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Scaling laws for the bifurcation escape rate in a nanomechanical resonator
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We report on experimental and theoretical studies of the fluctuation-induced escape time from a metastable state
of a nanomechanical Duffing resonator in a cryogenic environment. By tuning in situ the nonlinear coefficient
γ we could explore a wide range of the parameter space around the bifurcation point, where the metastable
state becomes unstable. We measured in a relaxation process the distribution of the escape times. We have been
able to verify its exponential distribution and extract the escape rate �. We investigated the scaling of � with
respect to the distance to the bifurcation point and γ , finding an unprecedented quantitative agreement with the
theoretical description of the stochastic problem. Simple power scaling laws turn out to hold in a large region of
the parameter space, as anticipated by recent theoretical predictions. These unique findings, implemented in a
model dynamical system, are relevant to all systems experiencing underdamped saddle-node bifurcation.
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Transition from a metastable to a stable state is a phe-
nomenon of ubiquitous interest in science: in thermal equilib-
rium it is the essence of the activation law in chemistry [1,2],
it underlies nucleation in phase transitions, magnetization
reversal in molecular magnets [3], biological switches in cells
behavior [4] or RNA dynamics [5], transitions of Josephson
junctions [6], or fluctuations in SQUIDs [7], the list being obvi-
ously nonexhaustive. More recently the study of escape statis-
tics has been possible also for out-of-equilibrium dynamical
systems such as Penning traps [8], Josephson junctions [9], and
nano-electromechanical systems [10–14]: the state-switching
effect is extensively used in bifurcation amplifiers, with for
instance state-of-the-art quantum bit readout schemes [15]. In
most of these cases the escape time distribution is exponential
and the rate � characterizes completely the phenomenon.
Analytical solutions [16] of the dynamical equations show
that its value depends exponentially on a parameter D−1, that
coincides with the (inverse of the) temperature for equilibrium
systems and more generally is related to the power spectrum
of the relevant fluctuations. One can then write

� = �0 exp(−Ea/D), (1)

where the prefactor �0 is assumed to depend very weakly on D,
and Ea in analogy with a potential system can be called activa-
tion energy: it parametrizes the distance to the unstable point.
For out-of-equilibrium systems a central theoretical result is
the paper by Dykman and Krivoglaz [17], which found an
explicit expression for Ea and �0 for a generic dynamical sys-
tem close to the bifurcation point, where the line of metastable
states joins the line of unstable ones. It predicts universal power
law dependence of Ea and �0 on the distance from the bifur-
cation point in terms of |ω − ωb|, where ω is the driving fre-
quency of the dynamical system and ωb is its bifurcation value.

Direct experimental measurement of the escape time and
study of the dependence of Ea and �0 over a wide range of a
system’s parameters is not a trivial task, since the exponential

*fabio.pistolesi@u-bordeaux.fr
†eddy.collin@neel.cnrs.fr

dependence of the escape time makes it either too long or
too short for a reasonable observation protocol. For dynamical
systems the resonating period fixes a lower bound on the time.
Nanomechanical resonators with resonance frequency in the
MHz range are thus a prominent choice to investigate the
bifurcation instability of Duffing oscillators: they are high-
frequency dynamical systems with a high quality factor for
which the distance to the bifurcation point can be directly
controlled.

In the analysis of switching and reaction rates, three
problems can thus be distinguished: obtaining the exponent
Ea , the prefactor �0, and their respective scalings for systems
away from thermal equilibrium. The exponent has been the
first subject of interest, with the early work of Arrhenius [1].
The prefactor has then been addressed by Kramers later on
[2], while finally the scaling of both for dynamical systems
has been derived by Dykman [17]. It is actually in micro- and
nano-mechanical systems that a measurement of the power
law dependence of Ea with respect to the distance from the bi-
furcation point has been performed, giving the predicted value
within experimental error [10,11]. Nevertheless, the activation
energy has been claimed to match theory at best within a factor
of 2 due to injected noise calibration [10]. To our knowledge
no attempts have been done to obtain a more quantitative
verification of the predictions of Dykman and Krivoglaz [17],
in particular for the scaling law of the prefactor �0 and the de-
pendence to the Duffing nonlinear coefficient γ of both �0 and
Ea . Answering the three above-mentioned problems together
is thus the aim of our work, using a unique nanomechanical
implementation of the bifurcation phenomenon.

In this Rapid Communication we report on experimental
and theoretical investigations of the dependence of Ea and
�0 on the system parameters for a driven nanomechanical
oscillator in the nonlinear regime in the presence of a controlled
noise force. It is well known that for a sufficiently strong
nonlinear term the system admits for some values of the driving
frequency a metastable solution. By measuring the escape rate
for a wide range of parameters we could verify the validity of
the power scaling laws predicted by Dykman and Krivoglaz for
both Ea and �0. Remarkably, we found that the scaling holds
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FIG. 1. (Color online) Top panel: Schematic of the experimental
setup with the nanoresonator structure. Bottom panel: Linear and
Duffing resonances (respectively gray and black points, with top-
right and bottom-left axes). The lines show the fit. The nonlinear
resonance is for Vg = 9.4 V, which shifts the resonance frequency
and opens a hysteresis (thin green arrows highlight upward and
downward sweeps). The relaxations occur at a detuning ω − ωb

from the bifurcation frequency (red point and vertical arrow). Inset:
Gaussian distribution histogram of the measured intrinsic frequency
fluctuations.

experimentally in a much larger region of the parameter space
than the one for which the theory of Ref. [17] has been derived.
Concerning the Ea dependence on detuning, the possibility of
an extended region of scaling was discussed in Refs. [18,19].
Performing the full numerical simulation of the stochastic
problem adapted to our device parameters we found that
experiment and theory are in excellent quantitative agreement.

The experiment is performed on a unique goalpost (depicted
in the top graph of Fig. 1) aluminum-coated silicon nano-
electromechanical resonator. It consists of two cantilever feet
of length 3 μm linked by a paddle of length 7 μm, all
about 250 nm wide and 150 nm thick for a total mass m =
1.25 × 10−15 kg [20]. The experiment is performed at 4.2 K
in cryogenic vacuum (pressure <10−6 mbar). The motion is
actuated and detected by means of the magnetomotive scheme
[21], with a magnetic field B < 1 T and a gate electrode is also
capacitively coupled to the nanomechanical device (gap about
100 nm) [20]. The resonator admits large distortions (in the
hundred nm range) to be attained while remaining intrinsically
extremely linear [22], while a well-controlled nonlinearity can
be generated by means of a dc gate voltage bias Vg [23]. This
distinctive feature enables us to tune the global nonlinearity
of our device without changing the displacement amplitude.
Using an adder we apply both a sinusoidal drive and a noise
voltage from a voltage source generator. The resulting electric
signal together with a 1k� bias resistor is used to inject an ac
current through the goalpost and generates both driving and

controllable (zero average) noise forces on the resonator. More
information on the calibration and experimental details can be
found in Refs. [20,22]. The resulting equation of motion for
the resonator displacement x reads

ẍ + �ωẋ + ω2
0x + γ x3 = fd cos(ωt) + fn(t) (2)

with ω0/2π = 7.07 MHz the resonance frequency, �ω/2π =
1.84 kHz the linewidth, and fd and fn the drive and noise
forces divided by the mass of the resonator. We fix the drive
force so that mfd = 65 pN, leading to a constant maximal
displacement amplitude of 100 nm. As can be deduced from
our characterizations [20], this amplitude is small enough
to guarantee that nonlinear damping mechanisms such as
discussed in Refs. [24,25] are small (see comment in the
discussion section). The noise force signal is filtered so that the
force spectrum

∫
dteiωt 〈fn(t)fn(0)〉ω = 2D is constant over a

bandwidth of 1 MHz around 7 MHz. The Duffing coefficient
γ scales as V 2

g and is for us negative [22]. At fixed driving
force, the system admits two amplitudes of oscillation for
sufficiently large |γ | as shown in Fig. 1 (bistability). By fitting
with the standard Duffing expressions [26] the parameters
�ω,ω0 and γ together with the bifurcation frequency ωb can
be obtained with a good accuracy. The experiment is then
performed by sweeping ω from the stable regime (ω > ω0)
down to the edge of the hysteresis at a given value of ω − ωb

in the high-amplitude state (see Fig. 1). The sweeping rate
(a few Hz/s) is an important parameter which should both
guarantee adiabaticity of the sweep and high accuracy in the
measurement [33]. Finally, the escape time from the metastable
state is detected when the measured displacement amplitude
falls below an appropriate threshold value. Typically 103

escape events are recorded for each set of parameters. The
experiment has been repeated for three different values of the
noise forces fn, three different detunings ω − ωb (up to 5% of
the hysteresis), and five different values of Vg (and thus of γ ),
for a total of 45 escape histograms. The resulting settings are
summarized in Fig. 2.

For each data measurement, the experimental value of ωb

might slightly differ from the one obtained by the initial fit.
This problem is detected by sweeping relatively rapidly ω

(tens of Hz/sec) through the bifurcation point and measuring
the escape value ωb prior to each relaxation-time acquisition.
A typical histogram of the distribution of ωb is shown in the
inset of Fig. 1 for Vg = 9.4 V. It has Gaussian form with a
half-width σ in the range of tens of Hz. This tiny spread (10−6

to 10−5 of ωb) is due to low-frequency intrinsic fluctuations
of the resonating frequency, the actual origin of which is still
under debate [27–29]. Even if extremely small, due to the high
sensitivity of the bifurcation phenomenon the fluctuations of
ωb modify slightly the value of � at each measurement, and we
have to take this effect into account. The escape exponential
distribution has thus to be averaged over these fluctuations. For
|ω − ωb| � σ one can expand this dependence: �(ω − ωb −
ε) = � + �′ε + · · · , where ε is the Gaussian-distributed shift
of ωb. This gives the following distribution for the escape
times:

P (t) = �e−�t

∫
dε

σ
√

2π
e−ε2/(2σ 2)−�′εt . (3)
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FIG. 2. (Color online) Bifurcation parameter space (normalized
driving force versus � = 2|ω − ω0|/�ω). The gray area is the NEMS
bistability regime where the right edge is the transition from a high-
amplitude oscillation to a low one (the left edge is the opposite) and K
is the spinode point where hysteresis starts to open. We show within
the bistability the data points at different voltages Vg . Inset: Typical
low-Vg relaxation curve obtained with about 1000 relaxations, and fit
with and without fluctuations on ωb.

Fitting it to the data with the method of Kolmogorov-Smirnov
[30], to avoid losses of information due to histogram binning,
the two independent parameters of the distribution, � and the
product �′σ , can be obtained. A typical curve is shown in the
inset of Fig. 2. Note that this procedure does not need any
hypothesis on the explicit functional dependence of � on ωb.
On the other hand the procedure breaks down for too small
detunings, and we thus need to drop the data for four values
of the detuning. We can then verify the validity of Eq. (1)
for the system at hand by plotting log � as a function of 1/D

(see Fig. 3). The linear fit gives Ea and �0. The absolute
experimental definition of the noise level is difficult, and we
introduce a calibration factor C (close to 1) between D and
the nominal injected noise power. Note that it simply amounts
to multiplying Ea by C, thus leaving the scaling dependence

FIG. 3. (Color online) Escape time as a function of D−1 for Vg =
9.4 V at different detunings ω − ωb from the bifurcation point.

unmodified. The value of �0 is not affected by this calibration
either. More experimental details can be found in Ref. [31].

In order to extract the scaling dependence of Ea and
�0 on the detuning and the nonlinear parameter γ it is
convenient to recall the predictions that can be obtained
following Ref. [17]. Let us rescale the detuning by defining
� = 2|ω − ω0|/�ω with �b = 2|ωb − ω0|/�ω. For �b �√

3 (which holds for all the data of our experiment) one obtains
that �b ≈ 3|γ |f 2

d /(4ω2�ω2) with the parameters in Eq. (1)
reading [34]

Ea = 2f 2
d

3�ω

|� − �b|3/2

�
5/2
b

, �0 = �ω

2

|� − �b|1/2�
1/2
b

2π
. (4)

The basic assumptions to obtain these expressions are that
Ea/D � 1 in order to keep the escape a rare event, and to
be able to reduce this two-dimensional problem (amplitude
and phase) into a one-dimensional one. This second condition
(much less appreciated in the literature) is only verified when
the driving frequency ω is in a tiny region close to the
bifurcation point ωb and far from the frequency for which the
amplitude is maximum. In this region, one of the eigenvalues
of the linearized dynamical equations of motion vanishes,
which induces a slow motion in the direction of the relative
eigenvector. On the other hand when ω is such that the
amplitude is maximal, the two eigenvalues coincide, inducing
fully two-dimensional fluctuations. Thus beyond this point
the approximation used to obtain Eq. (4) breaks down. This
condition reads 4�b|� − �b| � 1.

In the experiment we performed this quantity ranged
uniformly between 0.13 and 71; thus some of the data were
well outside the range of the expected validity of Eq. (4),
enabling us to investigate the behavior of � in a region
where no present analytical prediction exists. As explained,
the expressions for Ea and �0 in Eq. (4) depend only on
the detuning and the nonlinear coefficient (through �b), the
other parameters being the same for all data points. To test
the validity of Dykman-Krivoglaz expressions, we produce a
scaling plot, where the logarithms of Ea and �0 are plotted
as a function of |� − �b|/�

5/3
b and |� − �b|�b (see Fig. 4).

A remarkable scaling is then observed in all the experimental
range, with a fitted slope as a function of the detuning of
1.53 ± 0.04 and 0.55 ± 0.2, for Ea and �0 respectively. This
matches the analytic predictions by Dykman and Krivoglaz,
and we use this good agreement to define the noise source
calibration factor C: scaling D by C the prediction of Eq. (4)
coincides with the fitted value for Ea (dashed line in Fig. 4, left
panel). The dependence on the nonlinear parameter �b could
also be tested for both quantities. It is shown in the insets of
Fig. 4 and gives fitted slopes of −2.43 ± 0.05 and 0.6 ± 0.1,
again in excellent agreement with Eq. (4).

To better understand this remarkable scaling in such a
large parameter region we solved numerically the stochastic
problem. This can be done by introducing the complex slow
amplitude z(t) defined as x(t) = z(t)eiωt + z(t)∗e−iωt and then
converting the Langevin Eq. (2) to a Fokker-Planck equation
∂τP = LP for the probability density P (u,v,τ ) of the real
and imaginary part of z = (3|γ |/�ω)1/2(u + iv) as a function
of the dimensionless time τ = t�ω. The escape rate from
a given domain can be calculated by solving the equation
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FIG. 4. (Color online) Scaling plots for Ea (left) and �0 (right) with respect to detuning. The full circles indicate the experimental points,
the open (blue) triangles the prediction of the full numerical simulation, the (red) full lines the linear fit to the data, and the dashed (blue) lines
the prediction of Eq. (4). Insets: Scaling with the nonlinear parameter �b.

L†τ (u,v) = −1 with zero boundary condition at the border
of the domain [16]. This gives the average time needed
to reach the border starting at (u,v). The equation reads
explicitly

[
D

(
∂2
u + ∂2

v

) − fu∂u − fv∂v

]
τ = −1, (5)

with D = 3|γ |D/(8ω3�ω), fu = u + v(u2 + v2) − �,

fv = v − u(u2 + v2) − � − Fd , and Fd = fd (3|γ |)1/2/

[2(ω�ω)3/2]. Equation (5) can be solved numerically [32] to
obtain the average escape time that coincides with the inverse
of the sought Poissonian rate. The numerical results for Ea

and �0 are shown in Fig. 4 in open (blue) triangles.
One can see that the exact (numerical) result has the

same power law dependence as the analytical results (dashed
line), even where the approximate theory is not supposed
to hold. Quantitative agreement between experiment and
theory on Ea is obtained with C ≈ 1.3, thus validating the
experimental noise amplitude calibration to within 15% which
is remarkable. Note that the simulation does not contain any
other free parameters, which are all experimentally known to
better than 5%. Concerning �0, we are not aware of previous
attempts to compare this quantity to the theoretical predictions.
The agreement with the full theory is within a factor of about
3, which is remarkable given the logarithmic precision on this
parameter. We speculate that these discrepancies could arise
from the actual algorithm used to extract �0, or from more
fundamental reasons such as extra (non-Duffing) nonlinearities
appearing in Eq. (2) (i.e., nonlinear damping, or noncubic
restoring force terms) [35].

In conclusion, we have investigated the escape dynamics
close to the bifurcation point for a nanomechanical resonator
in the Duffing nonlinear regime measured at cryogenic
temperatures. Using a single ideally tunable system, we have
(i) measured the escape rate � as a function of the noise
amplitude D, the detuning to the bifurcation point ω − ωb,
and the nonlinear parameter γ ; (ii) extracted Ea and �0 as
defined by Eq. (1); (iii) verified that the universal scaling of
Ea and �0 initially predicted for a tiny region around the
bifurcation point holds actually in a region up to two orders
of magnitude larger than the original one; (iv) verified by
solving numerically the exact problem, that the observation
is in quantitative agreement with the behavior expected for a
driven Duffing oscillator. The scaling of Ea as a function of
|� − �b| is consistent with the predictions of Refs. [18,19].
Due to the generality of the Duffing model, these results
are of interest for a wide class of systems. Even beyond the
fundamental interest in the scaling laws we point out that the
device acts as a very sensitive amplifier: it allows the detection
of tiny variations of the resonator frequency. Understanding the
frequency fluctuations in mechanical resonators is a current
challenge of the field [27–29]. Mastering of the bifurcation
escape technique by having a reliable theory and experimental
verification of the scaling of the rates is a crucial step towards
the study of modifications induced by other phenomena.
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