equal filling rates. Another limiting case occurs when each
site can accept only one particle (that is, p0 = 1 and pi = 0
for i > 0). Therein the solution of system (4) is φ0 = 1 − �

and φ1 = �.
Although system (5) cannot be solved easily for arbitrary

values of {pi}, analytic solutions are available in several non-
trivial cases. For example, if high-order occupancies appear
with small probabilities, one can neglect partial SFs with order
larger than, say, m and assume that φ0 + φ1 + · · · + φm ≈ 1.
The smallest nontrivial set corresponds to m = 1, wherein
φ0 + φ1 ≈ 1. Combining Eq. (4a) with Eqs. (1) and (2) gives

d� = −dφ0 [φ0 + s1(1 − φ0)]/φ0, (12)

which is solved to yield

� = (1 − s1)(1 − φ0) − s1 ln φ0. (13)
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FIG. 1. (Color online) The probability of site occupation φ as a function of δ at various density values � for three interaction networks: (a)
complete K, (b) tethered T , and (c) ring R. The blue circular markers, orange dashed curves, and red solid curves correspond to the simulation,
the first-order approximation in Eq. (14), and the second-order approximation in Eq. (16), respectively. The lower cyan solid curves in the top
panels correspond to the equilibrium values of φ as measured from simulation. The insets in each panel are graphs of corresponding networks
for n = {3,4,5} particles. (d)–(f) The probability φn for observing n particles in a site as a function of δ for the corresponding network (shown
above), as measured from simulation.

It then follows that

φ = 1 − s1

1 − s1
W

[
1 − s1

s1
exp

(
1 − s1 − �

s1

)]
, (14)

where W is the product logarithm [42]. For the second-order
approximation (m = 2, φ0 + φ1 + φ2 ≈ 1), Eq. (4a) reads

d� = −dφ0
φ0 + s1φ1 + s2(1 − φ0 − φ1)

φ0
, (15)

where φ1 is taken from Eq. (7). The solution to this equation
is

� =
(

1 + s1
s2 − 1

1 − s1

)
(1 − φ0)

+ s1 − s2

s1(1 − s1)

(
1 − φ

s1
0

) − s2 ln φ0.

(16)

Equations (13) and (16) are valid for any arrival-initiated
assembly process evolving through system (3) and constitute
a central analytical result of this work. They relate the
probability of site occupation φ = 1 − φ0 to density �, site
occupation numbers φn [via Eqs. (7)–(9)], and site binding
probabilities {pn}. Higher-order approximations for φ can
be obtained by solving differential equations like the ones
above for a given m, although for brevity we refrain from
producing these expressions here. Below, we show that the
first- and second- order approximations adequately describe
site occupation and structural growth at densities large enough
to observe assembly behavior.

Thus far we have placed no constraints on the energetics
with respect to arriving-particle–site and arriving-particle–
bound-particle interactions. The makeup of these energies is
represented through the probability ratios si . We consider here
three energetic interaction networks: complete K, tethered T ,
and ring R. For simplicity, we ignore particle-site interactions
in all three cases; that is, we set p0 = 1. In the complete

interaction network K, incident particles interact with every
particle already bound to that site. Taking the energy between
particles to be ε, the energy levels of K are {E1 = 0,E2 =
ε,E3 = 3ε,E4 = 6ε, . . . ,Ek = εk(k − 1)/2}. Multiple occu-
pancy lattice structures, cluster crystals, and aggregation
of soft matter [19,43,44] are systems that have complete
interaction networks. In the tethered network, an arriving
particle interacts only with the site’s top layer generating
energy levels {E1 = 0,E2 = ε,E3 = 2ε, . . . ,Ek = (k − 1)ε}.
Polymerization and surface-initiated assembly of linear motifs
are paradigmatic examples of tethered energetics [45–48].
In the ring network, the energy levels are {E1 = 0,E2 =
ε,E3 = 3ε,E4 = 4ε, . . . ,Ek = kε : k > 2}, corresponding to
the assembly of systems such as ring polymers [49,50]. Repre-
sentative graphs showing single-site interaction networks for
the K, T , and R cases are shown in the bottom left corner
of Figs. 1(a), 1(b), and 1(c), respectively. Other complex
connectivity graphs can arise from alternative symmetries
within the generated clusters [51,52] but can be accounted
for through analogous considerations in the φn terms through
the pn parameters.

The acceptance probabilities {pn} for the three selected
connectivity networks are a function of the parameter δ =
exp (−ε�), where ε� = ε/kBT is the strength of the interaction.
Specifically, pn = δn in the complete case K, pn = δ for
T , and {p1 = δ,p2 = δ2,pn = δ : n > 2} for system R. The
limiting values of δ correspond to completely repulsive
incident interactions or low temperature (δ = 0) and soft
incident interactions or high temperature (δ = 1).

III. NUMERICAL RESULTS AND DISCUSSION

As shown in Fig. 1, Eq. (16) is in excellent agreement with
the results obtained by sampling the sequentially generated
structures through Monte Carlo (MC) simulations across
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all ranges of density and interaction strengths and for all
interaction networks. Note that in the tethered case the first-
and second-order approximations are equivalent as s1 = s2 =
δ. At each step of the sequentially generated case, for example,
a site is first chosen at random. An incident particle binds
to it according to the acceptance probability {pn}, which
depends on the parameter δ. Note that the specific nature
of these probabilities will depend on the chosen energetic
connectivity network. If the particle is rejected by the chosen
site, a new site is selected (with all sites equally likely), and
the acceptance-rejection loop is repeated. If the particle is
accepted by the site, the acceptance-rejection algorithm is
initiated for the next particle in sequence. Further details about
the simulations may be found in Ref. [33].

The canonical equilibrium site occupation probability can
be obtained through a sum over the Boltzmann-weighted
probabilities for each energetic state [33]. To measure this
probability, Metropolis MC sampling [53] was performed on
each interaction network over varying values of � and δ.
In these simulations, after an initial relaxation phase, state
sampling was initiated, and the Boltzmann-weighted ensemble
average of these spatial states is the measured numerical
result for φ. As shown in Fig. 1, values of φ generated
by the equilibrium ensemble deviate significantly (and are
less than) from those generated through a sequential arrival
procedure. This observed lowering in the site occupation
probability results from the clustered states that are formed
through sequential assembly when a system is allowed to
relax to an equilibrium state. This behavior is conjectured
to persist across all energetic interaction networks, as the
relaxation to equilibrium inherently relaxes the energetics
encountered in the arrival process. The overall change in
the energetics is not entirely determined by the clustering
energy E, which may be positive or negative depending
on the sign of ε, as it must also include the (unrelaxed)
entropy term S. Thus, although in our case E increases, the
free energy E − T S can decrease through the equilibrium
relaxation.

The generated nonequilibrium distributions are highly de-
pendent on the interaction network and the pairwise interaction
strength δ (see Fig. 1). For all three selected connectivity
networks, the values of φn are in agreement in the Poisson
distributed (δ = 1) limit, as every particle is completely
decorrelated. In the complete case K, for small δ values, the
distribution is dominated by a single high-order φn (n = 3),
showing that aggregate size is strongly uniform. For tethered
interactions, across all values of δ, approximately constant
behavior is observed, and thus, the assembly distribution
is Poisson-like. This result is in agreement with behavior
observed in the assembly of polymer-grafted nanoparticles
[48]. For systemsR, the dimers prevail at small δ, showing that
formation of ring structures is more energetically consuming,
whereas at δ > 0.8 the overall structure resembles that of the
tethered case T .

Figure 2 shows the growth of φ with respect to variation in
�. In the Poisson limit, a characteristic exponential (linear
behavior in the semilog inset) is observed in accordance
with Eq. (11). A distinct turnover (sigmoidal behavior) in the
occupancy gradient is observed below the Poisson distributed

FIG. 2. (Color online) (a) The probability of site occupation φ

and (b) growth dφ/d� as a function of density � for various values
of δ. The energetics correspond to the complete interaction case K.
The inset shows the growth rate on a log scale. The solid curves are
the results measured from simulation, and the dashed curves are the
results given by Eq. (16).

limit. At small δ values, initially sparse organization is
observed due to multiple rejections from occupied sites. After
the turnover point, where the derivative dφ/d� at δ < 1
crosses that at δ = 1, layers are formed, and the binding
preference of an incident particle shifts from unoccupied to
occupied sites. This is correlated with the approach of the
occupation probability toward the asymptotic value φ = 1,
which corresponds to complete covered binding sites. It is
interesting to note that at large values of � the derivative
dφ/d� approaches exponential behavior. The latter can be
directly obtained from Eq. (16) evaluated at small φ0 (a large
density of adsorbed particles leads to a small number of
vacancies):

dφ

d�
= −dφ0

d�
∼ exp(−�/s2) . (17)

IV. CONCLUSIONS

In summary, we have developed a theoretical formulation
for the structures generated through an arrival process in
which monomeric objects sequentially assemble. We find
that the distribution in the size of tethered linear aggregates
with varying interaction strength is approximately Poissonian,
whereas it takes more complex forms for other connectivity
networks. Such characterization allows for the design of
novel materials quenched from intrinsically nonequilibrium
distributions of site occupation through the control of the
interaction network and strength.

Note added. We have recently become aware of a con-
currently published study by Osberg et al. [54] in which
a one-dimensional model was introduced to consider the
absorption and desorption kinetics of soft particles. Like us,
they found significant effects due to the introduction of soft-
particle interactions. The model presented here also includes
the possibility of surface adsorption (in two dimensions)
and more general dimensionality depending on the topology
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of the connectivity network. Observation of the phenomena
predicted in these studies would provide impetus for additional
theoretical and experimental inquiry into the role that softness
plays in adsorption.
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[35] M. Cieśla, J. Stat. Mech. (2013) P07011.
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