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Attainability of Carnot efficiency with autonomous engines
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The maximum efficiency of autonomous engines with a finite chemical potential difference is investigated. We
show that, without a particular type of singularity, autonomous engines cannot attain the Carnot efficiency. This
singularity is realized in two ways: single particle transports and the thermodynamic limit. We demonstrate that
both of these ways actually lead to the Carnot efficiency in concrete setups. Our results clearly illustrate that the
singularity plays a crucial role in the maximum efficiency of autonomous engines.
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Introduction. The maximum efficiency of heat engines has
been one of the central issues in thermodynamics. Carnot
showed that the efficiency of an engine attached to heat
baths with temperature TH and TL (TH > TL) is bounded
by 1 − TL/TH [1]. The upper bound is attained when the
external control on the engine is quasistatic. For the case with
two particle baths under isothermal conditions, the efficiency
is bounded by 1. These maximum efficiencies are called
the Carnot efficiency (CE). Nonequilibrium thermodynamics
has recently been applied to small fluctuating systems with
external control, where the maximum efficiency analogous to
macroscopic thermodynamics has been established [2].

Since most engines, from electric power plants to molecular
motors, are autonomous, thermodynamics for autonomous
engines is an important issue. Here, the word autonomous
stands for systems with no time-dependent control parameter
in nonequilibrium steady states [3]. Since all variables of the
engine inevitably fluctuate, the attainability of the CE with
autonomous engines is a nontrivial problem. In the linear
response regime (i.e., TH − TL � 0), it is well known that the
tight-coupling condition is necessary for autonomous engines
to attain the CE [4]. On the other hand, for the case of a
finite difference of temperatures or chemical potentials, most
of the studies have paid attention to specific and elaborated
models [5–27]. Famous models of autonomous engines are
Feynman’s ratchet [5] and the Büttiker-Landauer system [6,7],
which convert heat flux into work. Although they seemingly at-
tain the CE [5,8], it has been established that these models actu-
ally cannot attain the CE in physically plausible setups [9–12].
Another famous model is an information engine [13–16],
which performs autonomous control and always transports a
single particle between particle baths. In contrast to Feynman’s
ratchet and the Büttiker-Landauer system, the information
engine attains the CE. In addition, limiting effective filters of
energy or chemical potential [17–21], a quantum dot [22,23],
and soft nanomachines [24] also attain the CE. However,
contrary to externally controlled engines, a comprehensive
understanding of autonomous engines with a finite difference
of temperatures or chemical potentials has been elusive.
Especially, the understanding of macroscopic autonomous
engines is missing.

In this Rapid Communication, we address the issue of the
general condition for autonomous engines to attain the CE
with a finite chemical potential difference. To demonstrate
this, we first introduce a schematic model, an autonomous
version of the macroscopic Carnot engine. This model clearly

illustrates the characteristics of autonomous engines that in
normal nonsigular setups they cannot attain the CE, even
with infinitely slow dynamics. Contrary to this, in the case
of singular transition rates, since this singularity prohibits a
particle leakage from the dense bath to the dilute bath, this
engine attains the CE. We then move to a general discussion
and prove that, without a special type of singularity, any
autonomous engine cannot attain the CE, which is consistent
with both our model and the existing models [5–27].

Kinetic model and its coarse graining. It is hard for
autonomous engines to attain the CE, and they attain the
CE only if they possess a special type of singularity. To
demonstrate the above characteristics of autonomous engines,
we introduce an autonomous Carnot engine, which extracts
mechanical work from a particle flux between particle baths
with given chemical potentials μH and μL. The engine consists
of two movable walls, a V wall and H wall [see Fig. 1(a)]. Only
when the H wall (V wall) is at the position t or b (l or r), the
V wall (H wall) can move along the x (y) axis, otherwise
the V wall (H wall) is fixed at l or r (t or b) [see Fig. 1(b)].
Thus, the engine has four stable positions, (l,b), (l,t), (r,t), and
(r,b), which we denote by A, B, C, and D, respectively. When
the V wall is at the position l (r), the engine can exchange
particles with the bath with μH (μL). Otherwise, the engine
cannot exchange particles. The engine is under isothermal
conditions, and the dynamics of the walls and particles are
stochastic (the explicit time-evolution equation is shown in
Ref. [28]). Since the cross point of two walls passes through
the rectangular-shaped trajectory A → B → C → D → A,
by imposing torque on the cross point, we extract mechanical
work automatically [see Fig. 1(c) and Fig. S1].

Here, we adopt a well-used approximation that, with a given
position of the walls and particle number, the particles are in
equilibrium [29,30]. If the equilibration of particles is much
faster than the dynamics of the walls and the exchange of
particles with the baths, the above approximation is justified.
This time separation leads to a coarse-grained description,
the Markov jump processes with discrete states (X,n), where
X ∈ {A,B,C,D} represents the position of the walls and n

represents the particle number. We call this model a coarse-
grained autonomous Carnot engine (CGACE).

The energy difference from A to B including the external
force is denoted by EAB , and EBC , ECD , and EDA are defined
in a similar manner. Then the work against the imposed force
per one rotation A → B → C → D → A is written as EAB +
EBC + ECD + EDA =: Wtot > 0. Since the engine is under
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FIG. 1. (Color online) (a) Schematic of the autonomous Carnot
engine, which consists of a V wall and H wall. Since the V wall is
at l, particles can be exchanged with the particle bath with μH . (b)
The potential landscape of the V wall. If the H wall is at t or b,
the V wall is movable. Otherwise, the V wall is trapped at l or r by
delta-function-type potentials. (c) Schematic of the torque. The red
disk is on the cross point of the V wall and H wall, which slides on
both walls. The yellow disk is fixed and serves as a shaft of the gray
slat. With a single rotation A → B → C → D → A, the gray slat
makes one rotation and we extract mechanical work.

isothermal conditions, the transition rates of the V wall (i.e.,
A ↔ D and B ↔ C) should satisfy the local detailed balance
condition,

ln
P (X → X−; n)

P (X− → X; n)
= −β(EXX− + F (VX− ,n) − F (VX,n)),

(1)
where we defined A− := D, B− := C, C− := B, D− := A,
and EXX− := −EX−X, and β = 1/kBT is the inverse of the
Boltzmann constant times temperature. P (X → X−; n), VX,
and F (V,n) represent the transition rate from (X,n) to (X−,n),
the volume at X, and the Helmholtz free energy with volume
V and particle number n, respectively. Note that the details of
the transition rates of the H wall as P ((A,n) → (B,n′)) are
not important in the following discussion.

Maximum efficiency of CGACE. To confirm the difficulty
for autonomous engines to attain the CE, here we derive
the maximum efficiency of the CGACE with fixed μH and
μL. In the following, we investigate the condition for the
maximum efficiency, and then calculate the efficiency under
this condition. First, an engine with maximum efficiency
should prevent two kinds of leakage. One is the leakage of
particles: If the dynamics of the H wall is very slow, the
V wall moves between B ↔ C or A ↔ D many times and
particles leak from the dense bath to the dilute bath without
extracting work. The other is the leakage of energy: If the
exchange of particles between the baths and the engine is
very slow, the walls rotate, obeying the external force as
A → D → C → B → A, and the work is lost. Hence, it is
plausible that the maximum efficiency is realized when the
dynamics of the V wall is much slower than that of the H wall
and particles, and we treat this situation in the following.

The stationary distribution Pst(B,n), for example, is then
calculated as

Pst(B,n) = Pst(A,B)
e−β(F (VB,n)+EAB−μH n)

ZAB

, (2)
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FIG. 2. (a) Graphs of GA(n) and GB (n). The area of “abcd”
(colored by gray) corresponds to the right-hand side of Eq. (5),
which is the upper bound for Wtot. The area of “pbqd” (surrounded
by bold lines) corresponds to the lower bound for Cμ. (b) A
graph of GA(n) with singular transition rates (9) and (10). GA

shows almost discontinuous behavior, which allows n∗
A and n∗

D as
n∗

A − n∗
D = O(V0

2/3).

where Pst(A,B) represents the stationary probability at A

or B, and ZAB := ∑
n e−β(F (VA,n)−μH n) + e−β(F (VB,n)+EAB−μH n)

is a normalization constant. We denote the stationary prob-
ability flux of X → X− with n particles by jX→X−(n) :=
Pst(X,n)P (X → X−; n). Owing to the law of large numbers,
the realized particle number when the transition X → X−
occurs is around n∗

X := arg maxn jX→X−(n).
We now calculate the efficiency η := Wtot/Cμ, where Cμ

represents the average consumption of the chemical potential
per a single rotation A → B → C → D → A. The condition
that the direction of the dominant dynamics of the walls is
A → B → C → D → A leads to

jA→D(n∗
A) < jD→A(n∗

D), (3)

jC→B(n∗
C) < jB→C(n∗

B). (4)

Summing the logarithms of (3) and (4), and using the local
detailed balance condition (1), we arrive at a key inequality:

Wtot <

(
μH n∗

B − μLn∗
C −

∫ n∗
B

n∗
C

GB(n)dn

)

−
(

μH n∗
A − μLn∗

D −
∫ n∗

A

n∗
D

GA(n)dn

)
. (5)

Here, GX(n) (X = A,B) is defined as

GX(n) := ∂

∂n

(
F (VX,n) − 1

β
ln P (X → X−; n)

)
, (6)

and n∗
X satisfies GA(n∗

A) = GB(n∗
B) = μH and GB(n∗

C) =
GA(n∗

D) = μL. Note that the second law of thermodynamics
implies a monotonic increase of GX(n). The right-hand side
(rhs) of (5) corresponds to the area of “abcd” (colored by
gray) in Fig. 2(a). In addition, Cμ is evaluated as Cμ �
(μH − μL)(n∗

B − n∗
D), whose rhs corresponds to the area of

“pbqd” (surrounded by bold lines) in Fig. 2(a). If a finite
constant a < +∞ satisfies

n
∂GA

∂n
� a, n

∂GB

∂n
� a (7)

for any n, the inequality (5) implies

η := Wtot

Cμ

� a(1 − e−β�μ/a)

β�μ
< 1 = ηCarnot, (8)

050101-2



RAPID COMMUNICATIONS

ATTAINABILITY OF CARNOT EFFICIENCY WITH . . . PHYSICAL REVIEW E 92, 050101(R) (2015)

where we used GA(n) � a ln(n/n∗
D) + μL for n � n∗

D and
GB(n) � a ln(n/n∗

B) + μH for n � n∗
B . The inequality (8)

indicates that the maximum efficiency of the CGACE is
strictly less than the CE. Especially, if the transition rates
of the V wall obey the symmetric rule [31] or the Arrhenius
rule [32], the condition (7) is equivalent to the condition for the
thermodynamic function of the gas: supn,V n ∂2F/∂n2 � a.
We note that the ideal gas satisfies n · ∂2F/∂n2 = β for any n

and V .
In the foregoing discussion, it was shown that the CGACE

cannot attain the CE with normal transition rates. However, the
CGACE attains the CE with the transition rate with a special
type of singularity. We again assume that the dynamics of the
V wall is much slower compared to the H wall and the particle
exchange. We set the transition rates between A and D as

P (A → D; n) = k e−β(F (VD,n)−EDA)

e−βF (VA,n) + e−β(F (VD,n)−EDA)
, (9)

P (D → A; n) = k e−βF (VA,n)

e−βF (VA,n) + e−β(F (VD,n)−EDA)
, (10)

with a constant k. The transition rates P (B → C; n) and
P (C → B; n) are also written in a similar manner with the
same k. We note that such transition rates are physically
realizable [28].

The crucial point of the form of P (A → D; n) is that
GA shows an almost discontinuous jump from μL to μH

[see Fig. 2(b)]. This discontinuity leads to the divergence of
n ∂GA/∂n, and thus the left-hand side of the inequality (8) does
not prohibit the attainability of the CE. We then properly set
VA,VB,VC,VD = O(V0) and EAB,EBC,ECD,EDA = O(V0)
as satisfying n∗

A − n∗
D = O(V0

2/3) and n∗
B − n∗

C = O(V0
2/3),

which are negligible in thermodynamic limits. Under this
setup, the efficiency is evaluated as

η := Wtot

Cμ

� 1 − O

(
1

V0
1/3

)
, (11)

which indicates the attainability of the CE with the thermo-
dynamic limit V0 → ∞ (detailed setups and calculations are
discussed in Ref. [28]).

Necessary condition to attain the CE. We now leave the
specific model and go to the argument on general autonomous
engines with a finite chemical potential difference, which
includes models in Refs. [5–27]. We note that if the engine
has continuous variables, we take their proper discretization.
We also note that our argument for particle baths is easily
extended to the case of thermal baths. By adding a new
stochastic parameter if necessary [28], an autonomous engine
satisfies the following two conditions: (a) The engine touches
at most one particle bath at one moment. (b) The energy
difference of the engine between two states (as EXX− in the
CGACE) is independent of its particle number n. We then
divide the possible states of the engine into {X1,H , . . . ,Xn,H }
and {X1,L, . . . ,Xm,L}, where a state Xi,H (Xi,L) is attached to
the bath with μH (μL) [see Fig. 3(a) or Fig. S1]. The state of the
whole system is written as (X,n). In the case of the CGACE,
the engine takes four possible states {A,B} = {X1,H ,X2,H }
and {C,D} = {X1,L,X2,L}. In the case of the (discretized)
Büttiker-Landauer system [6–8,12], XH (XL) corresponds to

μLμH

THTL TL

(a) (b)

X

X1,H

X2,H

X3,H
X2,L

X1,L

X X XX

FIG. 3. (Color online) (a) An instance of the state space of an
engine. X1,H ,X2,H ,X3,H touches the particle bath with μH , and
X1,L,X2,L touches the particle bath with μL. Arrows represent
possible transitions. (b) Schematic of the (discretized) Büttiker-
Landauer system and its state space. Xi,H (Xi,L) represents the
position of the Brownian particle with a hot (cold) bath. The whole
state of the system is determined by the position X, the energy E,
and the direction of the motion c ∈ {+,−}.

the position of the Brownian particle attached to a hot (cold)
bath [see Fig. 3(b)].

Here, we use the fact that a thermodynamic engine which
attains the CE satisfies the detailed balance condition [33],
which is a consequence of the widely believed conjecture that
thermodynamic engines with the CE move quasistatically, and
which has recently been proved for Markovian systems [34].
Then, the stationary distribution for n with given X reduces
to a grand canonical distribution. Hence, the average of the
particle number transported from Xi,H to Xj,L per unit time is
calculated as

〈n〉Xi,H →Xj,L
=

∑
n

nf (n)eβμH n∑
n′ f (n′)eβμH n′ , (12)

where we defined f (n) := e−βF (Xi,H ,n)P (Xi,H → Xj,L; n).
By assuming the local detailed balance condition for X,
〈n〉Xj,L→Xi,H

is calculated in a similar manner:

〈n〉Xj,L→Xi,H
=

∑
n

nf (n)eβμLn∑
n′ f (n′)eβμLn′ . (13)

Here, we used the fact that the local detailed balance condition
is written in a similar manner to Eq. (1), which follows from
condition (b).

Let V0 be a typical system size. Since the amount of
extracted work is of order V0, the necessary condition for
the absence of particle leakage between Xi,H and Xj,L is

1

V0

(〈n〉Xi,H →Xj,L
− 〈n〉Xj,L→Xi,H

) = 0. (14)

However, by comparing Eqs. (12) and (13), a monotonic
increase of eβ(μH −μL)n in terms of n yields

1

V0

(〈n〉Xi,H →Xj,L
− 〈n〉Xj,L→Xi,H

)
� 0, (15)

and the equality holds only when f (V0ρ)eβμLV0ρ has a delta-
function-type singularity in terms of ρ := n/V0, such that

jXi,H →Xj,L
(V0ρ) ∝ f (V0ρ)eβμH V0ρ ∝ δ(ρ − ρ∗), (16)

jXj,L→Xi,H
(V0ρ) ∝ f (V0ρ)eβμLV0ρ ∝ δ(ρ − ρ∗). (17)
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Here, jX→X′(n) represents the probability flux of X → X′
with particle number n. Note that ρ is not the particle
density. The conditions (16) and (17) have a clear physical
meaning: Particle numbers with both transitions Xi,H → Xj,L

and Xj,L → Xi,H are always the same unique value V0ρ
∗

within o(V0), which is the only way to prevent the leakage of
particles. Since μH and μL are fixed, this singularity appears
in two ways: (i) P (Xi,H → Xj,L; n) = 0 for all n ∈ N except
n = V0ρ

∗. (ii) 1/V0 · ∂/∂ρ ln f (V0ρ) shows such discontinuity
that

lim
ρ ′→ρ∗−0

lim
V0→∞

1

V0

∂

∂ρ
ln f (V0ρ)

∣∣∣∣
ρ=ρ ′

� μL, (18)

lim
ρ ′→ρ∗+0

lim
V0→∞

1

V0

∂

∂ρ
ln f (V0ρ)

∣∣∣∣
ρ=ρ ′

� μH . (19)

To attain the CE, all possible transitions Xi,H ↔ Xj,L need to
satisfy (i) or (ii). Without such a singularity, the engine cannot
attain the CE, as seen in Eq. (8). This is our main result.

Various existing autonomous engines which attain the
CE [8,13–27] adopt method (i), where a single particle or a
particular value of energy is always transported. In this Rapid
Communication, we construct an autonomous engine with the
CE which adopts method (ii). In contrast, present autonomous
engines which cannot attain the CE [9–12] satisfy neither
(i) nor (ii). In the case of the Büttiker-Landauer system, for
example, the momentum distributions of the hot bath and the
cold bath at the contact point of these two baths are different.
Due to this difference, roundtrips of the Brownian particle
between two baths cause an energy transport from the hot bath
to the cold bath in the form of kinetic energy, which implies
finite dissipation.

Concluding remarks. In this Rapid Communication, we
derived the necessary condition for autonomous engines
to attain the CE. The key property is a special type of
singularity as Eqs. (16) and (17), which implies that the same
and unique amount of particle number or energy is always

transported between two states with different baths. Without
such singularities, an autonomous engine never attains the CE.
This result is consistent with existing results on the specific
models of autonomous engines [5–27].

Such singularities are realized only by the way of transports
of (i) a single particle or a particular energy or (ii) a special type
of thermodynamic limit. Previous models with the CE adopt
method (i), and no concrete model with the CE has adopted
method (ii). In this Rapid Communication, we constructed
a concrete example of method (ii), and thus it was shown
that both methods (i) and (ii) indeed lead to the CE. Here,
we should emphasize that method (ii) is different from the
following intuitive picture: For the case of a macroscopic heat
engine, by decreasing the external force and slowing down the
speed of the cyclic process, the engine will reach the CE.
In fact, this intuition is wrong for almost all macroscopic
engines. Although thermal fluctuation is usually negligible
in macroscopic engines, in the case of infinitely slow speed,
thermal fluctuation should be taken into account even in
macroscopic engines, and the above intuition overlooks this
inevitable fluctuation. This fluctuation causes a leakage of
particles or energy between two baths. As evidence of this, the
inequality (8) still holds for the case of infinitely slow speed.

Our results may give another perspective on the physics
of molecular motors. Molecular motors are also autonomous
engines, and in most cases they work with a finite chemical
potential difference. Our results impose physical restrictions
on molecular motors: To attain the CE, chemical heat engines
should adopt the method of (i) single particle transports or (ii)
thermodynamic limit. These two options appear similar to the
two types of molecular motors: working solely (as a kinesin) or
collectively (as myosins in a muscle) [35]. It will be interesting
if these two characteristics are connected.
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