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Entropic multirelaxation lattice Boltzmann models for turbulent flows
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We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the
authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)] and review the
role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow
benchmark. We show that the outstanding numerical stability and performance is independent of a particular
choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order
moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed
statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered
herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover,
thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects
and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice
Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly
turbulent flows.

DOI: 10.1103/PhysRevE.92.043309 PACS number(s): 47.11.−j, 51.10.+y, 05.20.Dd

I. INTRODUCTION

The lattice Boltzmann (LB) method [1,2] is a modern and
highly successful kinetic-theory approach to computational
fluid dynamics (CFD) and computational physics of complex
flows and fluids, with applications ranging from turbulence
[3] to flows at a micron scale [4] and multiphase flows [5,6],
relativistic hydrodynamics [7], soft-glassy systems [8], and
beyond.

While conventional CFD methods solve the Navier-Stokes
equations, LB’s underlying equations form a kinetic system
which can be perceived as a discrete analog to Boltzmann’s
equation. Field variables are populations fi(x,t) correspond-
ing to a set of discrete velocity vectors vi , i = 1, . . . ,b

spanning a regularly spaced lattice with nodes x. The dynamics
of populations fi can be split into free flight (advection)
and collision (relaxation) which is reflected by a general
one-parametric LB equation

fi(x + vi ,t + 1) = f ′
i ≡ (1 − β)fi(x,t) + βf mirr

i (x,t). (1)

Here the left-hand side is the propagation of the populations
along the lattice links, while the right-hand side is the so-called
postcollision state f ′. The relaxation parameter β is associated
with the transport coefficient of the macroscopic target
equation (kinematic viscosity in the case of the incompressible
Navier-Stokes equations). The mirror state f mirr represents the
maximally over-relaxed state. Realization of hydrodynamics
in the LB setting was made possible, in the first place, with
the lattice Bhatnagar-Gross-Krook (LBGK) model [9,10], in
which one takes

f mirr
i = 2f

eq
i − fi. (2)
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Here f
eq
i is the equilibrium which is found as a maximizer of

the discrete entropy function [11,12],

S[f ] = −
b∑

i=1

fi ln

(
fi

Wi

)
, (3)

subject to fixed locally conserved fields identified by the first
D + 1 velocity moments, ρ = ∑b

i=1 fi (density) and ρu =∑b
i=1 vifi (momentum density), and where the weights Wi

are lattice-specific constants. With the proper symmetry of the
lattice, the LBGK equation, (1) and (2), recovers the Navier-
Stokes equation for the fluid velocity u, with the kinematic
viscosity

ν = c2
s

(
1

2β
− 1

2

)
, (4)

where cs is the speed of sound [a lattice-dependent O(1)
constant]. The LBGK model is unambiguous since β ∈ (0,1)
is fixed by the kinematic viscosity (4). The limit β → 1 (small
kinematic viscosity) is particularly important as it is pertinent
to achieving, if only in principle, high-Reynolds-number
regimes. A notable departure from the continuous BGK
approximation of Boltzmann’s equation becomes manifest in
the feature of over-relaxing towards the mirror state which
disconnects LBGK from the kinetic theory domain β ∈ (0, 1

2 ]
[13].

Almost immediately after its inception, the LBGK model
has taken lead in the lattice Boltzmann approach to the
simulation of complex hydrodynamic phenomena [2,14] and
remains the “workhorse” of the LB methods to date. Pop-
ularity of LBGK is primarily based on its simplicity and
outstanding computational efficiency. However, despite its
promising nature and popularity, the LBGK model shows
severe deficiencies (disruptive numerical instabilities) already
at moderate Reynolds numbers. This precluded the LB method
from making a sustainable impact in the field of computational
fluid dynamics.
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A number of approaches can be found in the literature
intended to alleviate this issue. We will restrict the follow-
ing short discussion to methods without explicit turbulence
models. Most notably, the entropic lattice Boltzmann method
(ELBM) features nonlinear stability and has shown excellent
performance [11,15,16]. While ELBM converges to LBGK
in the resolved case, it locally alters the relaxation parameter
which can be interpreted as a modification of the viscosity in
order to fulfill the second law of thermodynamics by both
enhancing and smoothing the features of the flow where
necessary, subject to an entropy condition.

The dimension b of the kinetic space populated by fi

is usually greater than strictly necessary for recovering the
Navier-Stokes equations. In three dimensions, for instance, 10
linearly independent basis vectors would suffice to represent
the conserved variables and the symmetric stress tensor

ρ�αβ =
b∑

i=1

viαviβfi . (5)

Although it can be shown that the coupling to the nonhy-
drodynamic higher moments (“ghosts”) cannot be chosen
arbitrarily in the limit Ma → 0 [17], independent relaxation
of these moments may have favorable effects on the numerical
scheme’s stability and accuracy.

The multiple relaxation times (MRT) LB schemes follow
this line of thinking. While the relaxation of the off-diagonal
parts of the stress tensor are fixed by the choice of kinematic
viscosity, the MRT scheme assumes that the relaxation of
higher-order moments should not affect the dynamics of the
flow field (up to the Navier-Stokes level) and hence can be used
to construct more stable LB schemes. Based on a separation
of scales between fast and slowly varying moments a number
of MRT schemes were suggested for the choice of relaxation
of higher-order moments (beyond the stress tensor) [18–21].

The choice of relaxation parameters is crucial in order to
increase the operational range in terms of stability and requires
careful tuning. The regularized LB scheme (RLB) [22,23] was
proposed to eliminate the influence of higher-order moments
which may oscillate rapidly and cause numerical instabilities.
In RLB, the relaxation parameters of the ghosts are chosen
such as to annihilate the higher-order nonequilibrium moments
in the postcollision state. As any finite lattice representation
introduces discrete artifacts among the higher-order moment
tensors, the regularization operation ensures isotropy, albeit
in the confined subspace limited up to the stress tensor level.
Although MRT and RLB models were successful in stabilizing
the LB method, they still remain challenged by high Reynolds
numbers [24].

Recently, we have introduced a different class of LB models
without a need for tunable parameters or turbulent viscosity
[25] and which demonstrates a significant extension in the
operation range for simulations at high Reynolds numbers.
Promising results have been reported for both two and three
dimensions, as well as for complex boundaries and in presence
of turbulence. Much like ELBM, entropic considerations have
been employed to render the scheme stable without introducing
considerable computational overhead and by keeping the
simplicity and locality of the LBGK and MRT schemes. Below
we shall refer to this class of models as KBC models for brevity.

In the remainder of this paper we present the construction
of a family of KBC models for the standard D3Q27 lattice
and review the details of the entropic stabilization. The Kida
vortex flow and a randomly generated initial condition shall
be employed as turbulent benchmark flows and are studied in
detail for one of the realizations of KBC and the stability
domain of LBGK, RLB, and KBC variations is assessed
numerically.

The structure of the paper is as follows. In Sec. II, after
reviewing the necessary material about the equilibrium and the
moment representations for the standard lattice with b = 27
discrete velocities in three dimensions (D3Q27 lattice), we
describe the KBC family construction. Importantly, we present
a number of hydrodynamically equivalent KBC models (all
the models correspond to the Navier-Stokes equation with the
same kinematic (shear) viscosity) which nonetheless differ
kinetically, that is, they differ by the choice of the moment
representation and/or by the higher-order moments selected for
the entropic stabilization. In total, eight kinetically different
KBC models were considered. In Sec. IV, we first study a
benchmark turbulent flow (Kida vortex flow) to demonstrate
that all KBC models are unconditionally stable on coarse
grids and feature the second-order grid convergence for a wide
range of statistical quantities pertinent to turbulent flows. This
moment indifference of the KBC family is contrasted to some
other MRT models, particularly to the class of regularized
LB in which the stability can vary significantly, depending on
the choice of the moment representation. After demonstrating
the moment indifference of the KBC family, one particular
KBC model was used to analyze the one- and two-point
statistics of the turbulent Kida vortex flow. Statistical analysis
of the entropic stabilization is also provided. Finally, we report
preliminary results for decaying turbulence generated by a
random initial condition. Discussion in Sec. V concludes the
paper.

II. THE STANDARD LATTICE IN THREE DIMENSION

A. Equilibrium

In this section, we shall remind the standard lattice in
three dimensions and the corresponding equilibrium. While the
material presented in this section is of a review character, we
shall highlight some fundamental features of the equilibrium
which were not fully discussed so far in the literature.

The standard lattice in a dimension D is built as tensor (di-
rect) product of D copies of the fundamental one-dimensional
set of discrete velocities vα = α, where α = 0, ± 1:

v−1 = −1, v0 = 0, v1 = 1. (6)

The natural D-dimensional Cartesian reference frame gener-
ated by the tensor product of D copies of the fundamental set
(6) makes it convenient to enumerate the discrete velocities
accordingly. Considering the three-dimensional case D = 3
below, we write for any of the b = 27 discrete velocities,

vi = (vix,viy,viz), i = 1, . . . ,27; viα ∈ {−1,0,1}. (7)

The equilibrium on this standard D3Q27 product-lattice
maximizes the entropy (3) subject to fixed conservation laws
of density and momentum [12]. It is written most elegantly in
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the following product-form:

f
eq
i = ρWi�[B(ux)]vix [B(uy)]viy [B(uz)]

viz , (8)

where the weights Wi are

Wi = Wvix
Wviy

Wviz
(9)

and function � is universal for all the discrete velocities (it
does not depend on the discrete velocity index),

�(u) = A(ux)A(uy)A(uz), (10)

with

A(u) = 2 −
√

1 + 3u2. (11)

Furthermore, the function B(u) contributing to the formation
of the last term in (8) is written as

B(u) = 2u + √
1 + 3u2

1 − u
. (12)

Finally, the one-dimensional weights Wα in the right-hand side
of (9) are dictated by the speed of sound,

cs = 1√
3
, (13)

and are

W0 = 2/3, W−1 = 1/6, W1 = 1/6. (14)

Note that the Maxwellian in D dimensions is written as a
product with respect to an arbitrarily fixed Cartesian reference
frame, in accord with the familiar property of the shifted
Gaussian distribution,

e− (v−u)2

θ =
(

D∏
α=1

e− v2
α
θ

)⎛⎝ D∏
β=1

e− u2
β

θ

⎞⎠⎛⎝ D∏
γ=1

[
e

2uγ√
θ

] vγ√
θ

⎞⎠. (15)

It is easy to recognize the Maxwellian character of the
product-lattice equilibrium (8) by comparing it to (15). The
multiplication of the weights in (8) corresponds to the first
multiplier in (15), the function � corresponds to the second
multiplier, while the product of functions B reflects the
last multiplier in (15). However, the true Maxwellian is
isotropic, as also revealed by reading Eq. (15) from right to left;
the products collapse to a dependence on the kinetic energy in

the comoving frame alone, and the reference to the arbitrarily
fixed Cartesian coordinates disappears. This is not so with the
discrete velocities. It is imperative therefore to demonstrate
that the product-form (8) is manifestly isotropic to the order
of accuracy of the lattice Boltzmann model. This can be done
most elegantly in the following way: Instead of expanding each
population (8) into powers of the velocity components uα , let
us first expand the logarithm of f

eq
i (we consider a generic

case of D below):

ln f
eq
i = ln ρ + ln Wi +

D∑
α=1

ln A(uα) +
D∑

α=1

viα ln B(uα).

(16)

Let us denote [ϕ(u)]2 the operation of the second-order trun-
cation of the expansion of any function ϕ around u = 0 to get[

ln f
eq
i

]
2 = ln ρ + ln Wi − 3

2 (u · u) + 3(vi · u), (17)

where we have used the standard notation,

a · b =
D∑

α=1

aαbα, (18)

for the Cartesian scalar product of D-dimensional vectors.
Then, using the identity [f eq

i ]2 = [exp([ln f
eq
i ]2)]2, we get[

f
eq
i

]
2 = ρWi

[
1 + u · vi

c2
s

+ (u · vi)2 − c2
s (u · u)

2c4
s

]
. (19)

The second-order polynomial (19) generated by the equi-
librium (8) is manifestly isotropic, and with the definition
of the speed of sound cs = 1/

√
3 (13) it is identical to the

standard lattice Boltzmann equilibrium. Thus, both forms of
the equilibrium, (8) or (19), can be used on equal footing. In
the sequel, we use the exact entropic equilibrium (8).

B. Moment systems

The natural set of moments on the above D3Q27 velocity
lattice is defined as

ρMpqr =
27∑
i=1

fiv
p

ixv
q

iyv
r
iz, p,q,r ∈ {0,1,2}. (20)

In the basis spanned by the natural moments, populations can
be represented as

f(0,0,0) = ρ[1 − T + M022 + M202 + M220 − M222]

f(σ,0,0) = 1
6ρ(3σux + 2Nxz − Nyz + T − 3σQxyy − 3σQxzz + 3σM122 − 3M202 − 3M220 + 3M222)

f(0,λ,0) = 1
6ρ(3λuy − Nxz + 2Nyz + T − 3λQxxy − 3λQyzz + 3λM212 − 3M022 − 3M220 + 3M222)

f(0,0,δ) = 1
6ρ(3δuz − Nxz − Nyz + T − 3δQxxz − 3δQyyz + 3δM221 − 3M022 − 3M202 + 3M222)

f(σ,λ,0) = 1
4ρ(σλ�xy + λQxxy + σQxyy + M220 − σM122 − λM212 − σλM112 − M222)

f(σ,0,δ) = 1
4ρ(σδ�xz + δQxxz + σQxzz + M202 − σM122 − δM221 − σδM121 − M222)

f(0,λ,δ) = 1
4ρ(λδ�yz + δQyyz + λQyzz + M022 − λM212 − δM221 − λδM211 − M222)

f(σ,λ,δ) = 1
8ρ(σλδQxyz + σM122 + λM212 + δM221 + σλM112 + σδM121 + λδM211 + M222). (21)
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Here we depart form the conventional single index i and use a
more transparent enumeration for the discrete velocities, using
indices σ,λ,γ ∈ {−1,1}. Note that labeling of the velocities by
a triad (·, · ,·) is unambiguous as long as the first, the second,
and the third entries are always associated with the x, the y,
and the z coordinates, respectively, in the once-fixed Cartesian
frame.

We chose to rename some of the natural moments as a
reminder of their physical meaning:

T = M200 + M020 + M002 (22)

is the trace of the stress tensor at unit density,

Nxz = M200 − M002, (23)

Nyz = M020 − M002 (24)

are the normal stress differences at unit density, and

�xy = M110, (25)

�xz = M101, (26)

�yz = M011, (27)

are the off-diagonal components of the stress tensor at
unit density. The third-order moments lack a direct phys-
ical interpretation in the isothermal case but are denoted
as Qxzz = M102, Qxxy = M210, Qyyz = M021, Qxxz = M201,
Qyyz = M021, and Qxyz = M111.

Another popular basis is given by the central moments of
the form

ρM̃pqr =
27∑
i=1

fi(vix − ux)p(viy − uy)q(viz − uz)
r . (28)

Using the mapping from natural to central moments [see
Appendix, Eqs. (A1)–(A23)], which is linear in the non-
conserved moments, a similar moment representation of the
populations in the central moments basis then can be written
[(A24)–(A31)].

III. KBC FAMILY

With any of the two moment representations mentioned
above (as well as for any other moment basis), we shall
now review the main steps of the KBC model construction,
following [25]. Let us split the contribution to each population
into three parts,

fi = ki + si + hi. (29)

Here ki (= kinematic part) depends only on the locally
conserved fields. The s part si (= shear part) necessarily
includes the (deviatoric) stress tensor

D = � − 1

D
T I, (30)

where I is the unit tensor, and may also include further
nonconserved moments (see examples below). Finally, the h

part hi (= higher-order moments) is a linear combination of
the remaining higher-order moments not included in the s part.

TABLE I. Contribution of the locally conserved fields (ρ, u), of
the deviatoric stress (D), of the trace of the stress tensor (T ), and of
the third-order tensor ( Q) to each of the normalized population fi/ρ

(21) of the D3Q27 lattice. Moment groups in the natural basis are
listed for each discrete velocity direction.

ρ, u D T Q

(0,0,0) 1 0 −T 0
(σ,0,0) σux/2 (2Nxz − Nyz)/6 T/6 −σ (Qxyy + Qxzz)/2
(0,λ,0) λuy/2 (−Nxz + 2Nyz)/6 T/6 −λ(Qxxy + Qyzz)/2
(0,0,δ) δuz/2 (−Nxz − Nyz)/6 T/6 −δ(Qxxz + Qyyz)/2
(σ,λ,0) 0 σλ�xy/4 0 (λQxxy + σQxyy)/4
(σ,0,δ) 0 σδ�xz/4 0 (δQxxz + σQxzz)/4
(0,λ,δ) 0 λδ�yz/4 0 (δQyyz + λQyzz)/4
(σ,λ,δ) 0 0 0 σλδQxyz/8

With the representation (29), a different mirror state can be
sought in a one-parameter form,

f mirr
i = ki + [

2s
eq
i − si

] + [
(1 − γ )hi + γ h

eq
i

]
, (31)

where γ is a parameter which is not yet specified and the terms
s

eq
i and h

eq
i denote the s and h parts evaluated at equilibrium

(8). When (31) is used in (1), one arrives at nothing but a special
(not the most general) MRT model. For any γ , the resulting LB
model still recovers hydrodynamics with the same kinematic
viscosity ν (4). For γ = 2 we obtain the LBGK model while
γ = 1/β results in a generalized family of “regularized” LB
(RLB) models.

We shall now define several realizations of the KBC models
by specifying which moments are selected for the k, s, and
h parts of the populations (29). The k part includes the
locally conserved moments, ρ and u, and is the same for
all realizations. Any particular model is thus fully specified
by the moments retained in the s part (the h part obviously
lumps all the moments not included into the k and the s

parts). While including the deviatoric stress tensor D into the
s part is mandatory for recovering the Navier-Stokes equations
with the correct shear viscosity, the s part may also include
other moments provided the basic symmetry properties are
not violated. In particular, for the models based on the natural
moment system, we consider various combinations of the
deviatoric stress D, of the trace of the stress tensor T = tr(�),
and of the third-order moment Q to be included into the s part
(see Table I for a population-wise listing).

The kinetically different KBC models for the natural
moment representation considered below are as follows: The
model KBC-N1 (where N stands for the natural moments)
is characterized by the minimal choice of the s part which
includes only the deviatoric stress D. By including also the
trace of the stress tensor T we get the model KBC-N2. The
difference between KBC-N1 and KBC-N2 manifests through
a fluctuating bulk viscosity in KBC-N1 while it is fixed in the
KBC-N2 (see below). Similarly, we define the KBC-N3 model
(the s part includes the deviatoric stress D and the third-order
tensor Q) and, finally, the KBC-N4 model (the s part includes
D, T , and Q). Note that the kinematic k part is identical for
all the four models (see Table I) and the higher-order h part is
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TABLE II. Nomenclature key for the KBC models family. For
each model based on the natural moment representation, KBC-N1,
KBC-N2, KBC-N3, and KBC-N4, the moments constituting the s

part of the populations fi = ki + si + hi are indicated. Similarly, the
central moments of the s parts are indicated for the four models based
on the central moments, KBC-C1, KBC-C2, KBC-C3, and KBC-C4.

Model s Part

KBC-N1 D
KBC-N2 D, T

KBC-N3 D, Q
KBC-N4 D, T , Q
KNC-C1 D̃
KBC-C2 D̃, T̃

KBC-C3 D̃, Q̃
KBC-C4 D̃, T̃ , Q̃

trivially given as

hi = fi − ki − si . (32)

Similarly, we define four KBC variations, KBC-C1, KBC-
C2, KBC-C3, and KBC-C4, with respect to the central
moment basis. The building blocks are now functions of
the corresponding central moments and can be read off the
representations given in (A24)–(A31). The nomenclature for
all the models is summarized in Table II. Thus, we consider
in total eight different KBC models, all of which give the
same kinematic (shear) viscosity in the hydrodynamic limit
but differ in the choice of the s part and/or in the choice of
the moment representation. This extensive simulation plan is
crafted in order to test the indifference of KBC models to a
particular choice of the moment representation and/or to a
particular choice of the partition into the s and h pieces.

With the standard Chapman-Enskog analysis, the above
KBC models recover the density and the velocity equations in
the hydrodynamic limit at low Mach number as follows:

∂tρ = −∇ · (ρu), (33)

∂t u = −u · ∇u − 1

ρ
∇p + 1

ρ
∇·

×
[
νρ

(
∇u + ∇u† − 2

D
I∇ · u

)]
+ 2

Dρ
∇[ξρ∇ · u], (34)

with the pressure p given by the equation of state p = c2
s ρ.

For all the models, the kinematic (shear) viscosity ν is given
solely by the relaxation parameter β ∈ [0,1],

ν = c2
s

(
1

2β
− 1

2

)
. (35)

The bulk viscosity differs for different realizations and is as
follows:

ξ =
{
ν KBC-N2, N4, C2, C4
c2
s

(
1

γβ
− 1

2

)
KBC-N1, N3, C1, C3.

(36)

In other words, if the trace of the stress tensor T is included into
the s part of the populations, the bulk viscosity is the same as
the shear viscosity (the property familiar from the LBGK and
MRT models). However, if T is regarded as the higher-order
moment and is included in the h part, then the bulk viscosity
becomes dependent on γ . The main issue remains as to how
to choose the γ .

Following Ref. [25], the major change of perspective here
is that the stabilizer γ should not be considered as a free
parameter, and it should not be fixed by any ad hoc reasoning.
Rather, it has to be put under entropy control and computed
by maximizing the entropy in the postcollision state f ′. This
matches the physics of the problem at hand, since constrained
equilibria correspond to the maximum of the entropy (here the
constraint is that the s part remains fixed by the over-relaxation,
smirr
i = 2s

eq
i − si).

Specifically, let S(γ ) be the entropy of the postcollision
states appearing on the right-hand side of (1), with the mirror
state (31). Then we require that the stabilizer γ corresponds
to maximum of this function. Introducing deviations, �si =
si − s

eq
i and �hi = hi − h

eq
i , the condition for the critical point

reads:
b∑

i=1

�hi ln

[
1 + (1 − βγ )�hi − (2β − 1)�si

f
eq
i

]
= 0. (37)

Equation (37) suggests that among all nonequilibrium states
with the fixed mirror values smirr

i = 2s
eq
i − si , we pick the one

which maximizes the entropy. In contrast to MRT, the entropic
stabilizer γ is not tunable but is computed at each lattice site
in every time step from Eq. (37). Thus, the entropic stabilizer
self-adapts to a value given by the maximum entropy condition
(37). This means that the relaxation rate of the higher-order
moments included into the h part depends on space and time
according to the solution of (37) at each lattice node at every
time steps. In particular, this leads to a local (fluctuating) bulk
viscosity in the KBC models KBC-N1, KBC-N3, KBC-C1,
and KBC-C3.

In order to clarify the properties of the solution to Eq. (37),
let us introduce the entropic scalar product 〈X|Y 〉 in the b-
dimensional vector space,

〈X|Y 〉 =
b∑

i=1

XiYi

f
eq
i

, (38)

and expand in (37) to the first nonvanishing order in �si/f
eq
i

and �hi/f
eq
i to obtain

γ = 1

β
−

(
2 − 1

β

) 〈�s|�h〉
〈�h|�h〉 . (39)

The result (39) explains the mechanism of a possible failure of
the proposal γ ≈ 1 at β ≈ 1 (as in the regularized LB models):
Whenever vectors �s and �h are nonorthogonal (in the sense
of the entropic scalar product), the deviation of γ from γ = 1
may become very significant. Indeed, in (39), the correlation
between the shear and the higher-order parts ∼〈�s|�h〉 is not
a correction to γ = 1 but rather a contribution of same order
O(1).

We found that the estimate (39) was sufficient for stabilizing
all the simulations which renders the KBC an explicit and
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efficient method with only slightly increased computational
costs (∼20%) compared to an implementation with a fixed γ .
Thus, the result (39) is key for the practical implementation
of the KBC models as it defines the entropic stabilizer
through explicit and compact formula instead of solving (37)
numerically on each grid node at every time step.

The resulting collision operation is given here:

1 compute conserved quantities ρ,uα

2 evaluate equilibrium f
eq
i (ρ,uα)

3 compute s and seq (see Table I)
4 compute �si = si − s

eq
i

5 compute �hi = hi − h
eq
i = fi − f

eq
i − �si

6 evaluate γ from Eq. (39)
7 relax f ′

i = fi − β(2�si + γ�hi)

IV. RESULTS

A. Stability and accuracy

The Kida vortex flow is a well-studied benchmark flow
which evolves from a simple deterministic and symmetric
initial condition to a state which resembles a fully developed
turbulent flow, which features a corresponding energy cascade.
The initial conditions for the flow field are given by

ux(x,y,z) = U0 sin x(cos 3y cos z − cos y cos 3z)

uy(x,y,z) = U0 sin y(cos 3z cos x − cos z cos 3x)

uz(x,y,z) = U0 sin z(cos 3x cos y − cos x cos 3y), (40)

where x,y,z ∈ [0,2π ] and periodic boundary conditions are
imposed in all directions. The Reynolds number is defined as
Re = U0N/ν, where N is the domain size. Initial conditions
for the density (and pressure p = ρc2

s ) and higher-order
moments are obtained by solving the convection-diffusion
equation ∂ρ

∂t
+ ∇ · (ρu0) = D �ρ on the same grid before and

until steady state is reached in a similar process as described
by Ref. [27].

The Kida vortex flow has been analyzed extensively using
DNS [28–31]. The evolution of enstrophy shows a steep
increase in the early stage of the simulation and reaches a
maximum value before it decays. For the convergence study
we investigate data collected from time points around the peak
of enstrophy which indicates the existence of large gradients
which are often numerically challenging. A simulation was
considered stable if it run until the mean enstrophy,

� = 1
2 〈ω · ω〉, (41)

where vorticity

ω = ∇ × u, (42)

was sufficiently decayed (�/�0 < 5%). Here 〈. . . 〉 stands for
spatial averaging, and u′ is the fluctuating part of the flow
velocity(〈u〉 = 0 for Kida vortex),

u′ = u − 〈u〉. (43)

In order to assess the stability region, the domain size
N = 100 and initial velocity U0 = 0.05 were fixed and the
Reynolds number Re was increased in steps of 500. While

LBGK seized to yield sensible values at Re � 5000, ELBM
was always stable (tested up to Re = 107). Likewise, all the
eight KBC models were always stable, independently of the
moment basis or the choice of s. This outstanding stability
property of all the KBC models, independent of the choice of
the moment represenation and a particular choice of the s and
h partition (moment indifference) has to be contrasted with the
“regularized” LB (RLB) method. In the present nomenclature,
the eight corresponding RLB models are obtained by fixing γ

at the outset of the simulation to γ = 1/β. In our benchmark,
only the RLB counterpart of the two KBC models, the KBC-N1
and KBC-C1, demonstrated similar stability. All other six
RLB models, among them the standard RLB model [23] (the
counterpart of the KBC-N2), were less stable than the LBGK
model.

Computational overhead of KBC models compared to the
bare LBGK method was ∼2 times due to computation of
additional moments and estimation of stabilizer γ .

Accuracy of the KBC scheme is studied in detail using
Kida vortex flow at Re = 6000. The KBC-N4 is used as an
example in all further simulations and is compared to LBGK
simulation at N = 600 (run D) where the flow is considered to
be reasonably resolved as indicated by the Kolmogorov length
scale η = (ν3/ε)

1/4 ≈ 1.2 lattice units where

ε = 1

2
ν

〈(
∂u′

α

∂xβ

+ ∂u′
β

∂xα

)(
∂u′

α

∂xβ

+ ∂u′
β

∂xα

)〉
(44)

is the dissipation rate of turbulence kinetic energy. Resolutions
N = 100,200,400 are considered in the following (runs A, B,
and C, respectively). Convergence towards resolved LBGK
simulation is reported in Table III for various statistical
quantities. Unless stated otherwise, all quantities are given
in lattice units.

Figure 1 shows a comparison of the vortex structures for the
four simulations roughly at the point of maximum enstrophy.
The vorticity configuration is thus affected by the under-
representation of large gradients in the coarse resolutions (see
next section). Nevertheless, the large vortex structures are well
captured at all resolutions. The largest KBC simulation (run C)
is hardly distinguishable form the reference LBGK simulation
(run D).

B. One-point statistics

Mean enstrophy � and turbulence kinetic energy

k = 1
2 〈u′ · u′〉 (45)

are important global quantities characterizing the flow and its
history. Figures 2 and 3, respectively, show the evolution of
both quantities with nondimensional time t = tLB/(N/U0). It
is apparent that in the under-resolved KBC simulations N =
100,200 the enstrophy peak values are not well represented.
However, for coarse resolutions this is expected. The kinetic
energy, on the other hand, decays quite similarly for all
simulations. Table III reports the numbers at three selected
time instances. During simulation, gradients are evaluated
using second-order finite differences, which are solely used
for reporting the enstrophy evolution in Fig. 2. All quantities
based on gradients in Table III and in the remaining text and
figures, however, are computed with spectral differentiation
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TABLE III. Comparison of LBGK and KBC-N4 for statistical quantities in Kida vortex flow at Re = U0N

ν
= 6000 and t = N

U0
=

0.25,0.5,0.75. Resolutions N = 100,200,400,600 for KBC runs A, B, C, and resolved LBGK run D, respectively. Convergence rate p

of error with respect to LBGK solution estimated from polynomial fit (∗ indicates exclusion of lowest resolution). All gradient-based
quantities are computed by spectral differentiation methods [26]. Turbulence characteristics: length scale l0 = k3/2/ε, velocity scale u0 = k1/2,
time scale τ0 = l0/u0, and Reynolds number Re0 = l0u0/ν. Taylor characteristics: Taylor micro scale λ = (15νu′ 2/ε)1/2, velocity scale
uλ = u′ = (2k/3)1/2 (rms turbulence intensity), time scale τλ = λ/uλ, and Reynolds number Reλ = λuλ/ν. Kolmogorov characteristics: length
scale η = (ν3/ε)1/4, velocity scale uη = (νε)1/4, and time scale τη = (ν/ε)1/2.

t = 0.25 t = 0.5 t = 0.75

A B C D p A B C D p A B C D p

k × 104 8.528 8.644 8.663 8.657 2.25 6.237 6.385 6.411 6.402 2.06 3.808 3.947 3.965 3.954 1.87
� × N 2 1.479 1.736 1.784 1.784 7.00 1.954 2.796 3.174 3.216 2.46 1.581 2.137 2.262 2.301 2.12
ε × 105N 2.473 2.893 2.974 2.974 5.17 3.333 4.665 5.290 5.360 2.43 2.730 3.566 3.771 3.835 2.06
S3 × 102 10.66 7.427 9.076 10.34 1.21* 28.88 39.06 47.82 48.98 2.05 28.57 33.96 39.73 39.99 2.72
S4 5.082 6.200 6.176 6.149 2.64 4.019 5.237 6.067 6.160 2.26 4.149 4.326 4.842 4.843 4.81
S5 2.863 2.194 2.475 2.892 0.744* 3.216 6.130 9.062 9.696 1.68 4.320 4.347 6.081 5.980 2.02
S6 52.63 84.47 81.22 79.34 1.91 34.77 67.61 97.02 100.1 2.20 39.48 36.43 51.77 51.56 2.95
l0 × 101/N 10.07 8.784 8.573 8.564 3.65 4.674 3.459 3.069 3.022 2.57 2.722 2.199 2.093 2.050 1.98
u0 × 102 2.920 2.940 2.943 2.942 2.26 2.497 2.527 2.532 2.530 2.06 1.951 1.987 1.991 1.988 1.88
τ0/N 34.49 29.88 29.13 29.11 3.94 18.71 13.69 12.12 11.94 2.63 13.95 11.07 10.51 10.31 2.08
Re0 3530 3099 3028 3024 3.43 1401 1049 932.4 917.5 2.51 637.4 524.2 500.2 489.2 1.87
λ × 102/N 5.361 4.990 4.927 4.925 3.91 3.949 3.378 3.178 3.155 2.55 3.409 3.037 2.960 2.931 2.03
uλ × 102 2.384 2.400 2.403 2.402 2.26 2.039 2.063 2.067 2.066 2.06 1.593 1.622 1.626 1.624 1.88
τλ/N 2.248 2.079 2.050 2.050 5.27 1.937 1.637 1.537 1.527 2.67 2.140 1.872 1.821 1.805 2.23
Reλ 153.4 143.7 142.1 142.0 3.40 96.63 83.62 78.84 78.21 2.43 65.19 59.12 57.75 57.11 1.83
η × 103/N 2.200 2.115 2.100 2.100 5.26 2.041 1.877 1.819 1.813 2.63 2.146 2.007 1.979 1.971 2.20
uη × 103 3.789 3.940 3.968 3.968 5.22 4.082 4.440 4.582 4.597 2.55 3.884 4.152 4.210 4.228 2.14
τη × 101/N 5.805 5.367 5.293 5.293 5.27 5.000 4.227 3.969 3.943 2.67 5.525 4.834 4.701 4.662 2.23

FIG. 1. (Color online) Isosurface of vorticity component ωz = 0
at time t = 0.5 colored with velocity magnitude rendered at z = 0,
x,y ∈ [0,π ] plane. Runs A (N = 100), B (N = 200), C (N = 400),
and D (N = 600, reference solution).

methods [26], unless stated otherwise. This also explains the
discrepancies in enstrophy between Fig. 2 and Table III for the
lowest resolution N = 100.

While the energy seems to be dissipated similarly with time
it is important to study the kinetic energy k and dissipation rate
ε thereof across flow scales in order to decide whether low-
order statistics of turbulent flows yield sensible values in coarse
resolution simulations despite the under-representation of high
gradients. The instrument at hand is the spectral representation
of the kinetic energy distribution E(κ), where κ = |κ | is the
modulus of the wave number vector. Figure 4 shows the

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ω
N

2

FIG. 2. (Color online) Mean enstrophy evolution with time for
simulations A (− · ·), B (−·), C (−−), and D (−). Gradients evaluated
with second order of accuracy.
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FIG. 3. (Color online) Kinetic energy evolution with time for
simulations A (− · ·), B (−·), C (−−), and D (−).

nondimensional energy density distribution normalized with
kinetic energy,

k =
∫ ∞

0
E(κ) dκ. (46)

According to Refs. [32,33], the energy scales as E ∼ κ−5/3

in the inertial subrange. The studied Kida flow here does not
exhibit large-enough Reynolds numbers to see an extended
inertial range. However, it is apparent that the energy scales
similarly across resolutions and a sharp cutoff is visible at the
smallest scales. This indicates that the KBC model is capable
of producing the expected energy distribution throughout the
scales without an explicit turbulence model. A case for higher
Reynolds number shall be examined below.

The cumulative distribution function of the energy-
dissipation rate density

D(κ) = 2νκ2E(κ) (47)

illustrates the scales of eddies responsible for the dissipation
process, see Fig. 5. The under-resolved simulations employ
expectedly larger eddies for the bulk of the dissipation [see also
Table III where the energy dissipation rate ε = ∫ ∞

0 D(κ) dκ

is reported].

10−1 100 101

κη

10−20
10−18
10−16
10−14
10−12
10−10
10−8
10−6
10−4
10−2
100
102
104
106

E
(κ

)/
(η

u
2 η
)

slope −5/3

FIG. 4. (Color online) Kinetic energy density spectrum at t =
0.5 for simulations A (− · ·), B (−·), C (−−), and D (−). The dotted
line with slope −5/3 shows the Kolmogorov scaling.
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κη
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FIG. 5. (Color online) Cumulative distribution function of the
energy-dissipation rate density D(κ) at time t = 0.5 for simulations
A (− · ·), B (−·), C (−−), and D (−).

The longitudinal skewness factor

Sn
11 = (−1)n

〈(
∂u′

x

∂x

)n〉〈(
∂u′

x

∂x

)2〉−n/2

(48)

is another global statistical quantity in real space which
we report in Table III. In agreement with Fig. 2 we find
that the outcome of the lowest resolution N = 100 is rather
inconsistent with the trend observed in the other simulations;
however, it agrees well with the resolved case. The lower
convergence rate for the odd-order skewness factors may be
caused by the inherent lack of isotropy in the third-order
moments. However, further studies are needed to draw a
concise conclusion.

The remainder of Table III is a compilation of the
turbulence, Taylor, and Kolmogorov flow scales. Here and
with the vast majority of the reported quantities we observe a
second-order grid convergence rate, as expected in the context
of LB simulations.

C. Two-point statistics

The longitudinal structure function of order n defined as

Bn
11 = (−1)n

〈(
∂u′

x

∂x

)n〉〈(
∂u′

x

∂x

)2〉−n/2

(49)

exhibits linear scaling on logarithmic plots [32,33]. In partic-
ular, the second-order structure function scales as B2

11 ∼ r2/3.
Figure 6 depicts the results with the theoretical scaling. Due
to the relatively low Reynolds number we may not identify an
extended inertial range but we note that the simulations agree
well with the reference over the entire range of r .

Another real-space two-point statistical quantity that can be
used to assess different numerical techniques is the correlation
of the velocity field. Here the longitudinal and transverse
correlation functions are defined as

ρn
11(r) = 〈u′

x(x,y,z)u′
x(x + r,y,z)〉

〈u′
x(x,y,z)u′

x(x,y,z)〉 , (50)

ρn
22(r) = 〈u′

y(x,y,z)u′
y(x + r,y,z)〉

〈u′
y(x,y,z)u′

y(x,y,z)〉 . (51)
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FIG. 6. (Color online) Second order longitudinal structure func-
tion at t = 0.5 for simulations A (− · ·), B (−·), C (−−), and D (−).
The dotted line indicates the theoretical scaling.

A comparison at time t = 0.5 is given in Fig. 7. All simulations
with N � 200 show excellent agreement with the reference
solution. At the maximum distance r = 0.5 the velocity
components are still correlated, which is associated with the
low Reynolds number (see Fig. 12 for comparison).

D. Stabilizer γ and the LBGK limit

The importance of the self-adjusting stabilizer γ becomes
clear when considering its evolution in time and its distribution
in space. In fact, the evolution of γ is closely correlated
with the flow field (see Fig. 8). In the regions of higher
turbulence intensity it is distinctly different in the mean and
shows larger fluctuations. Figure 8 depicts the spatial variation
of γ for the simulations A, B, and C. For the run A (the
coarsest resolution) the variations of the stabilizer are large
but diminish subsequently when resolution is increased. Note
that for N = 400 a large part of the domain governed by γ ∼ 2
(green areas). The distribution of γ in space reveals the close
relation of γ to the flow, as can be seen by the superimposed
vorticity magnitude contours in Fig. 8.

In general, we observe that when the spatial resolution is
increased the mean of stabilizer tends to the value γ = 2 and
shows significantly smaller fluctuations. For the discussion in

0.0 0.1 0.2 0.3 0.4 0.5

r/N
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0.8

1.0

ρ11

ρ22

FIG. 7. (Color online) Longitudinal and transverse velocity cor-
relation functions at t = 0.5 for simulations A (− · ·), B (−·), C (−−),
and D (−).

this and the next sections, we executed a control run (run E
hereafter) on the grid N = 600 with the selected KBC-N4
model, that is, with the same resolution as for the LBGK
simulation of the run D. Figure 9 shows the mean stabilizer
〈γ 〉 at N = 100 and N = 600 (runs A and E, respectively),
together with its standard deviation. It is apparent that 〈γ 〉 is
far form being constant in the low-resolution case, whereas
〈γ 〉 = 2 and fluctuations around the mean value are tight (but
not negligible) for the highest resolution (run E). This gives
yet another indication of convergence towards the LBGK
model which has a fixed value of γ = 2. It is remarkable
that the LBGK limit γ = 2 is found for all the eight KBC
models in this and other three-dimensional simulations (this
is at variance with the two-dimensional case, see Ref. [34]).
While we defer analytical proof of this statement based on
Eq. (39) to a separate study, it is important to observe that
the KBC models automatically tend to the LBGK limit once
the resolution is increased. This feature (achieving the LBGK
limit) of the KBC models is similar to the known property of
the standard entropic LB (ELBM) and is different from any
MRT model with a priori fixed relaxation times.

E. Convergence to the Navier-Stokes equation at small scales

In the previous sections convergence of KBC models
towards LBGK was demonstrated through various low-order
statistical quantities, as well as by the analysis of the stabilizer.
Table IV shows the relative difference of selected statistical
quantities between the two reasonably resolved simulations
on the grid of same size N = 600, run D (LBGK) and run
E (KBC-N4). The majority of the quantities are within a
margin of 0.5% throughout the range of time (around the peak
turbulence intensity). This shows that the two models produce
almost identical results at sufficiently large resolutions.

A slightly larger difference (∼1%) is reported for the mean
enstrophy � and the dissipation rate ε which are directly
dependent on the gradients in the system. The origin of these
differences may be explained by considering compliance with
the constraint of incompressibility, ∇ · u = 0. As the lattice
Boltzmann method is weakly compressible, i.e., the pressure
field is imposed by equation of state and not by solving the
pressure-Poisson equation, this is of general interest regarding
the quality of a simulation. Figure 10 shows the root mean
square of the divergence of the velocity for the runs D and E.
It is apparent that the LBGK model leads to a slightly larger
compressibility as compared to the KBC on the grid of same
size. This can be attributed to the fluctuations of the stabilizer
γ in the KBC model which still persist even when the mean has
reached the LBGK value 〈γ 〉 = 2 (see Fig. 9). Note that the
mean of the divergence, 〈∇ · u〉, vanishes for all the models.
It is also noted that KBC models which allow for a fluctuating
bulk viscosity are even less compressible than both LBGK and
the KBC models with the fixed bulk viscosity, especially for
low resolution.

While the energy cascade and the evolution of the low-order
statistics show the trends which one would expect from a
realization of the incompressible flow, it is still of interest
to quantify the recovery of the Navier-Stokes equations at
small scales. To that end, let us remind that the incompress-
ible Navier-Stokes equation implies the following balance
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FIG. 8. (Color online) Snapshot of the stabilizer γ (color field) with superimposed contours of vorticity magnitude (dashed curves) for
simulations A, B, and C on the plane z = 1.068 and x,y ∈ [0,π ] (only one quarter of the domain is shown due to symmetry) at t = 0.25.

equations for the averaged momentum, vorticity, energy, and
enstrophy which yield for statistically homogeneous flows
[35,36],

∂t 〈u〉 = 0, (52)

∂t 〈ω〉 = 0, (53)

∂tk = −2ν�, (54)

∂t� = 〈ω · s · ω〉 − 2νP, (55)

where

s = 1
2 (∇u + ∇u†), (56)

is the rate-of-strain tensor, and P is the palinstrophy,

P = 1
2 〈∇ω : ∇ω〉. (57)

While the global conservation of average momentum (52)
and vorticity (53) are satisfied up to machine precision for
all times and all resolutions considered above, the balance of
various terms in the energy (54) and enstrophy (55) equations
is directly probing the recovery of the Navier-Stokes equation

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t
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FIG. 9. (Color online) Evolution of the mean entropic stabilizer
γ (symbols) and its standard deviation (error bars) with time for
simulation A (open symbols) and E (full symbols).

at small scales by the KBC model. To that end, we recast
the balance equations (54) and (55) in terms of the effective
viscosity,

νeff,k = −∂tk

2�
, (58)

νeff,� = 〈ω · s · ω〉 − ∂t�

2P
. (59)

In the simulation, the Navier-Stokes equation will be verified
at small scales if the ratio νeff/ν ≈ 1. Thus, evaluation of
effective viscosities (58) and (59) is an important check of
the accuracy, which is also used in the standard CFD methods.

Equations (52), (53), (58), and (59) are evaluated for simu-
lations A, B, C, and E where the time and space derivatives are
computed with fourth-order accurate central differences and
spectral differentiation, respectively. The effective viscosity
ratio based on the energy balance (58) is reported in Table
V. By increasing the resolution the values are approaching
νeff,k/ν ≈ 1. It is apparent that even for the coarsest run A
the additional dissipation is rather small, which is consistent
with the evolution of turbulence kinetic energy k shown in
Fig. 3. Note that at the highest resolution, the effective viscosity
fluctuates around the target value ν, with lower values (that is,
with a higher effective Reynolds number). The second effective
viscosity νeff,�, reported in Table VI, is considerably larger for

TABLE IV. Relative difference in percentage of statistical quan-
tities in Kida vortex flow at Re = U0N

ν
= 6000 for times t = N

U0
=

0.25,0.5,0.75,1.0 and resolution N = 600 for LBGK (run D) and
KBC (run E).

Time 0.25 0.5 0.75 1.0

k 0.09672 0.1957 0.1581 0.5773
u′ 0.04835 0.09782 0.07901 0.2891
� 0.2747 0.4154 1.009 0.9649
ε 0.2663 0.4166 1.006 0.9674
λ 0.08461 0.1100 0.4206 0.1967
Reλ 0.0363 0.01232 0.342 0.09292
η 0.06647 0.1039 0.2499 0.2433
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FIG. 10. (Color online) Mean (symbols) and rms fluctuations
(error bars) of the compressibility ∇ · u for runs D (LBGK, open
symbols) and E (KBC-N4, full symbols) with time. Gradients
evaluated with second order of accuracy.

simulations A and B, which is expected from comparison to
the mean enstrophy dynamics shown in Fig. 2. However, for
larger resolutions the values are close to the nominal viscosity.

Thus, we conclude that the KBC scheme recovers well
the Navier-Stokes equations for reasonable resolutions while
introducing only small additional dissipation at coarse grid
simulations. We also note that we have not found a consistency
check as above done on other available LB models in the
literature.

F. Large Reynolds numbers

The second numerical example considered in this paper
is the simulation of a highly turbulent flow starting from a
random initial condition and decaying with time. The periodic
and cubic domain with box length N = 400 was initialized
with a flow field generated from a prescribed narrow-banded
initial energy spectrum peaked at grid wave number κ0N

2π
≈ 8,

E0 = 400

(
2

3

)1/4(
2νu′

0
3
/π

)1/2
b2κ4 exp [−bκ2],

(60)

b = 20000

(
2

3

)1/2

ν/u′
0,

where ν = 8.164970 × 10−5 and u′
0 = 0.01. The initial values

of the density (and pressure) and the higher-order moments
were generated with the same procedure as described earlier
for the Kida flow.

The main objective is to test the KBC scheme for an
under-resolved simulation (Kolmogorov scale η ≈ 10 lattice

TABLE V. Effective viscosity ratio νeff,k/ν for simulations A, B,
C, and E at different time instances.

Time 0.25 0.5 0.75 1.0

Run A 1.5971 1.5210 1.5640 1.4698
Run B 1.1173 1.1507 1.1356 1.0595
Run C 1.0303 1.0311 1.0030 0.9302
Run E 0.9875 1.0039 0.9976 0.9005

TABLE VI. Effective viscosity ratio νeff,�/ν for simulations A,
B, C, and E at different time instances.

Time 0.25 0.5 0.75 1.0

Run A 2.2622 2.2577 2.0950 1.8545
Run B 1.2603 1.4505 1.4042 1.3943
Run C 1.0575 1.1120 1.0912 1.0776
Run E 1.0282 1.0474 1.0337 1.0383

units) at large Reynolds numbers (Reλ ≈ 600). In particular,
we ask whether the scheme is stable for a random and
highly turbulent flow in absence of a deterministic and highly
symmetric initial condition, whether low-order statistics are
well represented and physical dissipation (i.e., scaling laws)
is modeled correctly. By means of this simulation we examine
the general question of the performance for large Reynolds
numbers in an under-resolved simulation from yet another
point of view. While a resolved simulation was not attempted,
we compare our results to the classical scaling laws.

Figure 11 shows the turbulence kinetic energy spectrum
at t = tLB/(N/u′

0) = 0.075. The inertial range is extended
and the scaling is more apparent than in the less turbulent
simulations above. The sharp cutoff at the smallest scales is still
maintained despite the coarse resolution. As before, numerical
stability is naturally guaranteed to very high Reynolds num-
bers. While the initial spectrum is narrow and steep, it flattens
during the course of energy decay and exhibits the Kolmogorov
scaling in the inertial subrange roughly at the peak of mean
enstrophy. Figure 12 shows the velocity correlations where the
contributions to the correlations are vanishing for r/N > 0.2
at t = 0.075. Hence, the velocity field is largely uncorrelated
as one would expect from isotropic homogeneous turbulent
flows. While these results are far from a comprehensive study,
they contribute to the overall assessment that the KBC scheme
might perform well even in the case of severe under-resolution.
A more comprehensive investigation shall be conducted in a
further study.
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10−3

10−2

10−1

100

101
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(κ
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(η

u
2 η
)
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FIG. 11. Turbulence kinetic energy spectrum at Reλ = 564, t =
0.075 (solid) and initial spectrum at Reλ = 2000 (dashed). The dotted
line indicates the theoretical scaling.
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FIG. 12. Longitudinal and transversal velocity correlation func-
tions at Reλ = 564, t = 0.075 (solid) and initial values at Reλ = 2000
(dashed).

V. CONCLUSIONS

We presented the three-dimensional realizations of the KBC
class of lattice Boltzmann models for the D3Q27 lattice. We
reviewed the details of the entropic stabilization and described
eight variations of the KBC scheme. Stability and accuracy
was studied in detail for homogeneous isotropic turbulence. A
detailed comparison with LBGK was carried out at various grid
resolutions. Second-order rate of convergence was numerically
confirmed in the vast majority of the statistical quantities of
interest. It must be stressed that the entropic KBC models
were found stable (in contrast to LBGK and RLB) for all

the considered cases here, despite under-resolution and high
Reynolds numbers. This demonstrates that the KBC approach
is moment indifferent, unlike other versions of MRT models.

The KBC models were shown to capture the expected
scaling law for energy spectra in the case of high Reynolds
numbers. Low-order statistics such as averages of kinetic
energy, enstrophy, and rate of dissipation as well as the spectral
densities for energy and rate of dissipation agree well with
resolved simulation despite the under-resolution.

In general, we showed that by keeping the kinematic (shear)
viscosity coefficient constant the presented method is stable
numerically and produces accurate results in the presence
of under-resolution. These findings and the parameter-free
and explicit nature of KBC as well as the lack of explicit
turbulence modeling renders the scheme a promising candidate
for applications in both research and engineering contexts
where high Reynolds numbers and computational cost are of
importance.

It has been demonstrated in Ref. [25] that also for three-
dimensional flows in the presence of complex walls, low-order
statistics can be captured well using KBC. In a further
publication we will address the issue of boundary conditions
for KBC models in both two and three dimensions.
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APPENDIX: CENTRAL MOMENTS

The mapping between natural and central moments is linear in the nonconserved moments and given by the following relations:

�̃xy = �xy − uxuy, (A1)

�̃xz = �xz − uxuz, (A2)

�̃yz = �yz − uyuz, (A3)

Ñxz = Nxz − u2
x + u2

z, (A4)

Ñyz = Nyz − u2
y + u2

z, (A5)

T̃ = T − (
u2

x + u2
y + u2

z

)
, (A6)

Q̃xyz = Qxyz − ux�̃yz − uy�̃xz − uz�̃xy − uxuyuz, (A7)

Q̃xyy = Qxyy − 1
3

[
6uy�̃xy + ux

(
3u2

y + 2Ñyz − Ñxz + T̃
)]

, (A8)

Q̃xzz = Qxzz − 1
3

[
6uz�̃xz + ux

(
3u2

z − Ñxz − Ñyz + T̃
)]

, (A9)

Q̃xxy = Qxxy − 1
3

[
6ux�̃xy + uy

(
3u2

x + 2Ñxz − Ñyz + T̃
)]

, (A10)

Q̃yzz = Qyzz − 1
3

[
6uz�̃yz + uy

(
3u2

z − Ñxz − Ñyz + T̃
)]

, (A11)

Q̃xxz = Qxxz − 1
3

[
6ux�̃xz + uz

(
3u2

x + 2Ñxz − Ñyz + T̃
)]

, (A12)

Q̃yyz = Qyyz − 1
3

[
6uy�̃yz + uz

(
3u2

y + 2Ñyz − Ñxz + T̃
)]

, (A13)
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M̃022 = M022 − [
u2

yu
2
z + 4uyuz�̃yz + (

u2
y + u2

z

)
T̃ /3 − (

u2
y + u2

z

)
Ñxz/3 + ( − u2

y + 2u2
z

)
Ñyz/3 + 2uyQ̃yzz + 2uzQ̃yyz

]
,

(A14)

M̃202 = M202 − [
u2

xu
2
z + 4uxuz�̃xz + (

u2
x + u2

z

)
T̃ /3 + ( − u2

x + 2u2
z

)
Ñxz/3 − (

u2
x + u2

z

)
Ñyz/3 + 2uxQ̃xzz + 2uzQ̃xxz

]
,

(A15)

M̃220 = M220 − [
u2

xu
2
y + 4uxuy�̃xy + (

u2
x + u2

y

)
T̃ /3 + ( − u2

x + 2u2
y

)
Ñxz/3 + (

2u2
x − u2

y

)
Ñyz/3 + 2uxQ̃xyy + 2uyQ̃xxy

]
(A16)

M̃211 = M211 − (
u2

xuyuz + 2uxuz�̃xy + 2uxuy�̃xz + u2
x�̃yz + uyuzT̃ /3 + 2uyuzÑxz/3

− uyuzÑyz/3 + 2uxQ̃xyz + uzQ̃xxy + uyQ̃xxz

)
, (A17)

M̃121 = M121 − (
uxu

2
yuz + 2uyuz�̃xy + u2

y�̃xz + 2uxuy�̃yz + uxuzT̃ /3 − uxuzÑxz/3 + 2uxuzÑyz/3

+ 2uyQ̃xyz + uzQ̃xyy + uxQ̃yyz

)
, (A18)

M̃112 = M112 − (
uxuyu

2
z + u2

z�̃xy + 2uyuz�̃xz + 2uxuz�̃yz + uxuyT̃ /3 − uxuyÑxz/3

− uxuyÑyz/3 + 2uzQ̃xyz + uyQ̃xzz + uxQ̃yzz

)
, (A19)

M̃122 = M122 − [
uxu

2
yu

2
z + 2uyu

2
z�̃xy + 2u2

yuz�̃xz + 4uxuyuz�̃yz + (
uxu

2
y + uxu

2
z

)
T̃ /3

+ ( − uxu
2
y − uxu

2
z

)
Ñxz/3 + ( − uxu

2
y + 2uxu

2
z

)
Ñyz/3 + 4uyuzQ̃xyz + u2

zQ̃xyy + u2
yQ̃xzz

+ 2uxuyQ̃yzz + 2uxuzQ̃yyz + 2uyM̃112 + 2uzM̃121 + uxM̃022
]
, (A20)

M̃212 = M212 − [
u2

xuyu
2
z + 2uxu

2
z�̃xy + 4uxuyuz�̃xz + 2u2

xuz�̃yz + (
u2

xuy + uyu
2
z

)
T̃ /3

+ ( − u2
xuy + 2uyu

2
z

)
Ñxz/3 + ( − u2

xuy − uyu
2
z

)
Ñyz/3 + 4uxuzQ̃xyz + 2uxuyQ̃xzz + u2

zQ̃xxy

+u2
xQ̃yzz + 2uyuzQ̃xxz + 2uzM̃211 + 2uxM̃112 + uyM̃202

)
(A21)

M̃221 = M221 − (
u2

xu
2
yuz + 4uxuyuz�̃xy + 2uxu

2
y�̃xz + 2u2

xuy�̃yz + (
u2

xuz + u2
yuz

)
T̃ /3

+ ( − u2
xuz + 2u2

yuz

)
Ñxz/3 + (

2u2
xuz − u2

yuz

)
Ñyz/3 + 4uxuyQ̃xyz + 2uxuzQ̃xyy

+ 2uyuzQ̃xxy + u2
yQ̃xxz + u2

xQ̃yyz + 2uyM̃211 + 2uxM̃121 + uzM̃220
]
, (A22)

M̃222 = M222 − [
u2

xu
2
yu

2
z + 4uxuyu

2
z�̃xy + 4uxu

2
yuz�̃xz + 4u2

xuyuz�̃yz + (
u2

xu
2
y + u2

xu
2
z + u2

yu
2
z

)
T̃ /3

+ ( − u2
xu

2
y − u2

xu
2
z + 2u2

yu
2
z

)
Ñxz/3 + ( − u2

xu
2
y + 2u2

xu
2
z − u2

yu
2
z

)
Ñyz/3 + 8uxuyuzQ̃xyz + 2uxu

2
zQ̃xyy + 2uxu

2
yQ̃xzz

+ 2uyu
2
zQ̃xxy + 2u2

xuyQ̃yzz + 2u2
yuzQ̃xxz + 2u2

xuzQ̃yyz + u2
xM̃022 + u2

yM̃202 + u2
zM̃220 + 4uyuzM̃211

+ 4uxuzM̃121 + 4uxuyM̃112 + 2uxM̃122 + 2uyM̃212 + 2uzM̃221
]
. (A23)

Substituting Eqs. (A1)–(A23) into Eq. (21), one arrives at the moment representation in the central basis:

f(0,0,0) = ρ
{ − (

u2
x − 1

)(
u2

y − 1
)(

u2
z − 1

) − 4uxuy

(
u2

z − 1
)
�̃xy − 4uxuz

(
u2

y − 1
)
�̃xz − 4uyuz

(
u2

x − 1
)
�̃yz

+ [
u2

x

(
u2

y + u2
z − 2

) + u2
z

(
1 − 2u2

y

) + u2
y

]
Ñxz/3 + [

u2
y

(
u2

x + u2
z − 2

) + u2
z

(
1 − 2u2

x

) + u2
x

]
Ñyz/3

− [
u2

xu
2
y + u2

xu
2
z + u2

yu
2
z − 2

(
u2

x + u2
y + u2

z

) + 3
]
T̃ /3 − 8uxuyuzQ̃xyz − 2ux

(
u2

z − 1
)
Q̃xyy − 2ux

(
u2

y − 1
)
Q̃xzz

− 2uy

(
u2

z − 1
)
Q̃xxy − 2uy

(
u2

x − 1
)
Q̃yzz − 2uz

(
u2

y − 1
)
Q̃xxz − 2uz

(
u2

x − 1
)
Q̃yyz + (

1 − u2
x

)
M̃022 + (

1 − u2
y

)
M̃202

+ (
1 − u2

z

)
M̃220 − 4uyuzM̃211 − 4uxuzM̃121 − 4uxuyM̃112 − 2uxM̃122 − 2uyM̃212 − 2uzM̃221 − M̃222

}
, (A24)

f(σ,0,0) = 1
6ρ

(
3ux

(
u2

y − 1
)(

u2
z − 1

)
(σ + ux) + 6uy

(
u2

z − 1
)
(σ + 2ux)�̃xy + 6uz

(
u2

y − 1
)
(σ + 2ux)�̃xz

+ 12uxuyuz(σ + ux)�̃yz − [
σux

(
u2

y + u2
z − 2

) + u2
x

(
u2

y + u2
z − 2

) − 2
(
u2

y − 1
)(

u2
z − 1

)]
Ñxz

+{
u2

z

[
2ux(σ + ux) − u2

y

] − ux

(
u2

y + 1
)
(σ + ux) + u2

y + u2
z − 1

}
Ñyz + {

u2
z

[
ux(σ + ux) + u2

y

] + ux

(
u2

y − 2
)
(σ+ux)

−u2
y − u2

z + 1
}
T̃ + 12uyuz(σ + 2ux)Q̃xyz + 3

(
u2

z − 1
)
(σ + 2ux)Q̃xyy + 3

(
u2

y − 1
)
(σ + 2ux)Q̃xzz

+ 6uy

(
u2

z − 1
)
Q̃xxy + 6uxuy(σ + ux)Q̃yzz + 6uz

(
u2

y − 1
)
Q̃xxz + 6uxuz(σ + ux)Q̃yyz + 3ux(σ + ux)M̃022
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BÖSCH, CHIKATAMARLA, AND KARLIN PHYSICAL REVIEW E 92, 043309 (2015)

+ 3
(
u2

y − 1
)
M̃202 + 3

(
u2

z − 1
)
M̃220 + 12uyuzM̃211 + 6uz(σ + 2ux)M̃121 + 6uy(σ + 2ux)M̃112

+3
(
σ + 2ux

)
M̃122 + 6uyM̃212 + 6uzM̃221 + 3M̃222

)
, (A25)

f(0,λ,0) = 1
6ρ

(
3uy

(
u2

x − 1
)(

u2
z − 1

)
(λ + uy) + 6ux

(
u2

z −1
)
(λ + 2uy)�̃xy + 12uxuyuz(λ + uy)�̃xz + 6uz

(
u2

x −1
)
(λ + 2uy)�̃yz

+ ( − u2
x

[
uy(λ + uy) + u2

z − 1
] + uy

(
2u2

z − 1
)
(λ + uy) + u2

z − 1
}
Ñxz + { − u2

x

[
uy(λ + uy) − 2u2

z + 2
]

−uy

(
u2

z − 2
)
(λ + uy) − 2u2

z + 2
}
Ñyz + {

u2
x

[
uy(λ + uy) + u2

z − 1
] + uy

(
u2

z − 2
)
(λ + uy) − u2

z + 1
}
T̃

+ 12uxuz(λ+2uy)Q̃xyz+6ux

(
u2

z − 1
)
Q̃xyy+6uxuy(λ+uy)Q̃xzz+3

(
u2

z − 1
)
(λ+2uy)Q̃xxy+3

(
u2

x − 1
)
(λ + 2uy)Q̃yzz

+ 6uyuz(λ + uy)Q̃xxz + 6uz

(
u2

x − 1
)
Q̃yyz + 3

(
u2

x − 1
)
M̃022 + 3uy(λ + uy)M̃202 + 3

(
u2

z − 1
)
M̃220

+ 6uz(λ + 2uy)M̃211 + 12uxuzM̃121 + 6ux(λ + 2uy)M̃112 + 6uxM̃122 + 3
(
λ + 2uy

)
M̃212 + 6uzM̃221 + 3M̃222

)
,

(A26)

f(0,0,δ) = 1
6ρ

(
3uz

(
u2

x − 1
)(

u2
y − 1

)
(δ + uz) + 12uxuyuz(δ + uz)�̃xy + 6ux

(
u2

y − 1
)
(δ + 2uz)�̃xz + 6uy

(
u2

x − 1
)
(δ + 2uz)�̃yz

+ { − u2
x

[
uz(δ + uz) + u2

y − 1
] + u2

y[2uz(δ + uz) + 1] − uz(δ + uz) − 1
}
Ñxz + {

u2
x

[
2uz(δ + uz) − u2

y + 1
]

−u2
y[uz(δ + uz) − 1] − uz(δ + uz) − 1

}
Ñyz + {

u2
x

[
uz(δ + uz) + u2

y − 1
] + u2

y[uz(δ + uz) − 1] − 2uz(δ + uz) + 1
}
T̃

+ 12uxuy(δ + 2uz)Q̃xyz + 6uxuz(δ + uz)Q̃xyy + 6ux

(
u2

y − 1
)
Q̃xzz + 6uyuz(δ + uz)Q̃xxy + 6uy

(
u2

x − 1
)
Q̃yzz

+ 3
(
u2

y − 1
)
(δ + 2uz)Q̃xxz + 3

(
u2

x − 1
)
(δ + 2uz)Q̃yyz + 3

(
u2

x − 1
)
M̃022 + 3

(
u2

y − 1
)
M̃202 + 3uz(δ + uz)M̃220

+ 6uy(δ + 2uz)M̃211 + 6ux(δ + 2uz)M̃121 + 12uxuyM̃112 + 6uxM̃122 + 6uyM̃212 + 3
(
δ + 2uz

)
M̃221 + 3M̃222

)
,

(A27)

f(σ,λ,0) = 1
4ρ

( − uxuy

(
u2

z − 1
)
(λ + uy)(σ + ux) − (

u2
z − 1

)
(λ + 2uy)(σ + 2ux)�̃xy − 2uyuz(λ + uy)(σ + 2ux)�̃xz

−uxuz(λ+2uy)(σ+ux)�̃yz+ 1
3

{
σux

[
uy(λ+uy)+u2

z − 1
]+u2

x

[
uy(λ + uy)+u2

z − 1
]−2uy

(
u2

z − 1
)
(λ+uy)

}
Ñxz

+ 1
3

{
σux

[
uy(λ + uy) − 2u2

z + 2
] + u2

x

[
uy(λ + uy) − 2u2

z + 2
] + uy

(
u2

z − 1
)
(λ + uy)

}
Ñyz

+ 1
3

{−σux

[
uy(λ+uy) + u2

z − 1
] − u2

x

[
uy(λ + uy)+u2

z − 1
]−uy

(
u2

z − 1
)
(λ+uy)

]
T̃ − 2uz(λ + 2uy)(σ + 2ux)Q̃xyz

− (
u2

z − 1
)
(σ + 2ux)Q̃xyy − uy(λ + uy)(σ + 2ux)Q̃xzz − (

u2
z − 1

)
(λ + 2uy)Q̃xxy − ux(λ + 2uy)(σ + ux)Q̃yzz

− 2uyuz(λ + uy)Q̃xxz − 2uxuz(σ + ux)Q̃yyz − ux(σ + ux)M̃022 − uy(λ + uy)M̃202 + (
1 − u2

z

)
M̃220

− 2uz(λ + 2uy)M̃211 − 2uz(σ + 2ux)M̃121 − (λ + 2uy)(σ + 2ux)M̃112

− (σ + 2ux)M̃122 − (λ + 2uy)M̃212 − 2uzM̃221 − M̃222
)
, (A28)

f(σ,0,δ) = 1
4ρ

( − uxuz

(
u2

y − 1
)
(δ + uz)(σ + ux) − 2uyuz(δ + uz)(σ + 2ux)�̃xy − (

u2
y − 1

)
(δ + 2uz)(σ + 2ux)�̃xz

− 2uxuy(δ+2uz)(σ+ux)�̃yz+ 1
3

{
σux

[
uz(δ + uz)+u2

y − 1
]+u2

x

[
uz(δ + uz) + u2

y − 1
] − 2

(
u2

y − 1
)
uz(δ + uz)

}
Ñxz

+ 1
3

{
σux

[ − 2uz(δ + uz) + u2
y − 1

] + u2
x

[ − 2uz(δ + uz) + u2
y − 1

] + (
u2

y − 1
)
uz(δ + uz)

}
Ñyz

+ 1
3

{−σux

[
uz(δ + uz) + u2

y − 1
] − u2

x

[
uz(δ+uz) + u2

y − 1
] − (

u2
y − 1

)
uz(δ + uz)

}
T̃ − 2uy(δ + 2uz)(σ + 2ux)Q̃xyz

−uz(δ + uz)(σ + 2ux)Q̃xyy − (
u2

y − 1
)
(σ + 2ux)Q̃xzz − 2uyuz(δ + uz)Q̃xxy − 2uxuy(σ + ux)Q̃yzz

− (
u2

y − 1
)
(δ+2uz)Q̃xxz−ux(δ+2uz)(σ+ux)Q̃yyz−ux(σ + ux)M̃022 + (

1 − u2
y

)
M̃202 − uz(δ + uz)M̃220

− 2uy(δ + 2uz)M̃211 − (δ + 2uz)(σ + 2ux)M̃121 − 2uy(σ + 2ux)M̃112

− (σ + 2ux)M̃122 − 2uyM̃212 − (δ + 2uz)M̃221 − M̃222
)
, (A29)

f(0,λ,δ) = 1
4ρ

( − uyuz

(
u2

x − 1
)
(δ + uz)(λ + uy) − 2uxuz(δ + uz)(λ + 2uy)�̃xy − 2uxuy(δ + 2uz)(λ + uy)�̃xz

− (
u2

x − 1
)
(δ + 2uz)(λ + 2uy)�̃yz + 1

3

{
λuy

[ − 2uz(δ + uz) + u2
x − 1

] + u2
y

[ − 2uz(δ + uz) + u2
x − 1

]
+ (

u2
x − 1

)
uz(δ + uz)

}
Ñxz + 1

3

{
λuy

[
uz(δ + uz) + u2

x − 1
] + u2

y

[
uz(δ + uz) + u2

x − 1
] − 2

(
u2

x − 1
)
uz(δ + uz)

}
Ñyz

+ 1
3

{ − λuy

[
uz(δ + uz) + u2

x − 1
] − u2

y

[
uz(δ + uz) + u2

x − 1
] − (

u2
x − 1

)
uz(δ + uz)

}
T̃ −2ux(δ + 2uz)(λ + 2uy)Q̃xyz
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−2uxuz(δ + uz)Q̃xyy − 2uxuy(λ + uy)Q̃xzz − uz(δ + uz)(λ + 2uy)Q̃xxy − (
u2

x − 1
)
(λ + 2uy)Q̃yzz

−uy(δ+2uz)(λ+uy)Q̃xxz−
(
u2

x − 1
)
(δ+2uz)Q̃yyz + (

1 − u2
x

)
M̃022 − uy(λ + uy)M̃202 − uz(δ + uz)M̃220 − (δ + 2uz)

× (λ + 2uy)M̃211 − 2ux(δ + 2uz)M̃121 − 2ux(λ + 2uy)M̃112 − 2uxM̃122 − (λ + 2uy)M̃212 − (δ + 2uz)M̃221 − M̃222
)
,

(A30)

f(σ,λ,δ) = 1
8ρ

(
uxuyuz(δ + uz)(λ + uy)(σ + ux) + uz(δ + uz)(λ + 2uy)(σ + 2ux)�̃xy + uy(δ + 2uz)(λ + uy)(σ + 2ux)�̃xz

+ux(δ + 2uz)(λ + 2uy)(σ + ux)�̃yz + 1
3

{ − δuz[ux(σ + ux) − 2uy(λ + uy)] − u2
z[ux(σ + ux) − 2uy(λ + uy)]

−uxuy(λ + uy)(σ + ux)
}
Ñxz + 1

3

{
δuz[2ux(σ + ux) − uy(λ + uy)] + u2

z[2ux(σ + ux) − uy(λ + uy)]

−uxuy(λ + uy)(σ + ux)
}
Ñyz + 1

3

{
δuz[uy(λ + uy) + ux(σ + ux)] + u2

z[uy(λ + uy) + ux(σ + ux)]

+uxuy(λ + uy)(σ + ux)
}
T̃ + (δ + 2uz)(λ + 2uy)(σ + 2ux)Q̃xyz + uz(δ + uz)(σ + 2ux)Q̃xyy

+uy(λ + uy)(σ + 2ux)Q̃xzz + uz(δ + uz)(λ + 2uy)Q̃xxy + ux(λ + 2uy)(σ + ux)Q̃yzz + uy(δ + 2uz)(λ + uy)Q̃xxz

+ux(δ + 2uz)(σ + ux)Q̃yyz + ux(σ + ux)M̃022 + uy(λ + uy)M̃202 + uz(δ + uz)M̃220 + (δ + 2uz)(λ + 2uy)M̃211

+ (δ + 2uz)(σ + 2ux)M̃121 + (λ + 2uy)(σ + 2ux)M̃112 + (σ + 2ux)M̃122+(λ+2uy)M̃212+(δ + 2uz)M̃221+M̃222
)
.
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