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We study the convergence of statistical estimators used in the estimation of large-deviation functions describing
the fluctuations of equilibrium, nonequilibrium, and manmade stochastic systems. We give conditions for the
convergence of these estimators with sample size, based on the boundedness or unboundedness of the quantity
sampled, and discuss how statistical errors should be defined in different parts of the convergence region. Our
results shed light on previous reports of “phase transitions” in the statistics of free energy estimators and establish
a general framework for reliably estimating large-deviation functions from simulation and experimental data and
identifying parameter regions where this estimation converges.
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I. INTRODUCTION

The generating function of a fluctuating quantity or random
variable X, defined as

G(k) = 〈ekX〉 =
∫ ∞

−∞
p(x)ekxdx, (1)

where p(x) is the distribution of X, is related to many
important physical quantities. Examples include velocity fields
of turbulent fluids, whose generating function, estimated
in terms of moments, is related to energy dissipation and
multifractal exponents [1–3], the generating function of the
energy of systems at thermal equilibrium, which is essentially
the partition function [4–7], and the generating function of
the work performed on nonequilibrium systems, which is
linked via Jarzynski’s equality to equilibrium free energy
differences [8]. In large-deviation theory, generating functions
are also related to so-called rate functions, which give the
likelihood of rare fluctuations in stochastic systems. In recent
years, this theory has been applied successfully to describe the
fluctuations of equilibrium systems [4–7] and nonequilibrium
systems driven in steady states [9–12], in addition to manmade
systems such as queues and networks [13–17].

The problem that we consider in this paper is the statistical
estimation of generating functions from empirical data which
arises experimentally or numerically in all the applications
mentioned above. To be more precise, we consider a finite
sample {X(j )}Mj=1 of M realizations (copies, repetitions or
empirical values) of the random variable X and study the
convergence of the following statistical estimator of G(k):

ĜM (k) = 1

M

M∑
j=1

ekX(j )
. (2)

This function converges pointwise to G(k) as the sample size
M increases, but a major problem is that it does not converge
uniformly in k, which means that the sample size M needed to
achieve a given accuracy for ĜM (k) depends on k. In fact, it is
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known that, depending on the random variable considered,
ĜM (k) converges slowly for some k and, in some cases,
does not converge at all. This problem, often referred to as
the “linearization problem,” has been studied in the context
of multifractal analysis [18–20] and glassy phase transitions
[21–23]. Convergence problems have also been studied for the
so-called Jarzynski estimator, which is an estimator similar to
(2) used to obtain free energy differences from nonequilibrium
experiments [24–30]. The focus of these studies, however,
is mostly on the statistical bias of ĜM (k) [31–36], which
disappears in the limit M → ∞, rather than the convergence
of ĜM (k) as a function of k and M .

In this paper, we study this convergence for estimating
large-deviation functions. Our starting point is a series of
studies on data networks [37–40] showing that large-deviation
functions can be estimated efficiently from generating func-
tions for random variables having a finite number of values,
such as random bits, and for bounded random variables, such as
uniform variates. Here we extend these studies by considering
unbounded random variables, which naturally arise when
considering observables of equilibrium and nonequilibrium
systems. For these, we show that the estimation of large-
deviation functions based on ĜM (k) converges up to some
critical value kc, which depends on M and the tail of the
observable distribution. Moreover, we show that standard
statistical errors for this estimator can be defined only up
to kc/2. The knowledge of kc is thus important for properly
evaluating, for a given sample size, the parameter range for
which large-deviation functions are estimated reliably.

These functions play an important role, as mentioned, for
characterizing the typical states and fluctuations of equilib-
rium, nonequilibrium, and manmade stochastic systems. The
numerical computation of these functions for observables of
nonequilibrium systems (e.g., particle and energy currents,
work, heat, activity, entropy production) has been the subject of
active studies in the last years (see, e.g., [41–49]), contributing
to our understanding of nonequilibrium phase transitions and
fluctuation symmetries. More recent works are now attempting
to estimate rate functions in real experiments, for example,
in active-matter systems [50,51]. On the experimental side,
large-deviation estimations have also been carried out, as
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mentioned, for data networks and provide in this context a
real-time estimate of overflow probabilities in data servers
[37–40].

Our results provide for these applications a general method
for estimating large-deviation functions, their errors, and their
convergence region from finite data samples. They can also
be applied for computing multifractal spectra of random fields
or time series, dispersion exponents in sheared flows [52], in
addition to free energy differences from nonequilibrium work
experiments [24–30]. Conceptually, these problems all fall in
the topic of large-deviation estimation.

The outline of the paper is as follows. The large-deviation
estimators that we consider are defined in Sec. II. Test
cases involving bounded and unbounded random variables are
considered in Sec. III to show how the estimators’ convergence
region depends on sample size and how this dependence can
be determined, a priori, from the knowledge of the distribution
considered or, a posteriori, from a sample of that distribution.
Most of our results are illustrated for simplicity for sums
of independent and identically distributed random variables.
In Sec. IV we discuss applications for correlated Markov
processes and systems composed of many interacting particles,
for which the distributions of observables typically scale
with time and the number of particles, respectively. Final
conclusions are given in Sec. V.

II. METHOD AND RESULTS

A. Estimators

The theory of large deviations is concerned with random
variables An, depending on some parameter n, whose proba-
bility distribution pn(a) = P (An = a) decays approximately
exponentially as

pn(a) ≈ e−nI (a) (3)

when n → ∞, with subexponential corrections in n [7,9,14].
This approximation appears naturally in many equilibrium and
nonequilibrium systems, where An represent, for example, the
energy or magnetization of N particles occupying a volume
V , in which case n = N or n = V [5–7], or the current or heat
integrated over a time T , so that n = T [10–12]. In manmade
systems, An can also be the number of “customers” served in
a queue [13] or the fraction of time spent by a random walker
on specific sites of a network after n time steps [15–17]. In
all cases, the distribution of An is completely characterized
to leading order in n by the function I (a), which gives the
likelihood of small and large fluctuations of An around its
equilibrium or stationary value. This function is called the rate
function in large-deviation theory [5] and has the interpretation
in physics of an entropy function or a generalized potential,
depending on the application considered [7].

Many techniques can be used to find I (a). The most com-
mon proceeds by calculating the so-called scaled cumulant
generating function (SCGF), defined as

λ(k) = lim
n→∞

1

n
ln〈enkAn〉. (4)

Provided that this limit function exists for k ∈ R and is
differentiable, it is known that pn(a) has the large-deviation
form of (3) and that its rate function is given by the Legendre

transform of λ(k),

I (a) = kaa − λ(ka), (5)

ka being the root of λ′(k) = a [7,9,14].1 Consider, for example,
the case where An is a sample mean of n independent and
identically distributed (IID) random variables:

An = 1

n

n∑
i=1

Xi. (6)

Then the SCGF takes the simple form

λ(k) = ln〈ekX〉, (7)

so that the large-deviation rate function is obtained as the
Legendre transform of the cumulant function of a single
random variable, denoted above by X without the subscript
because of the IID property. For other observables An involving
correlated random variables, the calculation of I (a) is more
involved, but still proceeds from λ(k) as defined in (4).

In many applications, the SCGF must be estimated empiri-
cally from data samples. For the IID sample mean (6), to take
the simplest example, this estimation proceeds by accumulat-
ing a sample {X(j )}Mj=1 of M IID copies of the random variable
X, distributed according to the (a priori unknown) distribution
p(x) and by approximating the generating function of X by
the estimator ĜM (k) as defined in (2). The estimator of λ(k) is
then defined as [54]

λ̂M (k) = ln ĜM (k). (8)

Our goal in this paper is to understand the convergence of this
estimator as a function of M and k. From now on, we consider
the IID case to simplify the discussion; the case of correlated
random variables and observables other than sums is discussed
in Sec. IV.

The estimator of rate functions that we consider is defined
from the Legendre transform (5) by noting that the estimator
(8) of the SCGF is necessarily analytic, since it is a finite sum
of exponentials and is thus differentiable for all M < ∞. As a
result, we consider

ÎM (a) = kaa − λ̂M (ka) (9)

as an estimator of I (a), where ka is the computed root of
λ̂′

M (k) = a [54]. Alternatively, we can proceed parametrically
by fixing k and obtain I at the estimated value

âM (k) = λ′
M (k) =

∑M
j=1 X(j )ekX(j )∑M

j=1 ekX(j )
, (10)

using

ÎM (âM ) = kâM − λ̂M (k). (11)

Strictly speaking, the estimators (9) and (11) are different. We
have found in all of our numerical tests, however, that they are
nearly identical and differ only because of the discretization
used for k. This is a minor, nonstatistical source of errors,
which is not discussed further.

1This holds for convex rate functions. For results on nonconvex rate
functions, see Sec. 4.4 of [7], and [53].
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As statistical estimators, λ̂M (k) and ÎM (a) converge point-
wise to λ(k) and I (a), respectively, in the limit of infinite
sample size M → ∞. Their speed of convergence was studied
in [40], following previous results on overflow probabilities
and bandwidth estimates of data networks [37–40]. These
studies, however, consider only bounded random variables for
which λ̂M (k) and ÎM (a) are known to converge quickly and
uniformly. In this case, the probability distribution of both
estimators has the large-deviation form of (3), which implies
that these estimators converge exponentially fast for all k or a

with M [40].
We extend these results in what follows by considering

unbounded random variables. In this case, the convergence of
ĜM (k) is limited by two problems, namely, the linearization
effect, which leads to noisy tails of ĜM (k), and the nonuniform
convergence of ĜM (k) in k, which means that its statistical
error is not uniform in k. These problems are explained next
and lead us to define, as mentioned, a threshold value kc

depending on M for the convergence of ĜM (k), λ̂M (k), and
ÎM (a). Applications of these results are presented in the next
section.

B. Linearization effect

The linearization effect refers to the fact that sums of
exponentials, such as in (2), are dominated as k → ∞ by
the largest sample element,

Xmax = max
1�j�M

X(j ), (12)

so that
M∑

j=1

ekX(j ) ≈ ekXmax , k → ∞. (13)

In this regime, the SCGF estimator thus becomes linear in k:

λ̂M (k) ≈ kXmax, k → ∞. (14)

Similarly, for k → −∞, the sum is dominated by the smallest
element

Xmin = min
1�j�M

X(j ), (15)

so that

λ̂M (k) ≈ kXmin, k → −∞. (16)

If the sample {X(j )} is obtained from a discrete or
continuous distribution with bounded support, then the values
of Xmax and Xmin are also bounded and the linearization effect
is real: That is, the asymptotic linear branches of λ̂M (k) seen
for |k| → ∞ correspond in this case to actual linear branches
of λ(k) and are unlikely to change much as the sample size M is
increased, since the sample will most likely “fill” the range of
the bounded distribution for M large enough. However, if the
sample is obtained from an unbounded distribution, then the
linear tails of λ̂M (k) coming from Xmax and Xmin are an artifact
of the finite-size sample: Xmax and Xmin fluctuate from sample
to sample, which implies that λ̂M (k) has fluctuating linear tails
for large |k| which are not related to the actual tails of λ(k).

This problem affects not only large-deviation computa-
tions, as mentioned in the Introduction: Any estimation of

exponential sums, such as those entering in free energy
computations and multifractal analysis [18–20], is limited by
the linearization effect whenever unbounded random variables
are considered. The main problem in these cases is to identify
the onset of linearization, that is, the threshold value kc

such that, for |k| < kc, λ̂M (k) is not affected artificially by
linearization and is therefore a good representation of λ(k).

In general, kc depends on M as well as the particular dis-
tribution considered. Moreover, for asymmetric distributions,
two threshold values must be considered: k−

c for the left tail of
p(x) determining the distribution of Xmin, and k+

c for the right
tail of p(x) determining Xmax. The convergence and errors of
estimators thus depend on whether k ∈ [k−

c ,k+
c ].

In general, it is difficult to determine k−
c and k+

c exactly;
for practical purposes, however, it is sufficient to approximate
their growth as M → ∞. This can be done by approximating
G(k) in the limit k → ∞ using the saddle-point or Laplace
approximation [55] as

G(k) ≈ ekx∗(k)+ln p[x∗(k)], (17)

where x∗(k) satisfies

kp(x∗) + p′(x∗) = 0. (18)

This shows that G(k) is determined for large k by a narrow
region of the distribution p(x) located around the saddle or
concentration point x∗(k) [56–58].2 As a result, ĜM (k) must
be a good estimator of G(k) when the empirical distribution
or density histogram p̂M (x) of the sample {X(j )}Mj=1 is close to
p(x) around x∗(k).

To express this more quantitatively, we define a typicality
region for the random variable X by considering the probabil-
ity,

P (X(1), . . . ,X(M) < x̄) = P (Xmax < x̄), (19)

that all the sample elements X(j ) are smaller than a given
bound x̄.3 This probability is given in terms of the cumulative
distribution

F (x) = P (X < x) =
∫ x

−∞
p(z) dz (20)

by

P (X(1), . . . ,X(M) < x̄) = F (x̄)M (21)

and can be approximated for x̄ and M large by

P (X(1), . . . ,X(M) < x̄) ≈ 1 − MF (x̄), (22)

where F (x) = 1 − F (x) is the complementary cumulative
distribution of X. From this, we see that, if x̄ is a constant
independent of M , then the probability (21) vanishes as
M → ∞, as all the samples eventually reach x̄. However,
if we scale x̄ as a function of M , then the same probability
will, in general, not go to zero. In particular, if we set

x̄ = x̄(M,τ ) = F
−1

(
τ

M

)
, (23)

2Including the Gaussian correction to the saddle point only leads to
subdominant corrections to the scaling of kc with M .

3We could also consider only a fraction of the X(j )’s to be below x̄;
however, this does not significantly alter the scaling of kc.
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where τ is an arbitrary small constant and F
−1

is the inverse
of F , then the probability of having all the samples smaller
than x̄ is equal to e−τ for all M . The region (−∞,x̄] therefore
defines a typical region for the sample {X(j )}: As M grows, all
samples will fall in that region with constant probability.

With this result we now define the truncated generating
function

GM,τ (k) =
∫ x̄(M,τ )

−∞
ekx p(x) dx. (24)

Depending on k and M , two different situations then arise for
x∗(k). On the one hand, if x∗(k) < x̄(M,τ ), then

ĜM (k) ≈ GM,τ (k) ≈ G(k), (25)

and we are away from the linearization regime. On the other
hand, if x∗(k) > x̄(M,τ ), then G(k) is not well approximated
by GM,τ (k) or ĜM (k) since x∗(k), the concentration point of
G(k), lies outside the typical values covered by the sample.
In this case, one must either increase M for a given k so that
x̄(M,τ ) reaches x∗(k) or decrease k for a given M so that x∗(k)
reaches x̄(M,τ ). The threshold value of k for which x∗ = x̄

defines kc; thus

x∗(kc) = x̄(M,τ ). (26)

This result yields the upper bound k+
c ; a similar calculation

yields the lower bound k−
c mentioned before by considering

P (Xmin > x̄) instead of P (Xmax < x̄).
This analysis gives estimates for k−

c and k+
c that are good

enough for practical purposes, as they capture the scaling of
the linearization effect with M based on the tail behavior of
p(x) in (17).4 For example, if X is distributed according to
the Gaussian density with p(x) ∼ e−x2/2 as |x| → ∞, then we
obtain from (23)

x̄(M,τ ) = 2 erfc−1

(
2

M

)
. (27)

Moreover, the concentration point for this distribution is
located at x∗(k) = k. Combining this with (27) in (26) and
using known asymptotics for the complementary error function
then yields

k±
c ≈ ±

√
ln M. (28)

More generally, if

p(x) ≈ e−|x|ρ , ρ > 1, (29)

as |x| → ∞, then (26) yields

k±
c ≈ ±(ln M)1−1/ρ. (30)

The full derivation of this result can be found in [60]. For both
cases, the estimate of kc does not depend on τ , as shown in
[60]. If, however, p(x) is bounded from above at xmax and
behaves like

p(x) ≈ (xmax − x)β, β > 0, (31)

4A similar analysis of sample extremes was developed for a more
specific model by Hurtado and Garrido [59] to study statistical errors
in the cloning algorithm [41–43].

for x < xmax as x → xmax from below, then

k+
c ≈

(
M

τ

) 1
β+1

. (32)

In this case, there is an explicit dependence on τ , which for
applications can be set to some fixed but otherwise arbitrary
value. A similar scaling is obtained for bounded (e.g., uniform)
random variables and finite, discrete random variables.

C. Statistical errors

Estimators must be supplemented by statistical errors to
be meaningful. Commonly, this is done by assuming that the
distribution of the sum defining an estimator converges to a
Gaussian distribution around its mean, which leads to defining
the “dispersion” or error of the estimator as its standard error.
In our case, we have to be careful with this error definition:
Since the variance of the random variable ekX is

var(ekX) = G(2k) − G(k)2, (33)

the variance of ĜM (k) is defined only on half the range on
which ĜM (k) converges. Moreover, although that estimator is
known to converge for k < kc, that convergence may not be to
a Gaussian random variable, which prevents us from using the
standard deviation as an error measure already from kc/2.

This basic observation is supported by rigorous mathemat-
ical results obtained recently by Ben Arous and collaborators
[61] which show for a general class of random variables5

that ĜM (k) converges, when properly rescaled, to a Gaussian
random variable for all k = kc(M)/α when α > 2. It then
converges to a Lévy α-stable random variable for k = kc(M)/α
when 1 < α � 2, whereas there is no convergence when
α < 1. This means overall that we have to consider three
regions for defining error bars.

(1) k � kc(M)/2. ĜM (k) is self-averaging, meaning that
it converges in probability to G(k) as M → ∞. Moreover,
this estimator is Gaussian-distributed around G(k), so that its
standard variance can be used as an error estimate.

(2) kc(M)/2 < k � kc(M). ĜM (k) is self-averaging, but
is not Gaussian-distributed around G(k), so that standard
(Gaussian) error bars are inadequate.

(3) k > kc(M). ĜM (k) is not self-averaging, so there is no
convergence to G(k) as M → ∞.

We detail each region next and explain its consequences for
defining errors for ĜM (k), λ̂M (k), and ÎM (a). For simplicity,
we only discuss the upper bound k+

c ; errors concerning k−
c are

defined similarly.

1. Error estimates below kc/2

In this region, the error bar for ĜM (k) can be defined as
its standard deviation, which is estimated from the empirical
variance:

err[ĜM (k)] =
√

var[ĜM (k)] = 1√
M

√
ĜM (2k) − ĜM (k)2.

(34)

5This class includes the Gaussian distribution, the Gamma distri-
bution, and the stretched exponential distribution (29), among many
others.
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Computing from this error the error of λ̂M (k) is not trivial
because the latter is a nonlinear function of ĜM (k). However,
for small errors we can perform a Taylor expansion of (8) to
first order, as commonly done in physics [62], to obtain

err[λ̂M (k)] = err[ĜM (k)]

ĜM (k)
. (35)

With this error, we can define the error of the rate function
estimator ÎM (a) parametrically by varying k, as explained
before. For a given k < kc(M)/2, we first compute âM (k) as
in (10). Denoting the numerator of the right-hand side of (10)
by ĤM (k), we next estimate the error of âM (k) as

err[âM (k)] =
√{

err[ĤM (k)]

ĜM (k)

}2

+
{

err[ĜM (k)]ĤM (k)

ĜM (k)2

}2

,

(36)

which follows by applying a Taylor expansion to the definition
of âM (k) and by neglecting the correlation between the
numerator and denominator.6 Given the Legendre transform
(5) or (9), it is then natural to define the error for ÎM (a) at
a = âM (k) as the sum of the errors:

err{ÎM [âM (k)]} =
√

k2 err[âM (k)]2 + err[λ̂M (k)]2. (37)

This quantity probably overestimates the error; however, it
is the simplest error that one can define, based on the linear
form of the Legendre transform, which does not assume any
dependency between âM and λ̂M .

2. Error estimates between kc/2 and kc

In this region, linearization sets in from kc(M), leading
ĜM (k) to converge to G(k) but in a non-Gaussian way,
which implies that the standard deviation calculated from
M realizations cannot be used as an error estimate. In this
case, it is common to define the error of estimators not
from one sample {X(j )}Mj=1, but from R such samples of size
M , called repetitions. For the SCGF this means generating
R independent samples of size M , yielding R estimators
λ̂

(�)
M (k), � = 1, . . . ,R, which are averaged to yield the following

estimate of λ(k):

λ̂R×M (k) = 1

R

R∑
�=1

λ
(�)
M (k). (38)

The error for this estimation is then obtained by computing the
standard error over the R repetitions:

err[λ̂R×M (k)] = err[λ̂M (k)]√
R

. (39)

The error estimate for ÎM (a) can be defined similarly using
repetitions and the error method presented for one sample. In
this case, the repetition error err[âR×M (k)] must be computed
as in (39) and added as in (37) to the repetition error of
λ̂R×M (k).

6The numerator and denominator of (10) are not independent, but
this is a necessary approximation to be able to obtain an error estimate.

Though more computationally intensive, the use of repe-
titions provides better error estimates for λ̂M and ÎM , as the
logarithm in λ̂M (k) has the effect of regularizing the extreme
values (and thus the linearization) of ĜM (k). In practice, a
sufficiently large sample can be partitioned into R smaller
samples to apply this method. Alternatively, bootstrap methods
can be used to generate new samples from the empirical
distribution of the sample already obtained [63–65].

3. Error estimates above kc

In this region, estimators do not converge, leaving the
computation of ĜM (k), λ̂M (k), and ÎM (a) meaningless. To have
an idea of the variability of these estimators, one can estimate
them over R repetitions involving M samples, as before, and
extract the first decile and last decile of these realizations. This
can be taken as a measure of the error. Our results indicate,
however, that such an error is typically very large and only
confirms the fact that no useful information can be inferred
about λ(k) beyond kc(M).

III. TEST CASES

We illustrate in this section the previous results about es-
timator convergence for four types of distributions: Gaussian,
exponential, Bernoulli, and power law. Gaussian distributions
have been extensively studied in the context of the Jarzynski
estimator [31–36] and are revisited here to illustrate the case
of unbounded random variables. The exponential distribution
is considered as a limiting case of the saddle-point analysis,
whereas Bernoulli random variables illustrate our results for
the bounded case and are relevant for data network applications
[37–40]. Finally, power-law distributions are considered to
discuss the case where λ(k) diverges and large-deviation
functions do not exist. Other distributions fall, as will be
explained, in each of these cases with only minor differences
in the behavior of λ̂M (k) and kc. Physical applications and
non-IID random variables are discussed in the next section.

A. Unbounded distributions

We consider as in (6) a sample mean An of n IID random
variables and assume that these are distributed according to a
Gaussian distribution with mean μ and variance σ 2. The exact
SCGF in this case is

λ(k) = μk + σ 2

2
k2, k ∈ R. (40)

Figure 1(a) shows the estimation of this SCGF based on the
estimator λ̂M (k) using a sample {X(j )}Mj=1 of M = 1000 Gaus-
sian random variables with μ = 0 and σ 2 = 1. The relatively
low sample size is used to obtain visible error bars. Moreover,
rather than plotting λ̂M as a function of k and identifying kc for
varying M , we plot the estimator as a function of k/kc using
the a priori estimate given in (28), so that the convergence
region is fixed at |k/kc| = 1 for all M . In this way, plots of λ̂M

obtained for different M look similar, provided that M is large
enough; hence, we show only one value of M in Fig. 1(a). Note
that, because of the choice μ = 0, we have −k−

c = k+
c = kc;

for asymmetric Gaussian distributions, |k−
c | is slightly different

from k+
c , but this does not affect the scaling of kc.
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FIG. 1. (Color online) SCGF estimator for Gaussian random variables. Parameters: μ = 0, σ = 1, M = 1000, and R = 200 repetitions
(except otherwise noted). (a) Blue curve, λ̂M (k) with statistical error (blue shaded area) for a single repetition (R = 1); gray curve, λ̂M (k) with
statistical error (gray shaded area); black curve, exact λ(k). (b) Statistical error of λ̂M (k) showing the linearization effect. (c) Estimator âM (k)
of the derivative of λ(k) with statistical error (gray shaded area). (d) Statistical error for âM (k).

The convergence and linearization regions of λ̂M (k) are
clearly visible in Fig. 1(a). For |k/kc| < 1, λ̂M (k) agrees with
the exact λ(k) of (40) within the statistical errors determined
from either R = 1 or R > 1 repetitions. For |k/kc| < 1/2, we
have checked that both errors have similar magnitude (not
shown), whereas for 1/2 < |k/kc| < 1 the two errors differ
slightly (also not shown). More importantly, for |k/kc| >

1, λ̂M (k) starts to differ significantly from the exact λ(k)
because of the linearization coming from the maximum and
minimum sample values. The gray curve in Fig. 1(a) shows
this linearization for the R repetition estimate as compared to
the single repetition (blue curve). The former is, in general,
more stable than the latter because of the averaging coming
from the R repetitions; however, both estimators give results
that are off the exact SCGF because λ̂M (k) and its error do not
converge for |k/kc| > 1.

The linearization effect is also seen in the repetition error
of λ̂M [Fig. 1(b)] and the estimator âM (k) [Fig. 1(c)] of the
derivative of λ(k). Linearization appears for âM (k) as plateaus
with heights given in the R repetition case by the mean of
the different maxima and minima contained in the repeated
samples. Since the variance of these minima and maxima is
independent of k, the statistical error of âM is constant, as seen
in Figs. 1(c) and 1(d). Inside the convergence region, |k/kc| <

1, err[âM ] decreases sharply from |k/kc| = 1 to |k/kc| = 1/2,
below which it converges to 0 as M → ∞ for any R � 1.
This error behavior is interesting for two reasons. First, it
can be interpreted as a “phase transition” or crossover as k is
varied, reflecting the transition from Gaussian to non-Gaussian
errors at |k/kc| = 1/2. A similar crossover was reported in the
behavior of the bias of the Jarzynski estimator [36] and the
partition function of glassy systems [56]. Second, it provides a
simple way of estimating kc numerically without knowing the

distribution of the random variables considered: We simply
have to find the function k(M) that aligns the maximum of
err[âM (k)] for different M .

From the estimators λ̂M and âM we may now estimate the
rate function I (a) using the parametric relations (10) and (11).
The result is shown in Fig. 2 together with the exact result,

I (a) = (a − μ)2

2σ 2
, a ∈ R. (41)

We show in this plot the vertical error bars for the ordinate
ÎM [âM (k)] obtained from (37), as well as horizontal error
bars for the abscissa âM (k) corresponding to the repetition
error err[âM (k)] given in (36). Also indicated is the value
âM (kc), corresponding for μ = 0 and σ = 1 to a = 1, which

FIG. 2. Rate function estimator for Gaussian random variables.
Parameters: μ = 0, σ = 1, M = 1000, and R = 200. Gray curve,
ÎM (a) with statistical error bars; black curve, exact rate function.
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FIG. 3. SCGF estimators for exponential random variables. Parameters: μ = 1, M = 1000, R = 200, kc = k+
c = 1. (a) Gray curve, λ̂M (k)

with statistical error (gray shaded area); black curve, exact λ(k). (b) Gray curve, âM (k) with statistical error (gray shaded area); black curve,
exact derivative of λ(k). (c) Statistical error of aM (k).

bounds the convergence region of I (a) where the error bars
decrease as R and M are increased. In the results shown in
Fig. 2, the errors for |a/âM (kc)| < 1 are actually smaller than
the width of the curves, whereas they increase substantially
for |a/âM (kc)| > 1. This comes again from the linearization
problem affecting all estimators above kc, but also from the
k factor in the Legendre transform (11), which magnifies the
error on âM following (37).

Similar results will be obtained for other distributions
which, as for the Gaussian, are unbounded for x > 0 and
x < 0. In this case, |k±

c | will grow with M , as in the Gaussian
case, with a speed given by the tail behavior of the distribution
considered, following our results of Sec. II.

B. One-sided exponential distributions

We consider next the exponential distribution,

p(x) = 1

μ
e−x/μ, x � 0, (42)

with mean μ, as representative of random variables that are
bounded from below. This distribution corresponds to the limit
case ρ = 1 in (29) and therefore falls, in principle, outside the
results of [61]. Given, however, that its SCGF

λ(k) = − ln(1 − μk) (43)

is defined for k < 1/μ, we can set k+
c = 1/μ, since λ̂M (k) is

defined for all k ∈ R, whereas λ(k) exists only for k < 1/μ,
so that the part of λ̂M (k) beyond k+

c is a finite sample artifact.
This constant k+

c is also consistent with our estimate (26) of
kc(M) and arises for any distributions with exact or asymptotic
exponential tails. On the other hand, we find k−

c = −∞, since
p(x) is bounded below at xmin = 0, so that the minimum of
the sample {X(j )}Mj=1 converges rapidly to 0.

Figure 3(a) shows the result of λ̂M (k) for a sample size
M = 1000 and statistical errors calculated with R = 200
repetitions, plotted as a function of k/kc. The linearization
effect is clearly seen for λ̂M (k), as well as for âM (k), which
correctly saturates to the lower bound x = 0 for k → −∞,
but incorrectly saturates for k > k+

c ; see Fig. 3(b). The main
difference with the Gaussian case is that, since k+

c is now
constant, the convergence of λ̂M (k) to λ(k) is not accompanied
by an increased region of k, where this convergence takes
place; all that changes as M → ∞ is the slope of λ̂M or,
equivalently, the value âM (k), which diverges to reach the

asymptote of λ(k). Because k−
c = −∞, we also see that the

repetition error of both λ̂M (k) and âM (k) converges uniformly
to 0 for all k < k+

c /2. In Figs. 3(a) and 3(b), the error bars
in that region are actually smaller than the width of the black
lines representing λ(k) and aM (k), respectively. For k > k+

c /2,
the error is similar to the Gaussian case: It sharply increases
between k+

c /2 and k+
c and saturates for k > k+

c , providing
again a way to estimate kc.

The asymmetric convergence of λ̂M and âM leads naturally
to an asymmetry in the estimation of the rate function, shown in
Fig. 4. For a < a(k+

c /2) the rate function is correctly estimated
and matches the exact rate function,

I (a) = a

μ
− 1 − ln

a

μ
, a > 0, (44)

with errors bars smaller than the width of the curve represent-
ing this function, whereas for a > a(k+

c /2), the linearized λ̂M

and âM lead to an estimation of I (a) with large error bars.
Other distributions with asymptotic exponential tails lead

to similar results. In particular, for distributions with left and
right exponential tails, k−

c and k+
c are both constant with M .

C. Bounded distributions

The last test case of interest is the class of bounded random
variables for which λ(k) is exactly or asymptotically linear

FIG. 4. Rate function estimator for exponential random variables.
Gray curve, ÎM (a) with statistical error bars; black curve, exact result;
dashed line, a(k) for k+

c /2 = 1/(2μ). Parameters: μ = 1, M = 1000,
R = 200.
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FIG. 5. SCGF estimators for Bernoulli random variables. Parameters: α = 0.4, M = 20, R = 1. (a) Gray curve, λ̂M (k) with statistical error
(gray shaded area); black curve, exact λ(k). (b) Gray curve, âM (k) with its statistical error (gray shaded area); black curve, exact derivative of
λ(k). (c) Statistical error of aM (k).

and so for which k−
c = −∞ and k+

c = ∞. To illustrate this
case, we consider Bernoulli random variables taking values
{0,1} with probabilities p(1) = α and p(0) = 1 − α, where
α ∈ [0,1], so that

λ(k) = ln(α ek + 1 − α), k ∈ R. (45)

Figure 5 shows the results of estimating this SCGF obtained
for M = 20 and plotted now as a function of k and not
k/kc, since kc = ∞. Already for such a small sample size,
the estimators λ̂M and âM are very accurate, compared to
M = 1000 used in the Gaussian and exponential cases. The
single and repetition errors essentially agree for all k and
decrease uniformly for all k as M → ∞. Figure 5(c) shows
more precisely that the statistical error of âM (k) is largest at
k = 0 and decreases to 0 as k → ±∞. This is due to the fact
that the “true” linear behavior of λ(k) as k → ±∞ is correctly
estimated as soon as the sample {X(j )} contains one 0 and one
1, whereas the exact form of λ(k) around k = 0 depends on
α, which is correctly estimated as M → ∞. However, both
regions have errors of the same magnitude, which translate
into uniform errors for the estimated rate function, shown in
Fig. 6. Here we see that, despite the small sample size M = 20,
the estimator is close to the exact rate function

I (a) = a ln
a

α
+ (1 − a) ln

1 − a

1 − α
, a ∈ [0,1], (46)

FIG. 6. Rate function estimator for Bernoulli random variables.
Gray curve, ÎM (a) with statistical error bars; black curve, exact result.
Parameters: α = 0.4, M = 20, R = 1.

with error bars that are significantly reduced if we were to use
M = 1000. This comes again from the fact that linearization
is not an artifact in this case: The bounded support of p(x) is
covered by the sample for a finite M , which means essentially
that kc = ∞.

These results confirm previous results obtained for data
networks [37–40], showing that the estimation of large-
deviation functions from a data stream of bits converge fast
and uniformly. For other distributions with bounded support,
convergence is expected to be as fast as for the Bernoulli case,
with the difference that kc may not be equal to ∞ following
our results (31) and (32). For a distribution p(x) that vanishes
linearly, for example, we obtain kc ∼ M1/2 from (26), whereas
if p(x) decays like a parabola, we obtain kc ∼ M1/3.

Distributions that have a fixed “window” or “vertical
cutoff,” such as the uniform distribution or the Bernoulli
distribution, represent a limit case of bounded distributions for
which kc = ∞. These distributions behave similarly, whether
they are discrete or continuous, because their SCGFs have
asymptotic linear branches, which is the property responsible
for kc = ∞.

D. Divergent generating functions

To close this section, we briefly discuss the case where
the theoretical SCGF diverges everywhere except at k = 0,
which arises when X is distributed for example according to
a Lévy stable distribution or, more generally, any power-law
tail distributions [7]. Assuming that the distribution of interest
is two-sided with both tails behaving as a power-law, then
λ(k) = ∞ for k �= 0, which is consistent with the fact that the
distribution of An does not have a large-deviation form; see
Example 4.2 of [7].

The estimator λ̂M (k) in this case exists for all k when
computed on finite samples, since it is a finite sum of
exponentials. It is easy to check, however, that it diverges
for all k �= 0 as the sample size M is increased. Thus, there is
no convergence region for the SCGF estimator, except at k = 0
where we trivially have λ̂M (0) = λ(k) = 0 for all M , so that kc

is effectively equal to 0. This is similar to the exponential case
for which kc is set to the limit of the convergence region of λ(k).
Here we have k−

c = k+
c = 0 simply because the convergence

region of a distribution with left and right power-law tails is
{0}. If the distribution has only one power-law tail, say to the
right, then k+

c = 0, whereas k−
c will behave according to the

shape of the other tail following the cases above.
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This applies if there is no bound (experimental or numer-
ical) on the values of X that can be measured. If we increase
M without increasing measurement bounds, then λ̂M (k) will,
of course, behave as if the quantity sampled is bounded and
will thus represent the distribution of that bounded quantity
having a finite SCGF rather than the theoretical unbounded
quantity having an infinite SCGF. One could then argue that
all physical quantities are bounded because of the limited range
of measuring devices. However, this is not a fundamental limit:
Measurement bounds can always be pushed, in principle, with
better devices. From this point of view, a quantity should be
considered as unbounded when the theoretical range of values
that can be measured can always be made large enough to
include the maximum and minimum values actually measured
in any given large but finite samples.

IV. CORRELATED OBSERVABLES

We assumed in the previous sections that the Xi’s were
independent to illustrate in the simplest way possible the
linearization effect limiting the estimation of large-deviation
functions. We now consider observables involving correlated
random variables, representing, for example, the individual
state of interacting particles or the state of a stochastic process
sampled in time. In many cases of interest, these observables
involve weakly interacting components (in space or time)
which can be grouped into independent or asymptotically
independent blocks. This is the basis of the block averaging
method, proposed independently in the context of free energy
calculations [34] and large-deviation theory [37–40].

We explain this method following [40]; see also [54]. We
consider again the sample mean

An = 1

n

n∑
i=1

Xi, (47)

but assume now that the sequence of random variables
X1,X2, . . . ,Xn forms a Markov chain. In this case, the SCGF
of An defined in (4) does not simplify to the simple cumulant
function (7). However, it is possible to “group” the Xi’s into
blocks as

X1 + · · · + Xb︸ ︷︷ ︸
Y1

+Xb+1 + · · · + X2b︸ ︷︷ ︸
Y2

+ · · ·

+ Xn−b+1 + · · · + Xn︸ ︷︷ ︸
YK

, (48)

where K = n/b is the number of blocks of size b, so as to
rewrite the sample mean as

An = 1

bK

K∑
i=1

Yi. (49)

For mixing Markov chains having a finite correlation length,
it can be shown that the blocks Yi become independent in the
limit where n → ∞ and b → ∞ but with b growing slower
than n so that K → ∞ [40]. Moreover, if the chain is ergodic,
then the Yi’s become identically distributed for i large enough,
so that

1

n
ln〈enkAn〉 ≈ K

n
ln〈ekYi 〉 = 1

b
ln〈ekYi 〉. (50)

We are thus back to the problem of estimating the SCGF for an
IID sequence of random variables formed by the Yi’s instead
of the Xi’s, so that our estimator for λ(k) is now

λ̂M (k) = 1

b
ln

1

M

M∑
j=1

ekY (j )
, (51)

where Y (j ), j = 1, . . . ,M , are M IID copies of the blocked
random variable Y . The estimation of the rate function follows
as before from (9).

In practice, this block averaging method works well by
choosing a finite b greater than the correlation length of the
Markov chain or, equivalently, by varying b until the estimated
SCGF of An ceases to depend on b. This avoids taking the
double limit n → ∞, b → ∞, with K = n/b → ∞.

The method can also be used for integrated observables of
continuous-time Markov processes having the form

AT = 1

T

∫ T

0
f (Xt )dt, (52)

where f is an arbitrary function of the state Xt of the Markov
process. In this case, the integral is “blocked” in segments of
length b to obtain

AT = 1

bK

K∑
i=1

Yi, (53)

where Yi is the integral of f (Xt ) over the time interval
[(i − 1)b,ib] and K = T/b is as before the number of blocks
over the total interval [0,T ].

Other observables that can be expressed in the block form
(53) include the total activity of interacting particle systems,
defined as the total number of particle jumps accumulated
over a time T , the total integrated current which depends on
the jumps and their direction, and observables of equilibrium
systems. For example, one can divide the energy EN of an
N -particle system into additive blocks Yi involving b < N

particles which become asymptotically decoupled as the limits
N → ∞ and b → ∞ are taken, with b growing slower than
N . In this limit, EN is thus effectively treated as a sample mean
of K = N/b IID random variables. This works as long as the
interactions between particles are weak or short-range, which
is the spatial analog of a mixing Markov process.

In all cases, the distribution of the IID or near-IID blocks Yi

determines how quickly the estimated SCGF converges to its
theoretical value according to the test cases studied previously.
If this distribution has an unbounded support and decays faster
than an exponential, then the convergence threshold kc of the
SCGF is expected to grow slowly with the sample size M , as in
the Gaussian case, whereas if its tails decay like an exponential,
then kc is essentially constant, as seen before. Bounded block
distributions, on the other hand, are characterized by a kc that
grows rapidly with M , and represent the best possible case in
terms of estimation.

The use of block averaging techniques is important as it
yields an exponential gain in estimation compared to the direct
sampling of large-deviation probabilities. To see this, suppose
that we want to estimate the probability p of an event known to
scale in a large-deviation way as p ∼ e−nI with the parameter
n, which can be N or T as above. It is known (see [66] or [67])
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that the direct sampling of that probability requires roughly
M ∼ en samples to obtain a relative error,

rM = P̂M − p

p
, (54)

for the estimate P̂M of p that is constant in n. By contrast, the
estimation of p via λ̂M and ÎM leads from our results to an
error on the actual rate of decay I that decreases with M as
1/

√
M in the convergence region. As this error is multiplied in

the large-deviation form of p by n, we must therefore choose
M > n2 to obtain a constant relative error for P̂M = e−nÎM as
a function of n.

This exponential sampling gain (en vs n2) can obviously
be exploited if An can be divided into independent or
asymptotically independent blocks for a large enough block
size b. If this cannot be done or if An does not have an
additive structure, then we can still obtain the rate function of
An, in principle, by directly sampling its generating function
Gn(k) = 〈enkAn〉 and obtaining its SCGF using (4). However,
in this case the estimation is inefficient: The saddle point a∗
of Gn(k), which does not scale with n, can be reached only
with a sample size M ∼ en because of the exponential form of
P (An = a).

Considering our result (26), this means that M must grow
exponentially with n for kc to remain constant as n is increased.
Since M ∼ en is also, as just mentioned, the sample size
needed to obtain the rate function of An by direct sampling,
we see that the generating function method offers no real
gain over direct sampling when An has no obvious additive
structure [54]. Similar results were obtained in the context of
free energy estimation [58], where An is the work performed
on an N -particle system over a time T so that n = NT , and for
multifractals [56], where An is the local dimension measured
over a spatial or temporal scale ε = 1/n.

For experiments, there is no obvious way to overcome
this problem of sampling observables that are not additive;
however, for simulations, faster convergence can be achieved
using modified sampling techniques, such as importance
sampling [54], escort distributions [68–70], and transition path
sampling [71], which modify the distribution of An to center
it essentially at the saddle point a∗(k). Cloning techniques

[41–43], which are not based on sampling but rather attempt
to obtain λ(k) from the multiplicative property of generating
functions, can also be used and prove efficient in simulations.

V. CONCLUSION

We have developed in this paper a general method for
estimating large-deviation functions from simulation or ex-
perimental data and have provided convergence results for
estimators of these functions and their errors. Our results
establish a separation between bounded random variables, for
which the estimation of large-deviation functions converges
quickly as a function of sample size, and unbounded random
variables, for which convergence is guaranteed only for a
certain parameter region, which depends on the tail of the
distribution considered. We have proposed a way to determine
this convergence region without the a priori knowledge of
that distribution, based on the fact that statistical errors
behave differently inside and outside of that region, and have
illustrated our approach for various distributions of interest.

These results can be applied to compute rate functions of
any additive observables of equilibrium, nonequilibrium, and
manmade systems, in addition to computing multifractal spec-
tra, dispersion exponents, and equilibrium free energies using
the Jarzynski estimator, as these are also based on estimating
generating functions. Our focus on large deviations brings a
new and general insight into these computations, which should
play an important role in future experiments designed to probe
the fluctuations of microscopic and mesoscopic systems.
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