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We show that an equilibriumlike additivity property can remarkably lead to power-law distributions observed
frequently in a wide class of out-of-equilibrium systems. The additivity property can determine the full scaling
form of the distribution functions and the associated exponents. The asymptotic behavior of these distributions
is solely governed by branch-cut singularity in the variance of subsystem mass. To substantiate these claims,
we explicitly calculate, using the additivity property, subsystem mass distributions in a wide class of previously
studied mass aggregation models as well as in their variants. These results could help in the thermodynamic
characterization of nonequilibrium critical phenomena.
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I. INTRODUCTION

Simple power-law scaling is ubiquitous in nature [1]. It
appears in the distribution of drainage areas of rivers [2],
droplet size [3,4], the size of clusters formed in polymer-
ization processes [5], rain size [6], the size of fragments
in fractured solids [7], population and wealth [8,9], stock
market fluctuations [10], etc. Evidently, power laws, which
are usually associated with criticality through the emergence
of a diverging length scale, are observed in widely unrelated
systems, suggesting the existence of some broad underlying
principle. Recent evidence that living systems might be
operating, independent of most of the microscopic details,
in the vicinity of a critical regime [11] indeed invokes
further questions, e.g., how and why systems adapt to near
criticality.

There have been several attempts to reveal the origin of
power laws in nature through studies of paradigmatic nonequi-
librium models, the most appealing being sandpile [12–14]
and mass aggregation models [15–20]. Many of these models,
where there is a conservation law or, in the case of violation, the
law is weakly violated in the sense that the systems are slowly
driven, are intimately connected to each other. For example,
the mass aggregation models [17–19,21] are connected to the
directed Abelian sandpile model [22] or to the models of river
networks [2].

In this paper we argue that power-law distributions in
out-of-equilibrium systems can arise simply from an additivity
property, the tenet of equilibrium thermodynamics. We find
that the divergence in the response function is the key:
Diverging fluctuations can in principle arise from distributions
other than simple power laws, which are however prohibited
if one imposes additivity and the consequent fluctuation-
response (FR) relation. The response function determines
the full scaling form of the distribution at as well as away
from criticality and critical exponents originate from the
singularity in the response function. To demonstrate this, we
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consider mass aggregation models that are known to have
a nonequilibrium steady state with scale-invariant structures.
At all mass densities, the distribution function Pv(m) of
mass m in a subsystem of volume v, which is obtained
solely from the FR relation, is shown to have a scaling form
Pv(m) ∼ m−τ exp(μ̃m). The quantity μ̃(ρ) = μ(ρ) − μ(ρc),
the inverse of a cutoff mass m∗(ρ) = −1/μ̃(ρ), is an analog
of the equilibriumlike chemical potential and provides a
useful thermodynamic interpretation of the emergence of
power laws in nonequilibrium steady states. The exponent
τ and the critical properties of chemical potential μ(ρ)
arise from a multiple-pole or branch-cut singularity in the
variance at a critical mass density ρc. As the critical density is
approached ρ → ρc, the nonequilibrium chemical potential
vanishes μ(ρ) → 0, leading to pure power laws. Beyond
the critical density ρ > ρc, there is a gas-liquid-like phase
coexistence.

The above result immediately provides answer to why the
m−5/2 power law, at or away from criticality, appears so often
in mass aggregation models, especially in higher dimensions,
at all densities and irrespective of whether or not the motion
of the diffusing masses is biased [19,21,23,24]. Interestingly,
the same power law appears in the k-mer distribution in the
classic Flory-Stockmayer [25] theory of polymerization and
also in the particle-number distribution in a three-dimensional
ideal Bose gas near the critical point, irrespective of whether
the systems are in or out of equilibrium, thus indicating a
universality. We demonstrate that the m−5/2 law is a conse-
quence of a simple-pole singularity in the variance. The whole
analysis is extended also to nonconserved-mass aggregation
models. We validate our theory by explicitly calculating
mass distributions in previously studied mass aggregation
models and their variants and by comparing them with
simulations.

The organization of the paper is as follows. In Sec. II A
we discuss the additivity property. In Sec. II B we discuss
the connection between singularity in the variance and the
asymptotic behavior of the mass distribution function. In
Sec. III we illustrate our analytic methods in a broad class of
model systems, in both conserved-mass aggregation models
and the nonconserved versions. In Sec. IV we summarize our
results with a concluding perspective.
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II. THEORY

A. Additivity property

We start by invoking an additivity property that a wide
class of systems, irrespective of whether they are in or out
of equilibrium, could possess. Consider a continuous-mass
(generalization to discrete masses is straightforward) transport
process on a lattice of size V and then divide the system
into ν = V/v identical subsystems or cells, the kth subsystem
with mass mk , where the total mass M = ∑

k mk remains
conserved. Provided the subsystems are large compared to the
spatial correlation length, they could be considered statistically
almost independent [26–29]. In that case, the joint subsystem
mass distribution in the steady state can be written in a product
form

P[{mk}] �
∏ν

k=1 wv(mk)

Z(M,V )
δ

(∑
k

mk − M

)
, (1)

where wv(mk) is an unknown weight factor [to be determined
later; see Eq. (13)] depending only on the subsystem mass mk ,
Z = ∏

k

∫
dmkwv(mk)δ(

∑
k mk − M) ≡ exp[−Vf (ρ)] is the

partition sum, f (ρ) is a nonequilibrium free energy density,
and ρ = M/V is the mass density. The product form in Eq. (1)
amounts to an equilibriumlike additivity property, in the sense
that a free energy function F = −∑

k ln wv(mk) is minimized
in the macrostate.

Using standard statistical mechanics [30], Eq. (1) leads
to the probability distribution Prob[mk ∈ (m,m + dm)] =
Pv(m)dm for the subsystem mass where

Pv(m) = wv(m)eμm

Z , (2)

with μ(ρ) a nonequilibrium chemical potential and Z the
normalization constant. The weight factor wv(m) and chemical
potential μ(ρ) = df/dρ can be obtained using a fluctuation-
response relation [26–29,31]

dρ

dμ
= σ 2(ρ), (3)

where the scaled variance σ 2(ρ) = (1/v)(〈m2
k〉 − 〈mk〉2) in

the limit of v 
 1. The free energy density function f (ρ)
can be obtained through the relation μ(ρ) = df /dρ, i.e.,
f (ρ) = ∫

μ(ρ)dρ + β, with the chemical potential μ(ρ) =∫
1/σ 2(ρ)dρ + α [obtained from Eq. (3)] and α and β arbitrary

constants of integration. Then the Laplace transform of wv(m)
is written as w̃v(s) = ∫

wv(m) exp(−sm)dm ≡ e−λv (s), i.e.,

e−λv (s) =
∫

wv(m)e−smdm. (4)

The function λv(s) can be obtained from a Legendre transform
of the free energy density function f (ρ) [32],

λv(s) = v[infρ{f (ρ) + sρ}] = v[f (ρ∗) + sρ∗], (5)

where ρ∗(s) is the solution of

s = −μ(ρ∗). (6)

As discussed later, Eq. (5) requires concavity and differen-
tiability of f (ρ). In the discrete case, the weight factor can
be calculated as wv(m) = (1/2πi)

∫
C

w̃v(z)/zm+1dz, where

w̃v(z) = ∑∞
m=0 zmwv(m) is obtained from w̃(s) by substituting

s = − ln z and C is a suitably chosen contour in the complex
z plane.

B. Singularity in variance and mass distribution

Importantly, the distribution function Pv(m) is determined
solely by the functional form of the scaled variance σ 2(ρ). We
argue below that singular response functions generate only
power-law distributions. Other functional form of the mass
distribution Pv(m) with diverging variance is also possible
[33], which we show, however, is not allowed if the FR relation
holds. In this paper we mainly focus on multipole singularity
at a finite density ρc,

σ 2(ρ) =
{

g(ρ)
(ρc−ρ)n for ρ < ρc

∞ otherwise.
(7)

This form, with 0 < n < ∞, is relevant in the context of
a wide class of mass aggregation models as discussed in
Sec. III. The analytic part g(ρ) is not particularly relevant
in determining the asymptotic form of the distribution Pv(m),
however it contributes to the exact form of Pv(m) (discussed
in Sec. II B 4). In fact, other kinds of singularities, such as
logarithmic singularity σ 2(ρ) ∼ [ln(ρc − ρ)]p or exponential
singularity exp[(ρc − ρ)−p] where p > 0, 1/|ρ − ρc|n, and
the case with n < 0 can also arise. One can show that they all
lead to power laws, possibly with logarithmic corrections to
the power-law scaling (discussed in the following sections).

The divergence in the variance, as in Eq. (7) (or in the
cases of logarithmic and exponential divergence), indeed has
broad implications, not only in conserved-mass aggregation
models but also in nonconserved versions. Note that the FR
relation in Eq. (3) implies that free energy density f (ρ) is not a
strictly concave function of ρ and has a linear branch of slope
μ(ρc) for ρ � ρc. Moreover, f ′′(ρ = ρc) = μ′(ρ = ρc) = 0
(a prime denotes the derivative with respect to ρ) implies a
point of inflection in the f -ρ curve at ρ = ρc. That is, the free
energy density function can be written as

f (x) =
{∫

μ(x)dx for x < ρc

μ(ρc)(x − ρc) + f (ρc) otherwise. (8)

Consequently, the Legendre transform of f (ρ) develops a
branch-cut singularity [see Eq. (11)]; for a schematic repre-
sentation of the above analysis, see Fig. 1. This construction
of a nonequilibrium free energy function f (ρ) from a gen-
eral thermodynamic consideration readily explains the phase
coexistence between a fluid and a condensate, as observed
in the past in many out-of-equilibrium systems (discussed in
Sec. III).

1. Multipole singularity

To analyze the behavior of λv(s) in the case of Eq. (7), we
integrate Eq. (3) near ρ = ρc and obtain

μ(ρ) � − (ρc − ρ)n+1

(n + 1)g(ρc)
[1 + O(ρc − ρ)] + α, (9)

which gives (ρc − ρ∗) � [(n + 1)g(ρc)(s + α)]1/(1+n) by us-
ing Eqs. (6) and (9). Integrating the chemical potential μ(ρ),
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FIG. 1. (Color online) Schematic representation of condensation
transition: (a) variance σ 2(ρ) as a function of density ρ, (b) chemical
potential μ(ρ) as a function of ρ, (c) free energy density f (ρ) as a
function of ρ, and (d) Legendre transform λ(s) of the free energy
density as a function of s.

we get the free energy function

f (ρ) � (ρc − ρ)n+2

(n + 1)(n + 2)g(ρc)
+ αρ + β (10)

and write λv(s) = v[f (ρ∗) + sρ∗], to leading order, as

λv(s) � v[a0 + a1(s + α) + a2(s + α)(n+2)/(n+1)], (11)

where a0, a1, and a2 are constants. Thus, we obtain
w̃(s) = exp[−λv(s)] � const × [1 − va1(s + α) − va2(s +
α)1+1/(1+n)] to leading orders of s + α, implying

wv(m) ∼ e−αm

mτ
,

where, for large subsystem masses m 
 v, the power-law
exponent τ in the denominator is given by

τ =
[

2 + 1

(1 + n)

]
, (12)

with the inequality 2 < τ < 3 [since 0 < n < ∞ in Eq. (7)].
This translates into the mass distribution having a scaling form

Pv(m) ∝ 1

mτ
eμ̃(ρ)m ≡ 1

(m∗)τ
�

( m

m∗
)
, (13)

where μ̃(ρ) = ∫ ρ

ρc
1/σ 2(ρ)dρ = μ(ρ) − μ(ρc) is an effective

chemical potential, the inverse of which gives a cutoff m∗ =
−1/μ̃ in the distribution, and the scaling function �(x) =
x−τ exp(−x). Later we explicitly calculate μ̃(ρ) in specific
model systems. Note that μ̃(ρc) = 0 at the critical point ρ = ρc

and consequently Pv(m) becomes a pure power law. Moreover,
by defining a critical exponent δ = 1 + n as μ̃(ρ) ∼ (ρc − ρ)δ ,
we get a scaling relation δ(τ − 2) = 1.

2. Logarithmic singularity

Now we consider the case of logarithmic singularity where
the variance σ 2(ρ) diverges logarithmically as given by

σ 2(ρ) =
{

g(ρ)[ln(ρc − ρ)]p for ρ < ρc

∞ otherwise.
(14)

Integrating Eq. (3) near ρ = ρc, we obtain the chemical
potential, to leading order of ρc − ρ,

μ(ρ) � − (ρc − ρ)

g(ρc)[ln(ρc − ρ)]p
+ α, (15)

which gives (ρc − ρ∗) � g(ρc)[ln(ρc − ρ∗)]p(s + α) from
Eq. (6). The free energy density is obtained by integrating
the above chemical potential μ(ρ),

f (ρ) � − (ρc − ρ)2

2g(ρc)[ln(ρc − ρ)]p
+ αρ + β, (16)

and, accordingly, its Legendre transform, to leading orders,

λv(s) � v[a0 + a1(s + α) + a2(s + α)2{ln(s + α)}p]. (17)

For large mass m 
 v, this implies that the weight factor has
a functional form of a power law with logarithmic correction

wv(m) ∼ (ln m)p−1

m3
e−αm

and the corresponding mass distribution function

Pv(m) ∝ (ln m)p−1

m3
eμ̃(ρ)m, (18)

where the effective chemical potential μ̃(ρ) = μ(ρ) − μ(ρc)
and the power-law exponent in the denominator is τ = 3, the
borderline case of Eqs. (7) and (12) with n = 0.

3. Exponential singularity

We also consider the case where the variance diverges ex-
ponentially, σ 2(ρ) ∼ exp(ρc − ρ)−p for ρ < ρc and σ 2(ρ) =
∞ otherwise. The analysis is similar to the ones given
above. Substituting the chemical potential μ(ρ) � const ×
(ρc − ρ)p+1 exp[−(ρc − ρ)−p] + α in Eq. (6) and solving to
leading order of s + α, we get (ρc − ρ∗) ∼ {ln(s + α)}−1/p

and consequently

λv(s) � v[a0 + a1(s + α) + a2(s + α){ln(s + α)}−1/p].

(19)

For large mass m 
 v, this leads to the mass distribution
function

Pv(m) ∝ (ln m)−1−1/p

m2
eμ̃(ρ)m, (20)

where μ̃(ρ) = μ(ρ) − μ(ρc) and the power-law exponent in
the denominator is τ = 2, the borderline case of Eqs. (7) and
(12) with n = ∞.

4. Subsystem mass distribution

For any finite v, it is not easy to find the distribution
function Pv(m) at small or intermediate values of masses
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m ∼ v because, in that case, one must invert Eq. (4) using
inverse Laplace transform, i.e., by evaluating the integral

wv(m) = 1

2πi

∫
C

e−λv (s)+msds, (21)

on the complex s plane; the contour C on the complex plane
should be chosen such that the integral converges. However, in
the models we consider here, it is not possible to get an exact
functional form of λv(s) for all s, which actually involves
solving the transcendental equation (6). However, for large
subsystem size v 
 1, the analysis simplifies as the function
−(1/v) ln wv(m) is simply related to λv(s)/v by the Legendre
transformation [32] and therefore, to leading order of m, is
the free energy density function f (m/v) itself, which has
already been constructed in Eq. (8) (see Fig. 1 and the related
discussion). The subsystem mass distribution function now
can be written as

Pv(m) ∝ e−vf (m/v)+μ(ρ)m

(a + m)2.5
, (22)

where the denominator is essentially a subleading correction
to the free energy function, with a ∼ O(v) being a model-
dependent cutoff mass. The correction term is obtained
from the fact that, for large masses m 
 v, the free energy
function f (x) has a linear branch [see Eq. (8)] and the
mass distribution function must have the asymptotic form
Pv(m) ∼ m−τ exp(μ̃m) as in Eq. (13).

III. MODELS AND ILLUSTRATION

A. Conserved-mass aggregation models

We now substantiate the above claims in a broad class of
nonequilibrium models that have been studied intensively in
the past couple of decades. In this paper we mainly focus on
the models having multipole singularity in the variance. Other
singularities, e.g., exponential or logarithmic, are possible,
however they are not as common as the multipole one.
For the purpose of illustration, we specifically consider the
case with n = 1 and mass distribution at a single site, i.e.,
v = 1. We define a generalized version of the conserved-
mass aggregation models (CMAMs) studied in [19–21,34],
for simplicity on a one-dimensional lattice of L sites. We
mainly focus on symmetric mass transfer, i.e., masses are
transferred symmetrically to either of the neighbors. Here
masses (or particles) diffuse, fragment, and coalesce stochas-
tically with either of the nearest-neighbor masses according
to the following dynamical rules: (i) diffusion of mass mi

at site i to i ± 1 with mass-dependent rate D(mi), where
mi → 0 and mi±1 → mi±1 + mi , and (ii) fragmentation of
a discrete mass � at site i, provided � � mi , and coalescence
of the mass to either of the sites i ± 1 with mass-dependent
rate w(�), where mi → mi − � and mi±1 → mi±1 + � with
� = 1,2, . . . (continuous � considered later). The total mass
M = ∑V

i=1 mi is conserved in this process. Even for these
simple dynamical rules, the steady-state weight in general is
not exactly known. However, as spatial correlations are small,
the additivity property as in Eq. (1), to a good approximation,
is expected to hold.

We calculate the variance σ 2(ρ) of mass at a single site in
various special cases, using the additivity property (1) with

v = 1. We take the diffusion rate D(mi) = 1, independent of
mass mi , w(� = 1) = w1 (rate of single-particle chipping),
w(� = mi − 1) = w2 (rate of all-but-one-particle chipping),
and w(�) = 0 otherwise.

1. Case I: The CMAM with w1 = 1,w2 = 0

For w1 = 1 and w2 = 0 and symmetric mass transfer,
the model becomes the symmetric one studied in [19,21]
(our model is a variant of those studied in [15,16]). For
ρ � ρc, using the additivity property, we exactly calculated the
variance and consequently chemical potential with the critical
density ρc = √

2 − 1. The variance is given by (for details, see
the Appendix, Sec. 1)

σ 2(ρ) = ρ(1 + ρ)(1 + ρ2)

1 − 2ρ − ρ2

= ρ(1 + ρ)(1 + ρ2)

(ρc − ρ)(
√

2 + 1 + ρ)
, (23)

with ρc = √
2 − 1, for which one can obtain a chemical

potential μ(ρ) and free energy function f (ρ), by integrating
the fluctuation-response relation as in Eq. (2)

μ(ρ) =
∫

1

σ 2(ρ)
dρ = −2 tan−1 ρ + ln

(
ρ

1 + ρ

)
+ α

(24)

and, upon one more integration,

f (ρ) =
∫

μ(ρ)dρ = −2ρ tan−1 ρ + ρ ln

(
ρ

1 + ρ

)

− ln

(
1 + ρ

1 + ρ2

)
+ αρ + β, (25)

where α and β are two arbitrary constants of integration. For
large mass m 
 1, the mass distribution function is calculated
to be P1(m) ∝ m−5/2 exp{[μ(ρ) − μ(ρc)]m} (for details, see
the Appendix, Sec. 2).

In Fig. 2(a) we have plotted the single-site (v = 1) mass
distribution function P1(m), obtained from simulations, as a
function of mass m for various values of densities ρ = 0.1, 0.2,
0.3, 0.414, and 1.0 and compared them with the theoretical
expression in Eq. (13). The theoretical results are in quite
good agreement with the simulation results, especially at large
mass m 
 1. In Fig. 3(a) we have plotted the subsystem mass
distribution function Pv(m), with v = 100, for densities ρ =
0.1 and 0.2 and compared them with the theoretical expression
in Eq. (22) with the cutoff mass a ≈ 20; the agreement between
simulations and theory is reasonably good.

2. Case II: The CMAM with w1 = 0,w2 = 1

The CMAM with w1 = 0,w2 = 1 is a variant of the models
studied in [20]. In this case, for ρ � ρc, the variance and
chemical potential can be exactly obtained using the additivity
property (for details see the Appendix, Sec. 1). The variance
is given by

σ 2(ρ) = ρ(1 − ρ)(2ρ2 − 2ρ + 1)

2ρ2 − 4ρ + 1

= ρ(1 − ρ)(2ρ2 − 2ρ + 1)

(ρc − ρ)(2 + √
2 − 2ρ)

. (26)
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FIG. 2. (Color online) Single-site (v = 1) mass distribution func-
tions P1(m) (points represent simulations) in CMAMs compared with
the analytic expression in Eq. (13) (lines represent theory) for various
densities and (a) mass chipping rates w1 = 1 and w2 = 0 and (b) mass
chipping rates w1 = 0 and w2 = 1. In all cases, the mass diffusion
rate D = 1 and the system size L = 5000.
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m
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P υ(m
)
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(b)

FIG. 3. (Color online) Subsystem mass distribution functions
Pv(m) (points represent simulations) in CMAMs compared with the
analytic expression in Eq. (22) (lines represent theory) for various
densities and cutoff mass (a) mass chipping rates w1 = 1 and w2 = 0
and a ≈ 20 and (b) mass chipping rates w1 = 0 and w2 = 1 and cutoff
mass a ≈ 25. In all cases, the mass diffusion rate D = 1, the system
size L = 105, and the subsystem size v = 100.

There is a simple pole at the critical density ρc = 1 − 1/
√

2.
By integrating the fluctuation-response relation (3), we get the
chemical potential

μ(ρ) = 2 tan−1(1 − 2ρ) − ln

[
1

2ρ(1 − ρ)
− 1

]
+ α (27)

and then the free energy density

f (ρ) = 2ρ tan−1(1 − 2ρ) − ln(1 − ρ) + ln(1 − 2ρ + 2ρ2)

−ρ ln

[
1

2ρ(1 − ρ)
− 1

]
+ αρ + β. (28)

In Fig. 2(b) we have plotted the single-site (v = 1) mass
distribution function P1(m), obtained from simulations, for
various values of densities ρ = 0.1, 0.15, 0.2, 0.292, and 1.0.
We find that the simulation results agree remarkably well
with the analytical scaling form P1(m) ∝ m−5/2 exp{[μ(ρ) −
μ(ρc)]m} as in Eq. (13) with τ = 5/2 (for details of the
derivation, see the Appendix, Sec. 2). In Fig. 3(b) we have
plotted the subsystem mass distribution function Pv(m) for
v = 100 for densities ρ = 0.1 and 0.15 and compared them
with theory, Eq. (22) with a ≈ 25; the agreement between
simulations and theory is reasonably good.

3. Other cases

We have also studied, through simulations, various other
cases (with D = 1): case III, w(� = 1) = w1, w(� = 2) =
w2, and w(�) = 0 otherwise; case IV, a discrete-mass model
with w(�) = exp(−�); and case V, a continuous-mass model
with w(�) = exp(−�). In these cases, in the absence of an
analytical expression of σ 2(ρ), we checked in simulations (see
Fig. 4) that the variance near the critical point indeed has the
behavior σ 2 ∼ (ρc − ρ)−n, with n = 1, which therefore leads
to the same power-law exponent τ = 5/2.

One can also define an asymmetric version of the CMAMs
discussed above. In one dimension, there are some nontrivial
spatial correlations and the above mean-field analysis fails
to capture the mass fluctuations in the system. However, in
higher dimensions, the above results qualitatively remain the
same also for the asymmetric mass transfer and is consistent
with [24].

Interestingly, the exponent τ = 5/2 appears also in the
distribution of particle numbers in an ideal Bose gas in
three dimensions near the critical point where Bose-Einstein
condensation (BEC) occurs. This could be easily understood
from the fact that the particle-number fluctuation in the case
of a three-dimensional Bose gas has the same critical behav-
ior σ 2(ρ) ∼ (ρc − ρ)−n, with n = 1, as in these mean-field
nonequilibrium systems having negligible spatial correlations.
That, on a mean-field level, the nonequilibrium aggregation
models belong to the universality class of equilibrium Bose
gas in three dimensions, so far has not been realized.

It is quite instructive to consider a limiting case of Eq. (7)
with n = 0, ρc = ∞, and g(ρ) ∼ ρ1−δ at large density, i.e., the
variance σ 2(ρ) ∼ ρ1−δ , with δ < −1, diverges algebraically at
infinite density. As there is no singularity in the variance at any
finite density, our analysis quite straightforwardly shows that
condensation transition cannot occur, consistent with the past
observations in the CMAM with mass-dependent diffusion
[35]. Asymptotic scaling of the mass distribution can be
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0.1

1
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σ2 (ρ
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Case V

FIG. 4. (Color online) Variance σ 2(ρ) vs (ρc − ρ). The black line
is const × (ρc − ρ)−n with n = 1. Red rectangles are for case III
(one- and two-particle fragmentation), blue triangles are for case IV
[� = 1,2, . . . is discrete with fragmentation rate w(�) = exp(−�)],
and red circles are for case V [� > 0 is continuous with fragmentation
rate w(�) = exp(−�)]. The diffusion rate D(m) = 1 throughout.

obtained as follows. Using Eq. (3), we get μ(ρ) ∼ ρδ (setting
α = 0 without loss of any generality) and, consequently, a
Laplace transform of the weight factor wv(m),

w̃v(s) � a0 + a1s
1+1/δ, (29)

immediately leading to mass distributions having a scaling
form Pv(m) ∝ m−τ exp(μ̃m) ≡ (m∗)−τ�(m/m∗). Here the
scaling function �(x) = x−τ exp(−x) with m∗ ∼ ρ−δ and
power law exponent τ = 2 + 1/δ with 1 < τ < 2 (as δ < −1),
leading to a relation δ(τ − 2) = 1. The scaling form was
numerically observed in [35]. Interestingly, the borderline case
with δ = −1 generates gamma distributions, which are found
in a broad class of mass transport processes [31] and have
been also observed in a limiting case of the conserved-mass
aggregation models studied in Ref. [35].

B. Nonconserved-mass aggregation models

In this section we discuss a nonconserved version of the
mass aggregation models where systems can exchange mass,
though weakly, with environment. In this case, in addition
to the earlier defined processes of (i) diffusion and (ii)
fragmentation of masses, a particle now can be adsorbed with
rate q and desorbed at a site with rate p, provided the site is
occupied, where p,q → 0 (i.e., weak exchange) with the ratio
r = q/p finite. Due to adsorption and desorption processes,
total mass in the system is not conserved. This model is
related to several models studied in the past for finite p and
q [17,19,34,36]. Interestingly, in the limit of p,q → 0, mass
fluctuation in a nonconserved model can be obtained from the
occupation probability of a site in its conserved version (i.e.,
p = q = 0) [37,38]. Let us first define, in the space of total
mass M , a transition rate TM+1,M from mass M to M + 1. In
the steady state, the probability P (M) that the system has mass
M satisfies a balance condition

P (M)TM+1,M = P (M + 1)TM,M+1,

where the mass distribution P (M) can be obtained as

P (M + 1) =
[

M∏
M=0

T (M → M + 1)

T (M + 1 → M)

]
P (0). (30)

As the ratio of transition rates can be written as
TM+1,M

TM,M+1
= q

pS(ρ)
,

where S(ρ) is the occupation probability and ρ = M/V , the
distribution function can be written, up to a normalization
factor, as

P (M) ∝ exp

(∑
M

[ln(q/pS)]

)

� exp

(
−V

∫ ρ

0
dρ[μ(ρ) − μ0]

)
, (31)

where μ0 = ln(q/p) is an effective chemical potential and
f (ρ) = ∫

dρ μ(ρ) = ∫
dρ lnS(ρ) is an effective free energy

(canonical) density function. The steady-state mass density
as a function of adsorption to desorption ratio r = q/p can
be obtained by minimizing the grand potential or the large
deviation function for the density fluctuation h(ρ) = f (ρ) −
μ0ρ, leading to the relation S(ρ) = r (for details, see the
Appendix, Sec. 3).

Until now, the analysis has been exact. However, it may not
always be possible to exactly calculate the occupation proba-
bility S(ρ). For the purpose of demonstration, let us proceed
by considering a model with diffusion and fragmentation rate
as in case I. We obtain an approximate expression, obtained
within mean-field theory, of the occupation probability (see
the Appendix, Sec. 3)

S(ρ) = ρ(1 − ρ)

(1 + ρ)
.

Equation (31) implies the subsystem mass distribution having a
form Pv(m) ∝ wv(m) exp(μm) and consequently a FR relation
as in Eq. (3) follows. Then, for ρ < ρc or equivalently for
r < rc, one can immediately calculate the scaled variance as

σ 2(ρ) =
(

dμ0

dρ

)−1

= ρ(1 − ρ)(1 + ρ)

1 − 2ρ − ρ2
, (32)

where critical density ρc = √
2 − 1. The variance in the

nonconserved case is different from that in the conserved-
mass case, implying that the canonical and grand canonical
ensembles are not equivalent [37,38]. However, the nature
of singularity in the variance remains the same near criti-
cality where σ 2(ρ) ∼ (ρc − ρ)−n with n = 1. Therefore, the
additivity property leads to the same power-law scaling in
the single-site mass distribution P1(m) ∼ m−τ exp(μ̃m) for
large m, where τ = 5/2 and μ̃ = μ0 − lnS(ρc) = ln(r/rc)
with rc = S(ρc).

The above results are consistent with what was found, on
the mean-field level, for general p and q in the in-out model
[34], a special case of the above nonconserved model with
w = 0. One can interpret the results in the light of equilibrium
BEC: The critical density signifies that, for r > rc = S(ρc) =
3 − 2

√
2, there is a condensate as in the BEC. In the grand-

canonical setting (i.e., with no mass conservation), that would
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imply a phase with a diverging mass density, similar to the
Takayasu phase where mass density actually diverges. For p

and q finite, the form of the subsystem mass distribution as
written in Eq. (31) remains the same, but only the expression
of S(ρ), due to the presence of spatial correlations, is different.
However, the similarity to the BEC still persists.

IV. SUMMARY AND CONCLUDING PERSPECTIVE

In this paper we argued that an additivity property can possi-
bly explain why simple power-law scaling appears generically
in nonequilibrium steady states with short-range correlations.
We demonstrate that the existence of a fluctuation-response
relation, a direct consequence of additivity, with a singu-
lar response function leads to power-law distributions with
nontrivial exponents. The simplest form of the singularity,
a simple pole, gives rise to the exponent 5/2, which was
often observed in the past in apparently unrelated systems. We
substantiate the claims by analytically calculating the response
function, which diverges as critical point is approached, in
paradigmatic nonequilibrium mass aggregation models and the
corresponding single-site and subsystem mass distributions.
Most remarkably, the analysis, being independent of dynam-
ical rules in a particular system, equally extends to critical
properties in equilibrium and nonequilibrium.

Thermodynamic characterization of phase coexistence in
driven systems is a fundamental problem in statistical physics
and has been addressed in the past [27,28,39–43], either
numerically or analytically for exactly known steady states
mostly having a product measure. From that perspective, it is
quite encouraging that, even when steady-state weights are a
priori not known, our analytical method not only gives insights
into the steady-state structure but can also be applied to identify
a chemical potential, which equalizes in the coexisting phases
and whose vanishing at criticality gives rise to pure power
laws.

Note that, in our formulation, the mass distribution func-
tions, though approximate, have been calculated solely from
the knowledge of the variance. This formulation is perhaps
not surprising in equilibrium where the free energy function
(or entropy, for an isolated system) essentially determines
the fluctuation properties of a system. However, in the
nonequilibrium scenario, it is a priori not clear that such an
equilibrium thermodynamic approach can indeed be applied in
systems having a steady state with nontrivial spatial structure.
Here it is worth mentioning that one requires, in principle,
all the moments to specify a probability distribution function.
However, the additivity property, provided it holds, puts a
strong constraint on the mass distribution function Pv(m)
through a fluctuation-response relation and thus helps to
uniquely determine Pv(m), only from the knowledge of the
variance as a function of density.

We believe that our analysis, being based on a general
thermodynamic principle, would be applicable in many other
driven systems where phase coexistence is known to occur
(e.g., in active matters [44,45]). As a concluding remark,
we mention that the additivity property is expected to be
quite generic for systems having short-range correlations and
therefore it would be indeed interesting to actually verify
additivity, through the predictions concerning fluctuations,

on a case-by-case basis. Also, it remains to be seen whether
the principle of additivity can be extended to systems having
long-range spatial correlations, at least in the cases where the
strength of these correlations is weak.
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APPENDIX

In this appendix we provide the details of the calculations to
obtain the mass distributions, using the additivity property, in
mass aggregation models (both conserved and nonconserved
versions), which were studied over the past couple of decades.
The generalized models introduced here cover some of those
studied in the past and their variants [15,16,19–21,24,34].

1. Calculation of variance in conserved-mass
aggregation models

We define here a class of CMAMs on a one-dimensional
lattice with a periodic boundary and calculate the variance of
mass at a single site in the steady state, assuming that the
additivity property (1) holds. For, simplicity, we consider only
the discrete-mass cases.

The mass at each site undergoes either diffusion (where
whole of the mass is transferred to either of neighboring
sites) or chipping, with certain transition rates; in the models
considered below, there are two types of chipping process. The
diffusing mass or the chipped-off mass coalesce with the mass
at either of the neighboring sites with a preassigned rate. In
this process, the total mass of the system is conserved.

Provided a site i is occupied, particles hop to either of
the nearest-neighbor sites according to the transition rates
specified below.

(a) Diffusion with rate 1. All particles at a site i hop with
rate 1 to the left or right, i.e., mi → 0 and mi±1 → mi±1 + mi .

(b) Chipping with rate w1. This chipping process involves
a particle at site i being chipped off and thrown to the left or
right neighbor, i.e., mi → (mi − 1) and mi±1 → mi±1 + 1.

(c) Chipping with rate w2. This chipping process involves
mi − 1 particles going to either the left or right neighbor and
the rest of the particles remaining at site i, i.e., mi → 1 and
mi±1 → mi±1 + mi − 1.

Assuming transition rates are Poissonian, we have the
following stochastic update rules where mass mi(t + dt) at
time t + dt takes a particular value, depending on mass mi(t)
at time t , with certain probabilities as shown below: loss terms
at site i,

mi(t + dt) =
⎧⎨
⎩

0 with probability dt

mi(t) − 1 + δmi (t),0 with probability w1dt

1 − δmi (t),0 with probability w2dt ;
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gain terms from the (i − 1)th site,

mi(t + dt) =

⎧⎪⎨
⎪⎩

mi(t) + mi−1(t) with probability dt
2

mi(t) + 1 − δmi−1(t),0 with probability w1
dt
2

mi(t) + mi−1(t) − 1 + δmi−1(t),0 with probability w2
dt
2 ;

gain terms from the (i + 1)th site,

mi(t + dt) =

⎧⎪⎨
⎪⎩

mi(t) + mi+1(t) with probability dt
2

mi(t) + 1 − δmi+1(t),0 with probability w1
dt
2

mi(t) + mi+1(t) − 1 + δmi+1(t),0 with probability w2
dt
2 ;

and mass remains unchanged at site i,

mi(t + dt) = mi(t) with probability (1 − 2dt − 2w1dt − 2w2dt).

Now we define the occupation probability 〈(1 − δmj ,0)〉 = S(ρ), i.e., the probability that a site is occupied. We deal with
steady-state averages throughout. We assume that the additivity property [as in Eq. (1)] is valid at the single-site level and
therefore the n-point (n � 2) correlation factorizes.

(i) The nth-moment equation. The time evolution of the nth moment 〈mn
i 〉 can be written as

〈
mn

i (t + dt)
〉 = 〈

mn
i (t)

〉 = 〈[mi(t) − 1 + δmi (t),0]n〉w1dt + 〈[mi(t) + mi−1(t)]n〉dt

2
+ 〈[1 − δmi (t),0]n〉w2dt

+〈[mi(t) + 1 − δmi−1(t),0]n〉w1
dt

2
+ 〈[mi(t) + mi−1(t) − 1 + δmi−1(t),0]n〉w2

dt

2

+〈[mi(t) + mi+1(t)]n〉dt

2
+ 〈[mi(t) + 1 − δmi+1(t),0]n〉w1

dt

2

+〈[mi(t) + mi+1(t) − 1 + δmi+1(t),0]n〉w2
dt

2

+ 〈
mn

i (t)
〉
(1 − 2dt − 2w1dt − 2w2dt), (A1)

which, in the steady state where 〈mn
i (t + dt)〉 = 〈mn

i (t)〉, gives
a Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy where
n-point correlations are coupled to (n + 1)-point correlations.
To get a closed set of equations for the moments, we use the
factorization property of n-point correlations. As mentioned in
this paper, the mass distributions are solely obtained from the
response function (or the variance of the mass distribution) and
therefore we are interested in only calculating the variance, or
equivalently the second moment, which can be done as follows.

(ii) Second-moment equation. If we set n = 2 in the above
equation, the second moment 〈m2

i 〉 however cancels out from
the above equation. Using factorization of the two-point
correlation, i.e., 〈mimj 〉 ≈ ρ2 for i �= j , we get an expression
for the occupation probability S(ρ) as a function of mass
density ρ,

ρ2(1 + w2) = w+(ρ − S) − w−ρS, (A2)

where w± = w1 ± w2. This gives

S(ρ) = w+ρ − (1 + w2)ρ2

w+ + w−ρ
. (A3)

(iii) Third-moment equation. Similarly, for n = 3, we obtain
an equation where the third moment 〈m3

i 〉 cancels out and we
actually get, using factorization of both two-point and three-
point correlations, a relation for the second moment

〈m2〉 = ρ
w+(1 + S) − 2w2ρ

w+ − 2(1 + w2)ρ − w−S
. (A4)

Using the expression of the occupation probability in Eq. (A3),
we obtain

〈m2〉 = ρ
w2

+ + 2w+w−ρ − (
w+ + 3w1w2 − w2

2

)
ρ2

w2+ − 2w+(1 + w2)ρ − w−(1 + w2)ρ2
, (A5)

which leads to the desired expression of the variance as a
function of density

σ 2(ρ) = w2
+ρ + w+(w1 − 3w2)ρ2

w2+ − 2w+(1 + w2)ρ − w−(1 + w2)ρ2

+
(
w+ − w1w2 + 3w2

2

)
ρ3 + w−(1 + w2)ρ4

w2+ − 2w+(1 + w2)ρ − w−(1 + w2)ρ2
. (A6)

The variance σ 2(ρ) has a singularity at ρ = ρc, i.e., it diverges
at a critical density ρ = ρc, which can be obtained by setting
the denominator of Eq. (A6) equal to zero and solving

w2
+ − 2w+(1 + w2)ρc − w−(1 + w2)ρ2

c = 0. (A7)

This gives a simple pole at the critical density

ρc = w+
w−

(√
1 + w−

1 + w2
− 1

)
. (A8)

The nonequilibrium free energy function can be calculated by
integrating the nonequilibrium chemical potential with respect
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to density ρ,

μ(ρ) = df

dρ
⇒ f (ρ) =

∫
μ(ρ)dρ. (A9)

The function λv(s) = − ln w̃(s), which is the Legendre trans-
form of the free energy density f (ρ), can be obtained as

λv(s) = v[f (ρ∗) + sρ∗], (A10)

where ρ∗ is the solution of

s = −μ(ρ∗). (A11)

2. Calculation of mass distribution in the conserved-mass
aggregation model

Here we provide the essential steps of the calculations to
obtain the single-site (i.e., v = 1) mass distribution function
P1(m) ∝ w1(m) exp[μ(ρ)m], where w1(m) is the single-site
weight factor and μ(ρ) is a chemical potential. We first
analyze the behavior of λ1(s) near the singularity at s = sc

by expanding μ(ρ) and f (ρ) near critical density in the power
series of ρ − ρc, where ρ − ρc < 0 is small,

μ(ρ) = μ(ρc) + μ′′(ρc)

2
(ρ − ρc)2 + · · · ,

f (ρ) = f (ρc) + μ(ρc)(ρ − ρc) + f ′′′(ρc)

3!
(ρ − ρc)3 + · · · ,

(A12)

where we have used Eq. (A9) and μ′(ρc) = f ′′(ρc) = 0 (see
Fig. 1). Using Eq. (A11) in Eq. (A12) and substituting s +
μ(ρc) � −μ′′(ρc)(ρ∗ − ρc)2/2, we get

ρ∗ − ρc = −
√

2

|μ′′(ρc)| (s − sc)1/2, (A13)

where sc = −μ(ρc) and μ′′(ρc) < 0. Therefore, λ1(s) =
f (ρ∗) + sρ∗ near s = sc, in the leading order of s − sc, can be
approximated as

λ1(s) �
[
f (ρc) − sc(ρ∗ − ρc) + f ′′′(ρc)

3!
(ρ∗ − ρc)3

]
+ sρ∗

= λ1(sc) + ρ∗(s − sc) + f ′′′(ρc)

3!
(ρ∗ − ρc)3

= [a0 + a1(s − sc) + a2(s − sc)3/2], (A14)

where a0 = λ1(sc) = f (ρc) + scρc, a1 = ρc, and a2 =
−(2/3)

√
2/|μ′′(ρc)|. The inverse Laplace transform of the

weight factor w1(m) can be written as

w̃1(s) = e−λ1(s) � e−a0 [1 − a1(s − sc) − a2(s − sc)3/2],
(A15)

which, for m 
 1, translates into

w1(m) ∼ escm

m5/2
. (A16)

Consequently, the mass distribution can be written as

P1(m) ∼ escm

m5/2
eμ(ρ)m = e−(α+μ0(ρc))m

m5/2
e[μ0(ρ)+α]m, (A17)

P1(m) ∼ 1

m5/2
e[μ0(ρ)−μ0(ρc)]m. (A18)

Note that effective chemical potential μ̃(ρ) = μ0(ρ) − μ0(ρc)
is zero at the critical density ρc = √

2 − 1. The mass distribu-
tion in Eq. (A18) is precisely what was found in [19] at ρ = ρc

and describes the simulation data remarkably well (see Fig. 1).

3. Calculation of mass distribution in the absence
of mass conservation

As shown in the paper, the probability distribution function
P (M) of total mass M can be written, up to a normalization
factor, as

P (M) = const × exp

(
−V

∫ ρ

0
dρ[μ(ρ) − μ0]

)
. (A19)

If we assume that the joint mass distribution P[{mi}] has a
product form on the single-site level (v = 1), i.e., the product
of the single-site mass distribution function p(mi),

P[{mi}] =
V∏

i=1

p(mi), (A20)

the probability distribution function P (M) of mass M in the
system can be written as

P (M) =
V∏

i=1

[∫
dmip(mi)

]
δ

(
M −

∑
i

mi

)
. (A21)

From the Laplace transform P̃ (s) = ∫
dMP (M)

exp(−sM) = [p̃(s)]V of the mass distribution P (M),
the Laplace transform p̃(s) = ∫

dmip(mi) exp(−smi) of the
single-site mass distribution p(m) can be written as

p̃(s) = const × e−λ1(s), (A22)

where

λ1(s) = infρ[h(ρ) + sρ]. (A23)

Here we have used inverse transform

P̃ (s) = const ×
∫

dρ e−V [h(ρ)+sρ], (A24)

which has been obtained from Eq. (A19) and where the grand
potential or the large deviation function for the density fluctu-
ation h(ρ) = f (ρ) − μ0ρ = ∫ ρ

0 [μ(ρ) − μ0]dρ and chemical
potential μ(ρ) = lnS(ρ) = ln[ρ(1 − ρ)/(1 + ρ)], as given in
the present paper. Note that the function S(ρ) is the occupation
probability in the conserved-mass aggregation model and has
been obtained by setting w1 = 1 and w2 = 0 in Eq. (A3).

Now the function λ1(s), the Legendre transform of the grand
potential h(ρ), can be written as

λ1(s) = h(ρ∗) + sρ∗, (A25)

where ρ∗ is the root of the equation d[h(ρ) + sρ]/dρ = 0 or
μ(ρ∗) − μ0 + s = 0, i.e., ρ∗ is the root of

ln

[
ρ∗(1 − ρ∗)

1 + ρ∗

]
= μ0 − s. (A26)
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The critical density is obtained by setting the scaled variance
as σ 2(ρ) = (dμ0/dρ)−1 = ∞ or 1/σ 2(ρ) = 0,

(1 − 2ρc − ρ2
c )

ρc(1 − ρc)(1 + ρc)
= 0, (A27)

and thus ρc = √
2 − 1. In the macrostate (most probable state)

we have S(ρ) = r , implying that the critical density is related
to the ratio r = q/p through S(ρc) = rc. To obtain the large-
mass behavior, we expand μ(ρ) around ρ = ρc,

μ(ρ) = μ(ρc) + μ′′(ρc)

2
(ρ − ρc)2, (A28)

to obtain

s − sc � |μ′′(ρc)|
2

(ρ∗ − ρc)2, (A29)

λ1(s) � a0 + a1(s − sc) + a2(s − sc)3/2, (A30)

to leading order in ρ∗ − ρc, where sc = μ0 − μ(ρc), leading
to the desired result in the paper,

p(m) ∼ 1

m5/2
escm = 1

m5/2
e[μ0−μ(ρc)]m. (A31)
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