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Chimeras in networks with purely local coupling
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Chimera states in spatially extended networks of oscillators have some oscillators synchronized while the
remainder are asynchronous. These states have primarily been studied in networks with nonlocal coupling, and
more recently in networks with global coupling. Here, we present three networks with only local coupling
(diffusive, to nearest neighbors) which are numerically found to support chimera states. One of the networks is
analyzed using a self-consistency argument in the continuum limit, and this is used to find the boundaries of
existence of a chimera state in parameter space.
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Chimera states, in which a symmetric network of identical
oscillators splits into two regions, one of coherent oscillators
and one of incoherent, have been studied intensively over
the past decade [1–3]. Spatial networks on which they
have been studied include a one-dimensional ring [2,4–8], a
square domain without periodic boundary conditions [9–11],
a torus [12,13], and a sphere [14]. They have also been
observed recently in a number of experimental settings
[15–19]. Early investigations considered networks with nonlo-
cal coupling (i.e., neither all-to-all with uniform strength, nor
local coupling, via diffusion, for example) as chimeras were
first reported in nonlocally coupled systems [1,20]. Nonlocal
coupling was at first thought to be essential for the existence
of chimeras [7,21], however, more recent results show that
chimeras can occur in systems with purely global coupling
[22–24].

Here, we consider the opposite limit and address the
question as to whether chimera states can exist in spatial
networks with purely local coupling. We present three such
networks in which this does occur. The idea behind the creation
of the networks is straightforward and can be found in the
early papers [11,20]. Consider a general reaction-diffusion
equation on a one-dimension spatial domain � with only local
interactions via diffusion in one variable:

∂u

∂t
= f (u) + v, (1)

ε
∂v

∂t
= g(u) − v + ∂2v

∂x2
. (2)

When ε is small and positive there is a separation of time scales
in (1) and (2): u is “slow” and v is “fast.” Taking the limit of
infinitely fast dynamics for v, i.e., setting ε = 0 in (2), one has

(
1 − ∂2

∂x2

)
v = g(u), (3)

and if h(x) is the Green’s function associated with (1 − ∂2

∂x2 )
on �, then we can solve (3) for v as

v(x) =
∫

�

h(x − y)g[u(y)]dy, (4)
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and substituting this into (1) we obtain a closed nonlocal
equation for u. [For � = R and lim|x|→∞ h(x) = 0, h(x) =
e−|x|/2, which does not have compact support.] Note that when
ε �= 0 the only spatial interactions in (1) and (2) are local (via
diffusion) and there are two dynamic variables (u and v). We
will implement the network analog of (1) and (2) but with
ε small and nonzero in the expectation that the behavior of
interest when ε = 0 persists for ε > 0.

The first model we consider consists of N oscillators,
equally spaced on a domain of length L, with periodic
boundary conditions. The state of oscillator j is described by
two variables: θj ∈ [0,2π ) and zj ∈ C. (A complex variable is
used to simplify presentation; we could equally well use two
real variables.) The governing equations are

dθj

dt
= ωj − Re(zj e

−iθj ), (5)

ε
dzj

dt
= Aei(θj +β) − zj + zj+1 − 2zj + zj−1

(	x)2
, (6)

for j = 1,2, . . . ,N , where 	x = L/N and A, β, and ε are
all constants. The ωj are randomly chosen from a Lorentzian
distribution with half width at half maximum σ centered at ω0,
namely,

g(ω) = σ/π

(ω − ω0)2 + σ 2
. (7)

An example of the system’s dynamics is shown in Fig. 1. The
domain clearly splits into two regions, one showing coherent
behavior of the phases and the other, incoherent. This behavior
has been replicated in networks of up to N = 1000, so is not
a small-N effect.

To understand the relationship between (5) and (6) and
previously studied models, we set ε = 0 in (6). If zj is the j th
entry of the vector z ∈ CN and similarly for θj , we can write
(6) as

(I − D)z = Aei(θ+β), (8)

where I is the N × N identity matrix and D is the matrix
representation of the classical second difference operator on
N points with periodic boundary conditions. Defining G =
(I − D)−1, we have

zj = A

N∑
k=1

Gjke
i(θk+β), (9)
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FIG. 1. (Color online) Chimera solution of the system (5) and (6).
(a) sin θj ; (b) sin [arg (zj )]; (c) |zj |. Parameters: ω0 = 1, σ = 0.01,
ε = 0.2, A = 1.5, L = 2π , N = 100, β = 0.1.

where Gjk is the jkth element of G, and substituting (9) into
(5) we obtain

dθj

dt
= ωj − A

N∑
k=1

Gjk cos (θj − θk − β). (10)

Since I − D is circulant, so is G, i.e., Gjk is a function of
only |j − k|,1 and (10) is thus of the same form as studied
by a number of others [1,2,4–8]. An important property of
(10) is that it is invariant with respect to a uniform shift of all
phases: θj �→ θj + γ for all j where γ is some constant. This
implies that (10) can be studied, without loss of generality,
in a rotating coordinate frame where ω0 = 0, i.e., the actual
value of ω0 in (10) is irrelevant. This is not the case for (5) and
(6) when ε �= 0 [although (5) and (6) are invariant under the
simultaneous shift: θj �→ θj + γ and zj �→ zj e

iγ for all j ]. It
is also clear that (10) is an N -dimensional dynamical system,
while (5) and (6) are 3N dimensional, once real and imaginary
parts of z are taken.

To analyze the chimera seen in (5) and (6) we use a self-
consistency argument similar to that in Refs. [1,2,5]. We first

1Explicitly, Gjk = N−1
∑N−1

r=0 exp (−2πir|j − k|/N )/{1 + 2[1 −
cos (2πr/N )]/(	x)2} [25], which is nonzero for all j,k.

move to a rotating coordinate frame, letting φj ≡ θj − �t and
yj ≡ zj e

−i�t , where � is to be determined, and then take the
limit N → ∞, to obtain

∂φ

∂t
= ω − Re(ye−iφ) − �, (11)

ε
∂y

∂t
= Aei(φ+β) − y + ∂2y

∂x2
− iε�y, (12)

We now search for solutions of (11) and (12) for which y is
stationary, i.e., just a function of space. We let such a solution
be y = R(x)ei(x). Since y is constant we can use (11) to
determine the dynamics of φ for any y and ω: If |R| > |ω − �|,
then φ will tend to a stable fixed point of (11), whereas if |R| <

|ω − �|, then φ will drift monotonically. To obtain a stationary
solution of (12) we replace eiφ by its expected value, calculated
using the density of φ, which is inversely proportional to its
velocity [given by (11)]. So (keeping in mind that ω is random
variable) we need to solve

0 =Aeiβ

∫ ∞

−∞

∫ 2π

0
eiφp(φ|ω)g(ω)dφ dω − y + ∂2y

∂x2
− iε�y,

(13)

where the density of φ given ω is

p(φ|ω) =
√

(ω − �)2 − R2

2π |ω − � − R cos ( − φ)| (14)

and g(ω) is given by (7). Evaluating the integrals in (13) we
obtain

Aei(+β)

R
[ω0 + iσ − � −

√
(ω0 + iσ − �)2 − R2]

−
(

1 + iε� − ∂2

∂x2

)
Rei = 0. (15)

We determine R, , and � by simultaneously solving (15)
and the scalar equation (0) = 0; this equation amounts to
choosing the origin of the rotating coordinate frame. Following
solutions of (15), as ω0 and ε are varied, we find that two
solutions are destroyed in a saddle-node bifurcation on the
solid blue curve shown in Fig. 2 when σ = 0.01. Although
our self-consistency argument gives no information about
the stability of solutions (unlike the continuum theory in
Refs. [4,6,8]), quasistatic sweeps through parameter space
indicate that the solid curve in Fig. 2 does indeed mark the
boundary of stable chimeras in the system (5) and (6). If ε is
increased past the boundary in Fig. 2 when ω0 is to the left of
the cusp (at ω0 ≈ 1.04), the system (5) and (6) moves to the
almost synchronous state, whereas to the right of the cusp the
system moves to a spatially disordered state, and the almost
synchronous state seems unstable here. The results above are
for a heterogeneous network (σ = 0.01), but following the
saddle-node bifurcation for σ = 0 (i.e., identical oscillators),
we obtain qualitatively the same result, as shown by the red
dashed curve in Fig. 2. (Numerical difficulties prevented the
continuation of this curve through the cusp.)

Note that by setting ε = 0 in (15), one finds that � only
appears in the combination ω0 − �, i.e., only the relative
frequency ω0 − � is unknown, and ω0 can be set to any value
(e.g., zero). This is not the case when ε �= 0, as is clearly seen
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FIG. 2. (Color online) Saddle-node bifurcation of solutions of
(15). Chimera solutions of (5) and (6) are stable below the curves.
Parameters: A = 1.5, L = 2π , β = 0.1, σ = 0.01 (blue solid), and
σ = 0 (red dashed).

in the dependence of existence of chimeras on the value of ω0

in Fig. 2.
As a second example we consider a network of Stuart-

Landau oscillators, each of which can be thought of as the
normal form of a supercritical Hopf bifurcation, with purely
local coupling through a second complex variable. Using
Stuart-Landau oscillators as opposed to the phase oscillators
above introduces an amplitude variable to the oscillator
dynamics. As above, we have N oscillators equally spaced
on a domain of length 1 with periodic boundary conditions.
The equations are

dAj

dt
= (1 + iω0)Aj − (1 + ib)|Aj |2Aj

+K(1 + ia)(Zj − Aj ), (16)

ε
dZj

dt
= Aj − Zj + Zj+1 − 2Zj + Zj−1

16(	x)2
, (17)

for j = 1,2, . . . ,N , where Aj ,Zj ∈ C, and ω0, a, b, K , and ε

are real parameters, and 	x = 1/N . Note that the oscillators
are identical. A chimera state for this system is shown in Fig. 3.
To understand the connection with previously studied models,
setting ε = 0 in (17) and then taking the limit N → ∞, we
obtain (

1 − 1

16

∂2

∂x2

)
Z(x,t) = A(x,t). (18)

If h(x) is the Green’s function for (1 − 1
16

∂2

∂x2 ) on a periodic
domain of length 1, then (16) becomes

∂A(x,t)

∂t
= (1 + iω0)A(x,t) − (1 + ib)|A(x,t)|2A(x,t)

+K(1 + ia)

[∫ 1

0
h(x − y)A(y,t) dy − A(x,t)

]
,

(19)
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FIG. 3. (Color online) Chimera solution of the system (16) and
(17). (a) |Aj |; (b) |Zj |; (c) average rotation frequency of the Aj

over a simulation of duration 2000 time units. Parameters: ω0 = 0,
ε = 0.01, a = −1, b = 1, K = 0.1, N = 200.

which is the nonlocally coupled complex Ginzburg-Landau
equation for just the variable A, as studied by Ref. [1]. Then,
assuming that K is small, one finds a scale separation between
the amplitude and phase dynamics of A, and upon setting
|A| = 1 the phase dynamics can be written in a nonlocally
coupled form [1,3].

As a third model we consider a heterogeneous network
of oscillators, each described by an angular variable and a
real variable. The angular variables have the form of Winfree
oscillators [26–28]. The model is

dθj

dt
= ωj + κQ(θj )uj , (20)

ε
duj

dt
= Pn(θj ) − uj + uj+1 − 2uj + uj−1

(	x)2
, (21)

for j = 1,2, . . . ,N , where Q(θ ) = sin β − sin (θ + β), κ , β,
and ε are parameters, Pn(θ ) = an(1 + cos θ )n where n � 1
is an integer, and an = 2n(n!)2/(2n)! [so that

∫ 2π

0 Pn(θ )dθ =
2π ] and 	x = L/N . The ωj are randomly chosen from
a normal distribution with mean ω0 and standard devia-
tion σ . Q(θ ) is the phase response curve of the oscillator
and can be measured experimentally for a neuron, for
example [29].
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FIG. 4. (Color online) Chimera solution of the system (20) and
(21). (a) sin θj ; (b) uj ; (c) average rotation frequency of the θj over
a simulation of duration 2000 time units. Parameters: ω0 = 0.3, σ =
0.001, n = 4, L = 4, κ = 0.4, β = π/2 − 0.2, ε = 0.1, N = 100.

A chimera state for (20) and (21) is shown in Fig. 4. Setting
ε = 0 in (21) and solving for the uj , one would obtain a

nonlocally coupled network of Winfree oscillators. Chimeras
have been found in a network of two populations of Winfree
oscillators [26,30], but a truly nonlocally coupled network
has apparently not yet been studied. Although the results in
Fig. 4 are for a heterogeneous network, similar stable chimera
states are also observed for a network of identical oscillators
(not shown).

We have presented three one-dimensional networks, where
each node is described by one variable which has a phase asso-
ciated with it and a second variable which is coupled in a diffu-
sive fashion to just its two nearest neighbors. All networks have
the same structure and show chimera states over some range
of parameters. All have a small parameter (ε) which controls
the time scale of the diffusing variable, so can be thought of as
slow-fast systems [31]. This is a demonstration of the existence
of chimeras in networks with purely local coupling, as opposed
to previous studies which have used either nonlocal or global
coupling [3].

We have not given any stability analysis of the models
presented here, only a self-consistency argument for the first
model. Chimeras in systems of the form (10) have been studied
by passing to the continuum limit (N → ∞) and analyzing the
resulting continuity equation using the Ott-Antonsen ansatz
[4,6,8,32,33]. However, it does not seem that such an approach
could be used to study the models presented here due to the
dynamics of the extra variables.

Regarding experimental implementation, note that the
nonlocal coupling in the experiments reported in Refs. [16,18]
was implemented by the computer, i.e., the experiments
were hybrid physical and computer. The models presented
here—while being caricatures of physical systems—have
only local, nearest-neighbor diffusivelike coupling. Since
diffusion is ubiquitous in spatially extended systems of
reacting chemicals, the most natural system in which to
implement networks of the form discussed here (without
a computer) may be in arrays of microsopic chemical
oscillators [34–36].
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