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Kerr effect at high electric field in the isotropic phase of mesogenic materials
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The well-known Kerr effect in isotropic fluids consists in the appearance of uniaxial orientational order and
birefringence that grows as the square of the applied electric field. We predict and observe that at a high electric
field, the Kerr effect displays features caused by the nonlinear dependence of dielectric permittivity on the
field-induced orientational order parameter. Namely, the field-induced birefringence grows faster than the square
of the electric field and the dynamics of birefringence growth slows down as the field increases. As a function of
temperature, the field-induced birefringence is inversely proportional to the departure from an asymptotic critical
temperature, but this temperature is no longer a constant (corresponding to the lower limit of the supercooled
isotropic phase) and increases proportionally to the square of the electric field.
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Condensed matter in the presence of external fields is
usually described by a Landau type of free-energy expansion.
The field-induced changes in the properties are assumed
to be linearly related to each other. A good example is
the field-induced orientational order in an isotropic fluid
[1–8]. The phenomenon manifests itself through field-induced
birefringence (called the Kerr effect for the electric field and
the Cotton-Mouton effect for the magnetic field) [1–7] or as
an enhancement of dielectric permittivity [8]. The standard
Landau–de Gennes model describes these effects by expanding
the free-energy density in a power series of the orientational
order parameter S, assuming that the field-induced properties
such as birefringence and dielectric permittivity are linearly
proportional to S, namely, δn ∝ S and εE = εiso + ε1S, where
εiso and ε1 are constants.

In this Rapid Communication we demonstrate that for high
applied fields, the response of the system can be properly
described only when the field-induced parameters are related
in a nonlinear fashion. Namely, we show that the field-induced
dielectric permittivity εE(S) exhibits a quadratic dependence
on the field-induced scalar order parameter S, namely, εE =
εiso + ε1S + ε2S

2, where the new coefficient ε2 can be even
larger than ε1. The quadratic term leads to qualitatively
different effects, such as birefringence growing faster than
the square of the electric field, a slowing down of the response
dynamics at high fields, and a dependence of the effective
critical temperature on the applied electric field. All these
predictions are confirmed experimentally.

Model. The equilibrium state of the isotropic phase in an
electric field E is determined by the free-energy density in the
Landau–de Gennes model as

f = 1
2a(T − T ∗)S2 − 1

3bS3 + 1
4cS4 − 1

2 E · D, (1)

where a, b, and c are the expansion constants, T ∗ is the
lower temperature limit of the supercooled isotropic phase,
and the electric displacement D = ε0εE(S)E depends on
the applied field E directly and through the dependence of
the dielectric permittivity εE on S. The effect of external
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fields is usually considered weak and thus only the linear
term in the expansion of εE(S) is retained. As a result, the
simplest version of the theory with b = c = 0 predicts that
the field-induced birefringence depends on temperature as
δn ∝ (T − T ∗)−1 [9,10]. The abundant experimental results
(see, e.g., [3,4,11–13]) clearly validate this prediction, except
for the close proximity of the isotropic-to-nematic transition
TNI [14–16], where it suffices to use the full form of the
Landau–de Gennes expansion with the higher-order b and c

terms in Eq. (1) [9,16]. The main result of our work is that
the response of the system to a high electric field is different
from the predictions of the standard Landau–de Gennes
model. This response demonstrates a nonlinear (quadratic)
dependence of the dielectric permittivity on the orientational
order εE = εiso + ε1S + ε2S

2; the latter leads to qualitatively
different effects.

The equilibrium state corresponding to the minimum of f

obeys the condition
∂f

∂S
= a(T − T ∗)S − bS2 + cS3 − 1

2
ε0(ε1 + 2ε2S)E2 = 0.

(2)

At temperatures well above TNI , the field-induced order
parameter S is small, so the b and c terms in Eq. (2) can
be neglected:

E2

S
= 2a

ε0ε1
(T − T ∗) − 2ε2

ε1
E2. (3)

The nonzero coefficient ε2 in this expression shifts the
asymptotic critical temperature for S, T ′ = T ∗ + ε0ε2

a
E2.

The dynamics of the field-induced order parameter can
be described in the Landau-Khalatnikov model γ (dS/dt) =
−∂f/∂S [17], obtained from Eq. (2) with b = c = 0, as

γ
dS

dt
= −[a(T − T ∗) − ε0ε2E

2]S + 1

2
ε0ε1E

2. (4)

For the square pulse E(ton � t � toff) = E, the solution of
Eq. (4) is

S(ton � t � toff) = SE

(
1 − exp

ton − t

τon

)
,

τon = γ

a(T − T ∗) − ε0ε2E2
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S(t > toff) = S(toff) exp
toff − t

τoff
,

τoff = γ

a(T − T ∗)
, (5)

where SE is the equilibrium value of the order parameter
in the given applied electric field, obtained from Eq. (3);
the switch-on time τon is a function of the applied electric
field, while the switch-off time τoff is not. Interestingly and
counterintuitively, the switch-on time increases as the driving
electric field increases. Below we demonstrate that the main
predictions of this simple model, namely, the field dependence
of the asymptotic critical temperature and field-triggered
slowdown of the switch on response, are clearly observed in
the experiment.

Experiment. We use the standard nematic 4-cyano-4′-
pentylbiphenyl, purchased from Merck and Jiangsu Hecheng.
The temperature of the isotropic to nematic phase transition is
TNI = (35.4 ± 0.1) ◦C. The nematic liquid crystal is filled into
a cell made of two parallel glass plates with thin transparent
electrodes of indium tin oxide of small area, 2 × 2 mm2

and low resistivity, 10 �/square. The cell thickness is d =
6.5 μm. The glass plates are covered by layers of polyimide
PI-1211 (Nissan). In order to measure the optic response to
the applied field, we use a laser beam (He-Ne, λ = 633 nm)
that passes through the crossed polarizers with the cell and an
optic compensator between them, as described previously [18].
The transmitted intensity is measured by a detector TIA-525
(Terahertz Technologies, response time less than 1 ns). The cell
is sandwiched between two right-angle prisms, so the light
incidence is oblique, at the angle θ = 45◦ [Fig. 1(a)]. The
temperature of cell assemblies is controlled with a Linkam
LTS350 hot stage with an accuracy better than 0.1 ◦C. Voltage
pulses with sharp rise and fall edges (characteristic time
better than 3 ns) are applied by a pulse generator HV 1000
(Direct Energy). The voltage pulses and photodetector signals
are monitored with the 1-G-sample/s digital oscilloscope
TDS2014 (Tektronix) [Fig. 1(b)].

The field-induced birefringence is measured by monitoring
the dynamics of the polarized light intensity transmitted by the
cell, the optical compensator, and the pair of polarizers. The
dynamics of the transmitted light intensity is measured at two
compensator settings A and B, for which the phase retardance
difference is 
B − 
A = π . When there is no electric field,
the measured transmitted light intensities for these settings are
IA(0) = IB(0) = Imax+Imin

2 ; here Imax and Imin are the maximum
and minimum transmitted intensities determined by adjusting
the phase retardance 
 of the compensator. Then the effective
field-induced birefringence δneff(t) is determined through
field-induced phase retardance �
 as (see [18] for details)

δneff(t) = λ�


2πd
= λ

2πd
arcsin

IA(t) − IB(t)

Imax − Imin
. (6)

Using the Fresnel equation for the experimental setup, we
determine that

δneff = n⊥
√

1 − n2
gsin2θ

/
n2

|| −
√

n2
⊥ − n2

gsin2θ

= A(n2
|| − n2

⊥) = ABS, (7)

FIG. 1. (Color online) (a) Experimental incidence geometry, in
which the cell is sandwiched between two right angle prisms for
oblique light incidence at 45°; the electric field is applied along
the x axis. (b) Dynamics of the effective field-induced birefringence
(circles) response to the applied voltage pulse (squares) at 30 °C
above TNI .

where A=n2
gsin2θ/(n||n⊥

√
n2

||−n2
gsin2θ+n2

||
√

n2
⊥−n2

gsin2θ ),

n|| and n⊥ are field modified refractive indices that correspond
to polarizations parallel and perpendicular to the applied
field, respectively, ng = 1.52 is the refractive index of the
glass prism, and θ = 45◦ is the incidence angle [Fig. 1(a)].
With the experimental data n|| = 1.58, n⊥ = 1.55, collected at
E = 8.8 × 107 V/m and T = TNI + 25 ◦C, we find A = 0.21;
the latter number remains constant within 3% when the applied
field is less than 1.2 × 108 V/m. According to the Vuks model
for the local-field correction [19] and to the experimental
data [20,21], the quantity n2

|| − n2
⊥ in Eq. (7) is proportional to

the field-induced order parameter S: n2
|| − n2

⊥ = BS.
The measured dependences δneff(E,T ) allow us to verify

Eq. (3) (see Figs. 2 and 3). Far above the transition temperature,
for T > TNI + 25 ◦C, the temperature dependence of E2/δneff

is clearly linear for all values of the strong electric field
[Fig. 2(a)], as predicted by Eq. (3). The intersection of the
linear dependences with the horizontal temperature axis in
Fig. 2(a) is different for different voltages. This intersection
is the asymptotic critical temperature T ′ introduced above.
The explicit field dependence of T ′, obtained by fitting the
data in Fig. 2(a) for T > TNI + 25 ◦C, follows the behavior
T ′ = T ∗ + ε0ε2

a
E2 [Fig. 2(b)] predicted by the model. Small

deviations from the linear behavior T ′ − T ∗ ∝ E2 observed
at the highest fields will be discussed later (see Fig. 3). Note
that the very strong electric fields used in our work (that were
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FIG. 2. (Color online) (a) Temperature dependence of E2/δneff

for applied electric field E = 29 V/μm (triangles), 58 V/μm
(pluses), 88 V/μm (circles), and 115 V/μm (saltires). (b) Plot of
T ′ − TNI vs E2. All dashed lines show the corresponding results of
the linear fitting performed for high temperatures T > TNI + 25 ◦C.

not available in the prior studies of the subject) cause such
a significant increase of S that the temperature dependence
of E2/δneff close to the transition TNI < T < TNI + 25 ◦C is
no longer linear [Fig. 2(a)] and thus must be described with
the higher-order (b and c) terms in the Landau–de Gennes
expansion.

Equation (3) predicts that E2/S is proportional to E2 at
temperatures well above TNI ; this is indeed what is observed
experimentally [Fig. 3(a)]. The proportionality constant in the
relationship n2

|| − n2
⊥ = BS is estimated to be B = 1.0 ± 0.1

from the temperature dependences n||(T ), n⊥(T ), and S(T )
measured in the nematic phase. One can estimate that the
field-induced order parameter in the fitting temperature range
can reach 0.15; however, this value is still mainly determined
by linear and dielectric terms in the Landau–de Gennes model
(2) as the relative contribution of the nonlinear b and c terms is
less than 4%. Fitting the data at high temperatures allows one
to determine the temperature behavior of a(T − T ∗)/ε1 and
ε2/ε1 [Fig. 3(b)]. The slope of a(T − T ∗)/ε1 vs T in Fig. 3(b)
leads to a/ε1 = 2.0 × 104 J/◦C m3. The ratio ε2/ε1 increases
from 0.43 to 1.04 when the temperature decreases from TNI +
51◦C to TNI + 25 ◦C. The temperature dependence of ε2/ε1

is most probably caused by the coefficient ε2, associated with

FIG. 3. (Color online) (a) Plot of E2/S vs E2 at TNI +
30 ◦C (squares), TNI + 42 ◦C (triangles), and TNI + 51 ◦C (circles).
(b) Temperature dependence of ε2/ε1 (squares) and a(T − T ∗)/ε1

(circles).

intermolecular interactions, rather than by ε1 describing single-
molecule additive contributions. Note that the finite slope of
E2/S vs E2 means that the field-induced birefringence δn ∝ S

does not follow the classic dependence δn ∝ E2 of the Kerr
effect; in our case, δn grows faster than E2.

The significant contribution of the quadratic term in
εE(S) can be qualitatively explained from the temperature
dependence of dielectric and optic tensors in the nematic
phase. The applied electric field creates a uniaxial paranematic
phase with the optical axis parallel to the field. Thus, we
compare εE(S) with the parallel component of the dielectric
permittivity in the nematic phase ε||(S) = εiso + ε

||
1 S + ε

||
2 S2.

The latter dependence can be reconstructed from the tempera-
ture dependences ε||(T ) and S(T ) deduced from the dielectric
and birefringence measurements. Our measurements of ε||(T )
and δn(T ), similar to ones in [22,23], result in ε

||
1 = 6.4 and

ε
||
2 = 8.8. The ratio ε

||
2 /ε

||
1 ≈ 1.38 obtained for the nematic

phase is close to ε2/ε1 measured for the Kerr effect in the
isotropic phase.

We now proceed to the discussion of the dynamics of the
field-induced response. It takes a finite time (about 10 ns)
for the voltage to change from zero to its saturated value
and the same for the reverse process. Therefore, the values
of τon and τoff are obtained by fitting the rise and fall processes
within the time intervals that correspond to the saturated and
zero voltages, respectively. To compare the dynamics at a
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FIG. 4. (Color online) Dynamics of the switching in the isotropic
phase at temperatures well above TNI . (a) Experimental optic
response at TNI + 30 ◦C (circles) and the respective linear fitting
(solid line) for two different applied electric fields; note the slower
switching on at higher fields. (b) Electric-field dependence of τon

(open symbols) and τoff (closed symbols) at TNI + 30 ◦C (circles)
and TNI + 42 ◦C (squares).

different electric field, in Fig. 4(a) we plot the normalized
values of the field-induced birefringence δneff/δneff,max, where
δneff,max is the maximum birefringence achieved at the given
field. Figure 4(a) clearly shows that τon increases as the
field is increased; τoff does not depend on the field within
the accuracy of the experiment (1 ns), being approximately
equal to τon at the small field [Fig. 4(b)], as expected
[see Eq. (5)].

The experimental results above are all explained within
the proposed model of the Kerr effect at high electric fields.
The model advances the standard Landau–de Gennes theory
by adding a dielectric permittivity term proportional to the
square of the induced order parameter. An important question
is whether the data can be explained by other mechanisms.
One possibility is to add a term proportional to SE4 with a
fourth-order electric field to the Landau–de Gennes expansion.
Introduction of such a term would produce dependences
E2/δneff vs T − TNI that have a different tilt but the same
intersection with the temperature axis for different values of
E; such a behavior would contradict strongly the experimental
data in Fig. 2(a). Furthermore, the term proportional to SE4

would not make the switch-on time dependent on the applied
electric field. One can also consider heating effects caused
by adiabatic changes of polarization and order parameter [24]
and by Joule heating of liquid crystal material and electrodes
at the substrates. The resulting temperature increase is rather
small, less than 0.2°C, and could only decrease the observed
asymptotic critical temperature and make the switch-on time
faster. The experiments, however, show the opposite behavior
(Figs. 2 and 4).

To conclude, we presented a theoretical description and
experimental confirmation of different features of the electro-
optic Kerr effect, observed at high electric fields. First, at
a given temperature, the field-induced birefringence grows
faster than E2, which is of interest for both fundamental
and applied aspects. Second, the switch-on time of the field-
induced birefringence becomes longer as the field increases.
Finally, at the fixed electric field, the temperature dependence
of the inverse Kerr constant outside the close proximity of
TNI remains linear, but the asymptotic critical temperature T ′
does not coincide with T ∗, shifting upward with the square
of the electric field. When the temperature dependence of
the inverse Kerr constant is used to determine the lower
temperature limit of the isotropic phase, this effect should
be accounted for, otherwise the procedure will yield wrong
results. All these features are different from the standard
Landau-de Gennes description of the Kerr effect and underline
the importance of nonlinear relationships between different
field-induced properties.
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