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Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow
with large viscosity ratio and high Péclet number
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A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for
incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The
equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al.
[Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002)]. The fluid viscosity and diffusion coefficient depend
on both the corresponding relaxation times and additional adjustable parameters in this model. As a result,
the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model.
Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed
model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous
medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent
permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations
are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the
present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or
high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high
kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an
ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.
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I. INTRODUCTION

Incompressible miscible flow, which is generally described
by the incompressible Navier-Stokes (NS) equations and the
convection-diffusion equation (CDE), is frequently encoun-
tered in many industrial areas, such as secondary and tertiary
oil recovery, exploration of underground water, pollution trans-
port, and so on [1–3]. In particular, miscible flow with a large
viscosity ratio and/or a high Péclet (Pe) number, such as the
recovery of heavy oil or bitumen and the transport of pollution,
has been attracting extensive attention in recent years [4].
In addition, advection-diffusion systems, especially situations
with high Péclet numbers, are also the focus of many studies,
such as, for example, the transverse diffusive transport of
miscible solutes in microchannels [5–8]. Our particular interest
is in studying this type of miscible flow with a large viscosity
ratio and/or a high Péclet number. Considering that both the NS
equations and the CDE are strongly nonlinear, various numer-
ical methods have been developed to simulate miscible flow
over the past decades [1,2,9–12]. However, it should be noted
that most of the existing numerical methods have difficulties
(e.g., numerical instability) in simulating miscible flow with a
large viscosity ratio and a high Péclet number [9,12]. Hence, it
would be advantageous to develop efficient numerical methods
that are capable of handling this problem.

The lattice Boltzmann (LB) method, which is a mesoscopic
numerical method based on the kinetic theory, was already em-
ployed in the study of incompressible miscible flows. The lat-
tice Bhatnagar-Gross-Krook (LBGK) model [1,9,10] (LBGK-
A) is the most widely used model for miscible flows. However,
as pointed out in numerous previous studies, the numerical
accuracy and stability of the LBGK model depend strongly
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on the relaxation time in the evolution equation [1,9,10,13].
Considering that the relaxation time in the LBGK model for
the NS equations is determined by fluid viscosity, and the
relaxation time for the convection-diffusion (CD) equation is
determined by the diffusion coefficient, two shortcomings of
this model appear. First, as the fluid viscosity or the diffusion
coefficient is relatively small, the corresponding relaxation
time approaches 0.5, and as a consequence the model becomes
unstable numerically. Second, a large fluid viscosity means
a large relaxation time, and the no-slip boundary condition
cannot be ensured unless a larger lattice is used [9]. For
example, for the heavy-oil recovery or the bitumen recovery
problem, the viscosity of displacing fluid is always much
smaller than the displaced one in practice, meaning that one of
the relaxation times related to the fluid viscosity has to be taken
small, while the other one is large. In addition, the diffusion
coefficient is usually quite small in such problems, suggesting
that the relaxation time related to the diffusion coefficient is
close to 0.5. Consequently, the small relaxation time related
to the viscosity and/or diffusion coefficient always leads to
numerical instability, while the large relaxation time related to
the viscosity causes the problem of imprecise implementation
of the no-slip boundary condition. These difficulties mentioned
above restrict the applications of the model in this field.

To overcome the deficiencies in the LBGK model, several
efforts have been made to improve the performance of this
model in recent years. For instance, Gabbanilli et al. [14] tried
to avoid numerical instability by imposing lower and upper
bounds on the fluid viscosity in non-Newtonian flow. However,
this artificial treatment may introduce extra numerical errors in
computations. Later, Xiang et al. [15] introduced another pa-
rameter β into the second-order moment condition, which can
be adjusted to avoid a small relaxation time, and the numerical
stability improved. However, a recent study revealed that the
improvement is not significant [16]. Recently, Wang et al. [18]
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performed simulations of non-Newtonian flow with a model
developed from the lattice kinetic scheme (LKS). The LKS
model was first proposed by Inamuro et al. [17] to reduce the
memory requirement for simulating incompressible flows as
well as heat transfer. By adding a term related to the shear rate
(or scalar gradient) into the equilibrium distribution functions,
the fluid viscosity (or diffusion coefficient) of the LKS model
is determined by an additional tunable parameter with a fixed
relaxation time (i.e., 1.0). Consequently, there is no need to
store the velocity distribution functions with this treatment,
and the memory requirement decreases significantly. However,
the numerical stability of this algorithm was not analyzed in
their work, and the original LKS model does not conserve mass
locally. Wang et al. improved the LKS model in order to ensure
that the mass was conserved, and the relaxation time in their
work is no longer fixed as 1.0 but can be adjusted in a proper
range to ensure the numerical stability of the method. Most
recently, Yang et al. [16] developed a model for the incom-
pressible NS equations and CDE based on the LKS model
(LBGK-B). As demonstrated in Refs. [16,18], both of the
models developed from the LKS have improved the numerical
stability in comparison with the standard LBGK model.

It should be noted that the works based on the LKS
model mentioned above approximate the collision operator
with a single-relaxation-time (SRT) or BGK approximation.
However, as Pan et al. [19] pointed out, the use of SRT
models may bring about some unphysical artifacts, such as
the inaccurate boundary conditions (especially for situations
with large relaxation times) and the viscosity-dependent
permeability for porous media. On the other hand, using
a multiple-relaxation-time collision model can significantly
reduce this deficiency, and it can improve numerical stability
further [20–23]. Recently, Zhang et al. [24] performed simu-
lations of the miscible flow with the MRT model (MRT-A),
and the imprecise implementation of the no-slip boundary
condition was eliminated with this treatment. However, due
to the fact that the relaxation times are directly determined by
the viscosity and/or diffusion coefficient, numerical instability
will also be encountered in this model as the viscosity and/or
diffusion coefficient is rather small. Considering the merits
of the multiple-relaxation-time collision model as well as the
superior stability of the LKS model, in this work we will
develop an MRT model (MRT-B) on the basis of the LKS

model for incompressible miscible flow with a large viscosity
ratio and high Pe.

The rest of the paper is organized as follows. The modified
MRT model for the incompressible miscible flow is presented
in Sec. II. Section III contains a series of numerical simulations
that are carried out to test the performance of the model.
Finally, a summary is presented in Sec. IV.

II. AN MRT MODEL BASED ON LKS FOR
THE NS AND CD EQUATIONS

In this section, an MRT model for the incompressible NS
and CD equations is presented. The macroscopic equations for
incompressible miscible flows are as follows:

∇ · u = 0, (1a)

∂t u + ∇ · (uu) = −∇p + ∇ · τ + F, (1b)

∂tφ + ∇ · (uφ) = ∇ · (D · ∇φ) + R. (2)

In Eq. (1), u = (ux,uy) is the velocity in two dimensions (2D),
p is the pressure, F = (Fx,Fy) is the external force, and τ is
a second-order tensor representing the shear stress, which can
be expressed as

τ = 2ρ0νS, (3)

where ρ0 is the density of fluid, ν is the kinematic viscosity of
fluid, and S is the shear rate defined as

S = 1
2 [∇u + (∇u)T ], (4)

where the superscript T denotes the transposition operator. In
Eq. (2), φ is the conserved scalar variable (e.g., concentration,
etc.), and D is the symmetric matrix of diffusion coefficients.
Finally, R represents the source term, such as chemical
reactions.

A. D2Q9-MRT model for incompressible
Navier-Stokes equations

Both the NS and the CD equations considered in the
present work are confined in 2D. Thereafter, the most popular
discrete velocity model, i.e., the D2Q9 (two-dimensional-nine-
velocity) model, is used here. The velocity ci of this model is
defined as

ci =

⎧⎪⎨
⎪⎩

c(0,0), i = 0,

c( cos[(i − 1)π/2], sin[(i − 1)π/2]), i = 1,2,3,4,

2c( cos[(i − 5)π/2 + π/4], sin[(i − 5)π/2 + π/4]), i = 5,6,7,8,

(5)

where c = δx/δt is the lattice speed, and δx and δt denote the lattice spacing and the time step, respectively.
The evolution equation of the MRT model for the incompressible NS equations in Eq. (1) can be expressed as follows:

fi(x + ciδt ,t + δt ) − fi(x,t) = −(M−1�M)ij
[
fj (x,t) − f

eq
j (x,t)

] + δt

[
M−1(I − 1

2�
)
M

]
ij
F j , (6)

where fi(x,t) is the distribution function for particles moving with velocity ci at position x and time t , � is the diagonal relaxation
matrix in moment space arranged as � = (λ0, . . . ,λ8)T , in which λ4 = λ6 and λ7 = λ8, generally, and M is the transformation
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matrix defined as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

The equilibrium distribution function f
eq
i in Eq. (6) plays an important role in the LB method. To recover the incompressible NS

equations correctly, here we propose the following formulation on the basis of the LKS model [17] and the He-Luo incompressible
model [25], which reads

f
eq
i = ωi

{
ρ + ρ0

[
ci · u
c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

+ Aδt S :
(
ci ci − c2

s I
)

2c2
s

]}
, (8)

where ωi are the weight coefficients defined as ω0 = 4/9,
ω1−4 = 1/9, and ω5−8 = 1/36. ρ is a variable related to the
pressure as p = c2

s ρ, while ρ0 denotes the density of fluid,
which is a constant. cs = c/

√
3 represents the lattice sound

speed, and A is a tunable parameter related to the fluid
viscosity. The equilibria in the present model are noted to
have two advantages over the original ones in Ref. [17]. On
the one hand, they can eliminate the compressibility effect;
on the other hand, they conserve the mass locally. Finally, to
avoid discrete lattice effects in the LB model, the forcing term
F i in Eq. (6) is defined as [26]

F i = ωi

[
ci · F

c2
s

+ uF :
(
ci ci − c2

s I
)

c4
s

]
. (9)

With the transformation matrix M, the evolution equation
can be rewritten on the basis of Eq. (6) as

f (x + ciδt ,t + δt ) − f (x,t)

= −M−1�[ f̂ (x,t) − f̂ eq(x,t)] + M−1δt F̂, (10)

where f̂ are the distribution functions in moment space
mapped from those in velocity space f as

f̂ = M · f = (ρ,e,ε,jx,qx,jy,qy,pxx,pxy)T . (11)

The equilibrium moments f̂ eq are defined as f̂ eq = M · f eq,
which can be written as

f̂
eq
0 = ρ, f̂

eq
1 = −2ρ + ρ0[3u2 + 2Aδt (∂xux + ∂yuy)],

f̂
eq
2 = ρ − ρ0[3u2 + 2Aδt (∂xux + ∂yuy)], f̂

eq
3 = ρ0ux,

f̂
eq
4 = −ρ0ux, f̂

eq
5 = ρ0uy, f̂

eq
6 = −ρ0uy, (12)

f̂
eq
7 = ρ0

[
u2

x − u2
y + 2

3Aδt (∂xux − ∂yuy)
]
,

f̂
eq
8 = ρ0

[
uxuy + 1

3Aδt (∂xuy + ∂yux)
]
,

where (see Appendix A for more details)

∂xux + ∂yuy = − f̂1 − f̂
e(0)
1 − 3δt u · F

2(1/λ1 − A)δt

,

∂xux − ∂yuy = −3
[
f̂7 − f̂

e(0)
7 − δt (uxFx − uyFy)

]
2(1/λ7 − A)δt

,

∂xuy + ∂yux = −3
[
f̂8 − f̂

e(0)
8

] − 3δt (uxFx + uyFy)/2

(1/λ8 − A)δt

,

(13)

which can be computed locally with second-order accuracy
in the present model (the definitions of f̂

e(0)
1,7,8 are presented in

Appendix A). In addition, F̂ = (I − 1
2�)M F in Eq. (10) are

the corresponding force moments, which read

F̂0 = 0, F̂1 = 6

(
1 − s1

2

)
u · F,

F̂2 = −6

(
1 − s1

2

)
u · F, F̂3 = Fx,

F̂4 = −
(

1 − s4

2

)
Fx, F̂5 = Fy,

(14)

F̂6 = −
(

1 − s6

2

)
Fy,

F̂7 = 2

(
1 − s7

2

)
(uxFx − uyFy),

F̂8 =
(

1 − s8

2

)
(uxFy + uyFx).

The macroscopic variables can then be obtained from the
moments of the distribution functions in velocity space as

ρ =
8∑

i=0

fi(x,t), ρ0u =
8∑

i=0

cifi(x,t) + δt

2
F. (15)
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Through the Chapman-Enskog analysis, the Navier-Stokes
equations (1a) and (1b) can be recovered with (details are
presented in Appendix A)

ν = c2
s

(
1

λ7
− 1

2
− A

)
δt = c2

s

(
1

λ8
− 1

2
− A

)
δt ,

(16)

ς = c2
s

(
1

λ1
− 1

2
− A

)
δt ,

where ν and ς are the kinematic and buck viscosities, re-
spectively. Finally, we would like to point out that the velocity
gradient term in f̂

eq
2 in Eq. (12) has no influence on the recovery

of the NS equations (for more details, see Appendix A). We
keep this term in the moment so that the model can reduce
to the LBGK-B model as all the relaxation rates are taken to
be 1/τSRT (τSRT is the relaxation time in the LBGK-B model),
which can retain the consistency of these two models.

B. D2Q9-MRT model for the convection-diffusion equation

The evolution equation of the MRT model for the
convection-diffusion equation is

gi(x + ciδt ,t + δt ) − gi(x,t)

= −(M−1�′ M)ij
[
gj (x,t) − g

eq
j (x,t)

] + δtRi + δ2
t

2
∂tRi,

(17)

where �′ is the diagonal relaxation matrix in moment space,
and Ri is the source term, which is the same as that used in
Ref. [27]. g

eq
i is the equilibrium distribution function given as

g
eq
i = ωiφ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

]
+ ωiBδt (ci · ∇φ),

(18)

where B is a tunable parameter related to the diffusion
coefficient, and the time derivative term in Eq. (17) can
be treated with the finite-difference scheme, e.g., ∂tRi =
[Ri(x,t) − Ri(x,t − δt )]/δt [28].

Similarly, the evolution equation in moment space can be
written as

g(x + ciδt ,t + δt ) − g(x,t)

= −M−1�′[ ĝ(x,t) − ĝeq(x,t)] + M−1

[
δt R̂ + δ2

t

2
∂t R̂

]
,

(19)

where R̂ are the source terms in moment space, which can be
expressed as follows:

R̂0 = R, R̂1 = −2R, R2 = R, R̂3 =
(

1 − λ′
3

2

)
uxR,

R̂4 = −
(

1 − λ′
4

2

)
uxR, R̂5 =

(
1 − λ′

5

2

)
uyR, (20)

R̂6 = −
(

1 − λ′
6

2

)
uyR, R̂7 = 0, R̂8 = 0,

and ĝeq in Eq. (19) are defined as

ĝ
eq
0 = φ, ĝ

eq
1 = φ(−2 + 3u2), ĝ

eq
2 = φ(1 − 3u2),

ĝ
eq
3 = φux + 1

3Bδt∂xφ, ĝ
eq
4 = −φux − 1

3Bδt∂xφ,

ĝ
eq
5 = φuy + 1

3Bδt∂yφ, ĝ
eq
6 = −φuy − 1

3Bδt∂yφ,

ĝ
eq
7 = φ

(
u2

x − u2
y

)
, ĝ

eq
8 = φuxuy,

(21)

where (see Appendix A for more details)

∂xφ = −3
[
ĝ3 − ĝ

e(0)
3

] − 3δtR3/2

(1/λ′
3 − B)δt

,

∂yφ = −3
[
ĝ5 − ĝ

e(0)
5

] − 3δtR5/2

(1/λ′
5 − B)δt

,

(22)

which can also be computed locally with second-order accu-
racy here (the definitions of ĝ

e(0)
3,5 are presented in Appendix A).

The scalar variable can be obtained by

φ =
8∑

i=0

gi. (23)

Again through the Chapman-Enskog analysis, Eq. (2) can
be recovered from Eq. (19) (details are presented in Ap-
pendix A) with Dxx = c2

s (1/λ′
3 − 1/2 − B)δt as well as Dyy =

c2
s (1/λ′

5 − 1/2 − B)δt .
To sum up, both Eqs. (1) and (2) can be recovered correctly

from the model proposed in this work, and the computations
of the fluid viscosity and the diffusion coefficients are different
from those in the previous LBGK model [1,9,10] (LBGK-A)
and the MRT model [24] (MRT-A). They are determined
by not only the corresponding relaxation times, but also the
additional tunable parameters A and B. Specifically, as A and
B are taken to be 0, the proposed MRT model can reduce
to the previous MRT one in Ref. [24]. In addition, as all the
relaxation rates in the present model take the value of 1/τSRT,
it can reduce to the LBGK-B model in Ref. [16]. Furthermore,
the derivatives in Eqs. (12) and (21) can be calculated locally
with the corresponding distribution functions in moment space
directly (see Appendix A for more details) in the present
model, with no need to calculate the second-order moment
of the distribution functions as in the LBGK-B model [16].
Hence, the computations of the derivatives in equilibrium
functions here are easier than those of the LBGK-B model
in Ref. [16].

III. RESULTS AND DISCUSSION

In this section, we will carry out a number of simulations
to demonstrate the accuracy and numerical stability of the
proposed model. First, a steady Poiseuille flow and a diffusion-
reaction problem are simulated to validate the present model.
The accuracy of the present model is carefully analyzed on the
basis of these two tests. Then, we conduct a comparative study
to examine the accuracy of the proposed model of computing
the permeability of a specific porous medium. Finally, the
viscous displacement problem between two parallel plates is
simulated to test the performance of this model.
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FIG. 1. Velocity profiles at different Reynolds numbers.

A. Accuracy tests

1. Steady Poiseuille flow

The flow between two parallel plates driven by a constant
pressure gradient is simulated first. The computational domain
is set as −H/2 � y � H/2 and 0 � x � L, where H =
1.0 and L = 0.5 are the width and length of the channel,
respectively. The initial and boundary conditions are given
as follows:

u(x,y,0) = v(x,y,0) = 0, ρ(x,y,0) = ρ0,

u(x,−H/2,t) = u(x,H/2,t) = v(x,−H/2,t)

= v(x,H/2,t) = 0,

p(0,y,t) = pin, p(L,y,t) = pout,

(24)

where ρ0 is the constant density of fluid, which is set to be
1.0, and pin and pout are the pressure at the inlet and outlet,
respectively. The nonslip boundary conditions at the upper and
bottom walls are implemented with the halfway bounce-back
scheme, and the nonequilibrium extrapolation scheme [29] is
used to treat the inlet and outlet boundary conditions. The

log10(δx)
-2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1

lo
g 1

0(
E

u
)

-6

-5

-4

-3

Re = 10
Re = 15
Re = 20
Re = 25
Slope = 2.0

FIG. 2. (Color online) Global relative errors at different mesh
sizes and Reynolds numbers.
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FIG. 3. Velocity profiles at different λ4(λ6).

analytical solution for this problem is

u(y) = G

ν

H 2

2

(
y

H
− y2

H 2

)
, (25)

where ν is the kinematic viscosity of fluid, y is the position in
the y direction, and G = −∂p/∂x is the pressure gradient.

In our simulations, the dimensionless characteristic param-
eter Reynolds number (Re) is defined as Re = umaxH/ν,
where umax = GH 2/8ν is the maximum velocity obtained
from Eq. (25). Four different cases are considered here, i.e.,
Re = 10, 15, 20, and 25, respectively. The computations
are conducted on a 16 × 32 (L × H ) uniform lattice. The
convergent criterion for the steady flows is∑

ij |u(x,t + 1000δt ) − u(x,t)|∑
ij |u(x,t + 1000δt )| < 10−9. (26)

The choices of the relaxation rates used in the simulations
are introduced here. The values of λ1 and λ2 are validated
to have little influence on the numerical results, so that
they are both specified as 1.0. The other relaxation rates are
set as λ0 = λ3 = λ5 = 0 and λ7 = λ8 = 1/τν = 1.0 in these
cases; the remaining two relaxation rates, λ4 and λ6, are
chosen to be λ4 = λ6 = [16(τν − A) − 8]/[8(τν − A) − 1], so
that the no-slip boundary condition can be realized exactly
(see Appendix B for more details). In addition, the tunable
parameter A is fixed as 0.1 in our simulations.

The numerical results of the velocity profiles are illustrated
in Fig. 1, and they show good agreement with the analytical
solutions at different Reynolds numbers. To further examine
the spacial accuracy of the present model, a set of simulations
are carried out with four different grid sizes, i.e., 8 × 16, 16 ×
32, 32 × 64, and 64 × 128. The global relative error (GRE)
used to measure the accuracy of the model is calculated as

TABLE I. GREs at different values of λ4(λ6).

λ4(λ6) 0.01 0.05 0.5 1.03 1.5

Eu 0.2063 3.96×10−2 2.148×10−3 2.223×10−4 6.293×10−4
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FIG. 4. Concentration profiles at y = 0.5 for different diffusion coefficients. (a) D = 10−3, (b) D = 10−4.

follows:

Eu =
√∑

ij (u − u∗)2∑
ij (u∗)2

, (27)

where u and u∗ denote the numerical result and the analytical
solution, respectively. The relationship between Eu and the
lattice spacing δx is shown in Fig. 2. The slopes of the fitting
lines are 2.0122, 2.0169, 2.0196, and 2.0194 for Re = 10, 15,
20, and 25, respectively. This demonstrates that the present
model has second-order accuracy in space.

Furthermore, to investigate the effect of λ4 and λ6 on the
precise implementation of the no-slip boundary condition, the
values of these two parameters are varied, i.e., λ4 = λ6 = 0.01,
0.05, 0.5, [16(τν − A) − 8]/[8(τν − A) − 1] = 1.03, and 1.5,
while the other relaxation rates are kept unaltered as before.
For simplicity, only the case of Re = 10 is simulated on a
16 × 32 uniform lattice here. As shown in Fig. 3, we can see
clearly that the deviations of the optimum choice of λ4 and
λ6 (1.03) lead to the imprecise implementation of the no-slip
boundary condition. In addition, the GREs of the test cases

log10(δx)
-2.5 -2 -1.5

lo
g 1

0(
E

u
)

-5

-4

-3

B = 0.1
B = 0.2
B = 0.3
Slope = 2.0

FIG. 5. (Color online) Global relative errors at different mesh
sizes.

are presented in Table I. It can be concluded that the GRE
increases as the value of λ4(λ6) deviates from 1.03.

2. Reaction-diffusion problem

Now we simulate an unsteady diffusion-reaction problem
to test the accuracy of the present MRT model for the
CDE. Here, we consider a two-dimensional diffusion-reaction
system defined in the region 0 � x,y � l, where l = 1.0 is
the width of the region. The test problem can be described
mathematically as follows:

∂tφ = D∇2φ + 2C sin
πx

l
sin

πy

l
, (28)

where C is a constant taken as 10 in our simulations, and D is
the diffusion coefficient. The initial and boundary conditions
are

φ(x,y,0) = 0, (29)
φ(0,y,t) = φ(l,y,t) = φ(x,0,t) = φ(x,l,t) = 0. (30)

FIG. 6. Circular cylinders in a square array.
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FIG. 7. The permeabilities computed from the four LB models at different viscosities. (a) d = 41δx , ε = 0.967; (b) d = 61δx , ε = 0.927.

The nonequilibrium extrapolation scheme [29] is adopted to
treat these boundary conditions. The analytical solution for
Eq. (28) can be expressed as

φ(x,y,t) = l2

π2D
C

[
1 − exp

(
−2π2Dt

l2

)]
sin

πx

l
sin

πy

l
.

(31)

Our simulations are conducted with a grid of size 60 ×
60, and two different diffusion coefficients are tested, i,e.,
D = 10−3 and 10−4. The numerical results and the analytical
solutions are compared at three different times: t = 50, 100,
and 150 for each D. The relaxation rates are taken as λ′

0 = 1.0,
λ′

1 = λ′
2 = 1.1, λ′

3 = λ′
4 = λ′

5 = λ′
6 = 1/0.9, and λ′

7 = λ′
8 =

1.2, which are the same as those used in Ref. [30], and the
tunable parameter B is determined by the diffusion coefficient.
Again, good agreement is observed at different times for each
diffusion coefficient, as shown in Fig. 4.

Furthermore, the spacial accuracy of the proposed MRT
model is also tested. We conduct the simulations at four grids
with sizes of 30 × 30, 60 × 60, 120 × 120, and 240 × 240,

and the relaxation rates are the same as above. The tunable
parameter B is taken to be 0.1, 0.2, and 0.3, respectively, to
obtain different diffusion coefficients. The global relative error
for this problem is defined as

Eu =
√∑

ij (φ − φ∗)2∑
ij (φ∗)2

, (32)

where φ∗ denotes the analytical solution. The relationship
between the global error Eu and the lattice spacing δx is
plotted in Fig. 5, and the slopes of the fitting lines are 2.0037,
2.0067, and 2.0100 for B = 0.1, 0.2, and 0.3, respectively.
This demonstrates that the proposed MRT model also has
second-order accuracy in space.

B. Numerical computation of the permeability of porous media

As reported in the literature [19,31], LB models with
a SRT collision operator commonly encounter the defect
that the permeability is viscosity-dependent when simulating
flow through porous media. However, this deficiency can be

0 0.5 1 1.5 2 2.5 3 3.5
0.95

1.05

1.15
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/
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(b)

FIG. 8. The permeabilities computed from the LBGK-B and MRT-B models at different viscosities. (a) d = 41δx,ε = 0.967; (b) d =
61δx,ε = 0.927. Circle: τ = 1.0, square: τ = 5.0, triangle: τ = 10.0.
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FIG. 9. Geometry of the viscous displacement problem between
two parallel plates.

significantly reduced by adopting the MRT model [19,31].
In this subsection, we will test whether the present MRT
model can give a correct prediction of the permeability of
a porous medium with specific structure. A comparative study
is conducted with the LBGK-A model [1,9,10], the LBGK-B
model [16], the MRT-A model [24], and the present MRT
model (MRT-B). A detailed comparison will be conducted
between the LBGK-B model and the present MRT model in
particular, since both models employ a modified equilibrium
distribution with additional gradient terms. The porous struc-
ture is illustrated in Fig. 6, where H is the width of the square
array, which is set as 200.0, and d is the diameter of the
packed cylinder. The permeability of this porous structure can
be expressed analytically as [32]

Ka = d2

32φ
[− ln φ − 1.476 + 2φ − 1.774φ2 + 4.706φ3],

(33)

where Ka denotes the analytical permeability of porous media,
φ = 1.0 − ε, and ε = 1.0 − 0.25π (d/H )2 is the porosity.
Meanwhile, the flow through porous media can be described
by Darcy’s law as

ud = −K

μ
(∂xp + G), (34)

where ud is the Darcy velocity defined as the volume-averaged
velocity in the flow field, μ is the dynamic viscosity of the fluid,

FIG. 11. (Color online) Concentration fields at different M and
Pe. (a) M = 1, Pe = 5; (b) M = 1, Pe = 262; (c) M = 100, Pe = 5;
and (d) M = 100, Pe = 262.

p represents the pressure, and G is the external force along the
x direction. Thus, the permeability of the porous structure can
be evaluated numerically based on Eq. (34) as

K = − μud

∂xp + G
. (35)

The simulations are carried out on an M × N = 200 × 200
lattice. The flow is driven by the external force G, and the
halfway bounce-back rule is used to treat the no-slip boundary
condition at the cylinder walls, while the periodic boundary
conditions are implemented at the inlet, outlet, bottom, and
upper boundaries. The porosity of the specific porous structure
is altered by changing the diameter of the packed cylinder. Here
we take d = 41δx (ε ≈ 0.967) and d = 61δx (ε ≈ 0.927),
respectively. The Reynolds number Re = u0H/ν is taken as
0.1, where ν is the kinematic viscosity, which is related to μ

as μ = ρν, and ρ denotes the density of the fluid, which is set
as 1.0 in our simulations.

The viscosity dependence of the computed permeability is
evaluated with the LBGK-A, LBGK-B, MRT-A, and MRT-B
models, respectively. The test kinematic viscosities change
from 3.3 × 10−2 to 3.1667. The viscosities are obtained by
changing the relaxation times related to the viscosity (τν) from
0.6 to 10.0 in the LBGK-A and MRT-A models, and from 0.8

0 256
0

1

x

c

(a)
0 256

0

1

x

c

(b)

0 256
0

1

x

c

(c)
0 256

0

1

x
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(d)

FIG. 10. (Color online) Transverse-averaged concentration profiles at different M and Pe. (a) M = 1, Pe = 5; (b) M = 1, Pe = 262;
(c) M = 100, Pe = 5; and (d) M = 100, Pe = 262. Solid line: results in Ref. [9], dashed line: results of LBGK-A, dot-dashed line: results of
LBGK-B, dotted line: results of MRT-A, dashed line with plus: results of MRT-B.
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TABLE II. The relaxation times and the tunable parameters
related to the kinematic viscosities.

LBGK-A LBGK-B MRT-A MRT-B

ν τν A τν A τν A τν A

νA = 0.005 0.515 0 1.0 0.485 0.515 0 1.0 0.485
νB = 1.0 3.5 0 1.0 −2.5 3.5 0 1.0 −2.5
νB = 2.0 6.5 0 1.0 −5.5 6.5 0 1.0 −5.5
νB = 4.0 12.5 0 1.0 −11.5 11.5 0 1.0 −11.5
νB = 6.0 18.5 0 1.0 −17.5 17.5 0 1.0 −17.5

to 10.2 while keeping A as 0.2 in the LBGK-B and MRT-B
models to obtain the same viscosity for each case. In addition,
the other relaxation rates, i.e., λ0 = λ3 = λ5 = 0.0, λ1 = λ2 =
1.0/τν , and λ7 = λ8 = 1.0/τν in MRT-A and MRT-B, are
the same, while λ4 = λ6 = (16τν − 8)/(8τν − 1) in MRT-A
and λ4 = λ6 = [16(τν − A) − 8]/[8(τν − A) − 1] in MRT-B,
which can realize the exact no-slip boundary conditions. As
shown in Fig. 7, the permeabilities computed by the LBGK-A
and LBGK-B models increase by about 15% (from 0.98Ka to
1.13Ka) with the increase of viscosity, which is nonphysical.

On the contrary, both the MRT-A and MRT-B models can give
nearly a constant permeability.

As described before, the viscosity is altered by changing
the value of the corresponding relaxation time in the LBGK-B
model and the MRT-B model with a fixed value of A.
Considering that the viscosity in each of these two models is
determined by the relaxation time and the tunable parameter,
here we investigate the robustness of both models by varying
the value of the parameter A with a fixed relaxation time τν

to obtain different viscosities. Three different values of τν are
considered in our simulations (τν = 1.0, 5.0, and 10.0). The
porous structure and the Reynolds number are kept the same as
before. The computed permeabilities are shown in Fig. 8. Both
Figs. 8(a) and 8(b) indicate that the LBGK-B model cannot
overcome the problem of viscosity-dependent permeability
even with a fixed relaxation time, while the present MRT model
can still provide a satisfactory prediction in each case.

C. Viscous displacement between two parallel
plates in two dimensions

In the above subsections, the accuracy of the present model
is validated, and the second-order convergence rate in space is
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FIG. 12. (Color online) Transverse-averaged concentration profiles of the cases Re = 32 and Pe = 262 at different viscosity ratios.
(a) M = 200, (b) M = 400, (c) M = 800, and (d) M = 1200.
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FIG. 13. (Color online) Velocity profiles at the inlet x = 0 of the cases Re = 32 and Pe = 262 at different viscosity ratios. (a) M = 200,
(b) M = 400, (c) M = 800, and (d) M = 1200.

confirmed. It is also found that this model can give correct
predictions of the permeability of porous media. We now
examine the capacity of the proposed model for the viscous
miscible displacement problem with a large viscosity ratio
and a high Péclet number. The test case chosen here is a two-
dimensional viscous miscible displacement problem between
two parallel plates, as illustrated in Fig. 9. The displacing
fluid Af is injected into the channel with a constant average
velocity u0 (along the x direction) as well as a concentration
cin to displace another fluid Bf with concentration c = 0. The
dynamic viscosity of fluid depends on the local concentration
as μ = μAf

e−Rc, where R is the log-mobility ratio defined as
R = ln(M), while M = μBf

/μAf
is the viscosity ratio. This

problem was numerically studied by Rakotomalala et al. [9]
using the LB method.

First, we simulate four cases of the above viscous displace-
ment problem as used in Ref. [9], namely M = 1, Pe = 5;
M = 1, Pe = 262; M = 100, Pe = 5; and M = 100, Pe =
262 to validate our code. All of the following numerical results
illustrated in the figures are at 20 000 time steps, which is what
Rakotomalala et al. did in Ref. [9]. The transverse-averaged
concentration profiles obtained from the four LB models are
compared with those in Ref. [9]. As shown in Fig. 10, good

agreement is observed between the numerical results from
the four models and those in Ref. [9]. The concentration
fields predicted by the MRT-B model are depicted in Fig. 11,
and those from the other three LB models are similar. As
shown in Fig. 11, as Pe is small, the diffusion dominates
the displacing process, and the mixing region between the
two fluids is rather thick. No fingering instability is observed
under such cases, even as the viscosity ratio M is as large as
100. Actually, the flow patterns in these two cases are nearly
identical. As Pe increases to 262, however, the mixing region
becomes much thinner, and the flow pattern depends on the
viscosity ratio significantly, which is evident from Figs. 11(b)
and 11(d). Specifically, as M = 100 and Pe = 262, the shape
of the displacing fluid evolves toward a well-defined finger, as
Rakotomalala et al. observed in Ref. [9].

The above numerical results indicate that the four LB
models can all provide good predictions of this displacing
problem for the cases considered above. However, as noted in
Ref. [9], the LBGK-A model works only for a limited range of
kinematic viscosities and diffusion coefficients. Those authors
pointed out that as the viscosity is large, the corresponding
relaxation time will also be large, so that a strong shear
near the wall boundaries exists, and the no-slip boundary
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FIG. 14. (Color online) Velocity profiles at the outlet x = 256 of the cases Re = 32 and Pe = 262 at different viscosity ratios. (a) M = 200,
(b) M = 400, (c) M = 800, and (d) M = 1200.

condition cannot be ensured. On the other hand, a small
viscosity and/or diffusion coefficient may lead to numerical
instability. These restrictions severely limit the applications of

the LBGK-A model in simulating flows with large viscosity
ratios and/or high Péclet numbers. The proposed MRT model
is expected to overcome these limitations, and now we carry
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FIG. 15. (Color online) Transverse-averaged concentration profiles of the case M = 200, Re = 32, and Pe = 262 simulated by the LBGK-B
and MRT-B models. (a) τν = 0.6, (b) τν = 5.0.
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FIG. 16. (Color online) Transverse velocity profiles of the case M = 200, Re = 32, and Pe = 262 simulated by the LBGK-B and MRT-B
models. (a) τν = 0.6, (b) τν = 5.0.

out a comparative study among the four LB models to simulate
flow with a large viscosity ratio and/or a high Péclet number.

First we consider a system with large viscosity ratios and
a fixed Pe. The Reynolds number Re = u0H/νAf

is set to be
32, while the average velocity u0 at the inlet is kept as 0.005
to satisfy the low Mach number assumption, and the Péclet
number is fixed at 262 so that the diffusion coefficient is in
the proper range. To ensure the stable computations for all
four LB models, the kinematic viscosity of fluid Af is fixed
as 0.005, suggesting that the relaxation time τν related to the
viscosity for fluid Af in the LBGK-A and MRT-A models is
0.515; on the other hand, τν is fixed at 1.0 in the LBGK-B and
MRT-B models, as suggested in Ref. [18], and the parameter
A is chosen to attain the correct viscosity.

Four viscosity ratios are considered here, i.e., M = 200,
400, 800, and 1200. The relaxation times and the tunable
parameters related to the kinematic viscosity in the four
models are listed in Table II. The other relaxation rates
in the MRT-B model are chosen as λ0 = λ3 = λ5 = 0,
λ1 = λ2 = λ7 = λ8 = 1.0/τν , and λ4 = λ6 = [16(τν − A) −
8]/[8(τν − A) − 1], where τν is a constant taken as 1.0 as
mentioned above; while those of the MRT-A model are λ0 =
λ3 = λ5 = 0, λ1 = λ2 = λ7 = λ8 = 1.0/τν , and λ4 = λ6 =
(16τν − 8)/(8τν − 1), where τν is determined by the kinematic
viscosity directly as τν = 3ν/δt + 0.5. The relaxation rates in
the MRT-A and MRT-B models for the convection-diffusion
equation of the MRT-A and MRT-B models are set to be
λ′

0 = 1.0, λ′
1 = λ′

2 = 1.1, λ′
3 = λ′

4 = λ′
5 = λ′

6 = 1.0/τc, and
λ′

7 = λ′
8 = 1.2. On the other hand, τc is chosen differently in

these two models, i.e., it is kept as a constant (1.0) in the present
MRT-B model, and the parameter B is adjusted to obtain the
diffusion coefficient D needed, while it is directly determined
by D in the MRT-A model as τc = 3D/δt + 0.5.

The results are illustrated in Figs. 12–14. From Fig. 12,
we can see that the transverse-averaged concentration profiles
from the MRT-A and MRT-B models are almost the same
in the four cases. However, those predicted by the LBGK-A
model are quite different, and the difference becomes much
more obvious with the increase of M . It is also observed from
Fig. 12 that the concentration profiles from the LBGK-B model

show little difference as compared with those of the both
MRT models, although the disparity increases slightly with
increasing M .

The transverse velocity profiles calculated from the four
models at the inlet and outlet are shown in Figs. 13 and 14. The
velocity in the figures is normalized by u0. Figure 13 shows that
all of the models can predict almost the same velocity profiles
at the inlet, but at the outlet the results of the LBGK-A model
show significant deviations from other models, especially at a
large viscosity ratio (Fig. 14). This can be understood because
the relaxation time at the outlet is relatively large in the LBGK-
A model as M is large, and the no-slip boundary condition
cannot be realized and velocity slip occurs. This is consistent
with the previous analysis reported in Ref. [9]. On the other
hand, with the inclusion of the additional gradient terms in
the equilibrium distribution functions, the relaxation times in
the LBGK-B model can be set in a proper range, and so the
velocity profiles from the LBGK-B model show no obvious
velocity slip at the walls. However, some slight deviations from
the results of the two MRT models are still observed, which is
due to the inaccurate boundary locations in the SRT models.
Overall, the two MRT models can give reasonable velocity
predictions for the displacing problem.

We further investigate the robustness of the present model
and the LBGK-B model. Without loss of generality, we choose
the case with M = 200 and Pe = 262, and the results from the
MRT-A model in Figs. 12–14 are served as a benchmark since
the results from the two MRT models shows little difference,
which can be observed clearly in Figs. 12–14. The simulation
parameters are kept the same as used above, but two different

TABLE III. The relaxation times and the tunable parameters
related to the diffusion coefficients.

MRT-A MRT-B

D τc B τc B

D = 4.44 × 10−5 0.500 13 0 1.0 0.499 87
D = 3.56 × 10−5 0.500 11 0 1.0 0.499 89
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FIG. 17. (Color online) Transverse-averaged concentration profiles at different Pe as M = 1200, Re = 32. (a) Pe = 1200, (b) Pe = 1500.

values of the relaxation time τν (0.6 and 5.0) are used to
test the dependence of the numerical results (e.g., velocity
and concentration profiles) on τν . The concentration profiles
computed from the two models as well as those from the MRT-
A model are shown in Fig. 15. As shown, the concentration
profiles from the LBGK-B model show a slight dependence
on τν , while the results from the present model agree quite
well with the benchmark solutions. Moreover, as depicted in
Fig. 16, the velocity profiles from the LBGK-B model at the
outlet are clearly different from the benchmark one as τν =
5.0. On the contrary, the present model can give nearly the
same results as the MRT-A model. These facts suggest that
the relaxation time in the LBGK-B models must be chosen
carefully, but the present model has no such difficulty.

Based on the above results, we can see that both the MRT-A
and MRT-B models can be used to simulate miscible fluid flow
with a large viscosity ratio but relatively small Péclet numbers.
In what follows, these two models are further tested for flows
with high Péclet numbers. Two cases will be considered,
i.e., Pe = 1200 and 1500 as M = 1200 and Re = 32. The
relaxation times and the tunable parameters related to D are
listed in Table III, while the other relaxation rates are kept the
same as before. The transverse-averaged concentration profiles
from the two models are plotted in Fig. 17. It can be observed
that some significant nonphysical fluctuations appear for the
MRT-A model at high Péclet numbers, and the fluctuation
magnitude increases with Pe. However, it is exciting to observe
that the concentration profiles from the MRT-B model are very
smooth. Furthermore, if the Péclet number increases to 2000,
the relaxation time related to the diffusion coefficient in the
MRT-A model is rather small such that the model becomes

unstable. On the other hand, the proposed MRT-B model can
still give a reasonable prediction under the same conditions
[Fig. 18(a)]. This suggests that the present model has better
numerical stability. Actually, the present model is still stable
even as M = 104 and Pe = 1010, and the result is reasonable
[Fig. 18(b)].

IV. CONCLUSIONS

An MRT model for the incompressible Navier-Stokes
equations and the convection-diffusion equation is proposed
on the basis of the LKS model in the present work. The present
model can reduce to the standard MRT model as the additional
parameters A and B in the equilibrium distribution functions
are taken to be 0. Moreover, the LBGK-B model can also
be viewed as a special case of the present model if all the
relaxation times are identical.

The numerical results of the Poiseuille flow and the
diffusion-reaction problem demonstrate that the present model
is of second-order accuracy in space. In addition, the present
model can predict a viscosity-independent permeability of a
porous medium, which cannot be observed in the SRT models.
Furthermore, it is found that only the present model can be
used to simulate the viscous displacement problem with a
large viscous ratio and a high Péclet number among the four
models tested in our work. Specifically, we notice that the
present model is capable of predicting reasonable results even
as the viscosity ratio is as large as 104 and the Péclet number
is 1010, which demonstrates the superior numerical stability of
the present model. Finally, we would like to point out that the
proposed model can also be applied to other problems such as
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FIG. 18. Transverse-averaged concentration profiles of flow with a large viscosity ratio as well as high Pe. (a) M = 1200, Pe = 2000;
(b) M = 104, Pe = 1010.
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non-Newtonian flow, the advection-diffusion-reaction system
with high Péclet numbers, and so on.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS
OF THE PROPOSED MRT MODEL

In this Appendix, the Navier-Stokes equations and the
convection-diffusion equation are derived from the present
model through Chapman-Enskog expansion analysis, which

introduces the following multiscale expansions:

f̂i = f̂
(0)
i + εf̂

(1)
i + ε2f̂

(2)
i + · · · , (A1)

ĝi = ĝ
(0)
i + εĝ

(1)
i + ε2ĝ

(2)
i + · · · , (A2)

∂t = ε∂t0 + ε2∂t1 , ∇ = ε∇0, (A3)

where ε is a small parameter, and f̂i and ĝi are the distribution
functions for the density and scalar variables in moment space,
respectively. Because the shear rate tensor and the gradient
of the scalar variable appear in the equilibrium distribution
functions, f̂ (eq)

i and ĝ
(eq)
i can also be expanded into two parts as

f̂
(eq)
i = f̂

e(0)
i + εf̂

e(1)
i , (A4)

ĝ
(eq)
i = ĝ

e(0)
i + εĝ

e(1)
i , (A5)

which can be expressed in detail as

f̂ e(0) = (
ρ,−2ρ + 3u2,ρ − 3u2,ux,−ux,uy,−uy,u

2
x − u2

y,uxuy

)T
, (A6)

f̂ e(1) = (
0,2Aδt (∂0xux + ∂0yuy),−2Aδt (∂0xux + ∂0yuy),0,0,0,0, 2

3Aδt (∂0xux − ∂0yuy), 1
3Aδt (∂0xuy + ∂0yux)

)T
, (A7)

ĝe(0) = φ
(
1,−2 + 3u2,1 − 3u2,ux,−ux,uy,−uy,u

2
x − u2

y,uxuy

)T
, (A8)

ĝe(1) = (
0,0,0, 1

3Bδt∂0xφ,− 1
3Bδt∂0xφ, 1

3Bδt∂0yφ,− 1
3Bδt∂0yφ,0,0

)T
. (A9)

Applying the Taylor expansion to Eqs. (6) and (17), and rewriting them in moment space, we can obtain

D f̂ + δt

2
D2 f̂ = −�

δt

[ f̂ − f̂ (eq)], (A10)

Dĝ + δt

2
D2 ĝ = −�′

δt

[ ĝ − ĝ(eq)], (A11)

where D = ∂t I + Cα∂α , in which I is the unit matrix and Cα is the discrete velocity matrix.
Substituting Eqs. (A1) and (A4) into (A10), we can obtain the following equations in different orders of ε:

ε0 : f̂ (0) = f̂ e(0), (A12a)

ε1 : D0 f̂ (0) = −�

δt

[ f̂ (1) − f̂ e(1)] + F(1), (A12b)

ε2 : ∂t1 f̂ (0) + D0 f̂ (1) + δt

2
D2

0 f̂ (0) = −�

δt

f̂ (2). (A12c)

ε0 : ĝ(0) = ĝe(0), (A12d)

ε1 : D0 ĝ(0) = −�′

δt

[ ĝ(1) − ĝe(1)] + R̂(1), (A12e)

ε2 : ∂t1 ĝ(0) + D0 ĝ(1) + δt

2
D2

0 ĝ(0) = −�′

δt

ĝ(2), (A12f)

where D0 = ∂t0 I + Cα∂0α . Substituting Eq. (A12b) into the left-hand side of Eq. (A12c), we can obtain

∂t1 f̂ (0) + D0

(
I − �

2

)
f̂ (1) + D0

[
�

2
f̂ e(1)

]
+ δt

2
D0 F(1) = −�

δt

f̂ (2). (A13)

In addition, from Eq. (A12a) we can derive

ρ(k) = j (k)
x = j (k)

y = 0, k > 0. (A14)
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Then on the t0 time scale, Eq. (A12b) can be rewritten as follows:

∂0x(ux) + ∂0y(uy) = 0, (A15a)

∂t0 [(−2ρ + 3u2)] = −λ1

δt

[
e(1) − f̂

e(1)
1

] + 6

(
1 − λ1

2

)
u · F(1)

= −λ1

δt

[e(1) − 2Aδt (∂0xux + ∂0yuy)] + 6

(
1 − λ1

2

)
u · F(1), (A15b)

∂t0(ux) + ∂0x

(
p + u2

x

) + ∂0y(uxuy) = F (1)
x , (A15c)

∂t0(uy) + ∂0x(uxuy) + ∂0y

(
p + u2

y

) = F (1)
y , (A15d)

∂t0
[(

u2
x − u2

y

)] + ∂0x

(
2

3
ux

)
+ ∂0y

(−2

3
uy

)
= −λ7

δt

[
p(1)

xx − f̂
e(1)
7

] + 2

(
1 − λ7

2

)[
uxF

(1)
x − uyF

(1)
y

]

= −λ7

δt

[
p(1)

xx − 2

3
Aδt (∂0xux − ∂0yuy)

]
+ 2

(
1 − λ7

2

)(
uxF

(1)
x − uyF

(1)
y

)
, (A15e)

∂t0(uxuy) + ∂0x

(
1

3
uy

)
+ ∂0y

(
1

3
ux

)
= −λ8

δt

[
p(1)

xy − mf
e(1)
8

] +
(

1 − λ8

2

)[
uxF

(1)
ay + uyF

(1)
ax

]

= −λ8

δt

[
p(1)

xy − 1

3
Aδt (∂0xuy + ∂0yux)

]
+

(
1 − λ8

2

)[
uxF

(1)
ay + uyF

(1)
ax

]
. (A15f)

Similarly, Eq. (A12c) can be rewritten on the t1 time scale as

∂t1ρ = 0, (A16a)

∂t1(ρux) + 1

6

(
1 − λ1

2

)
∂0xe

(1) +
(

1 − λ7

2

)[
1

2
∂0xp

(1)
xx + ∂0yp

1
xy

]
+ ∂0x

[
λ1

2

(
1

6
m

e(1)
2

)
+ λ7

2

(
1

2
m

e(1)
8

)]

+ ∂0y

(
λ7

2
m

e(1)
9

)
+ δt

2

{
∂0x

[(
1 − λ1

2

)
u · F(1) +

(
1 − λ7

2

)(
uxF

(1)
x − uyF

(1)
y

)] + ∂0y

[(
1 − λ7

2

)(
uxF

(1)
ay + uyF

(1)
ax

)]}
= 0,

(A16b)

∂t1(ρuy) +
(

1 − λ8

2

)[
∂0xp

1
xy − 1

2
∂0yp

(1)
xx

]
+ 1

6

(
1 − λ1

2

)
∂0ye

(1) + ∂0x

(
λ8

2
m

e(1)
9

)
+ ∂0y

[
λ1

2

(
1

6
m

e(1)
2

)
+ λ8

2

(−1

2
m

e(1)
8

)]

+δt

2

{
∂0x

[(
1 − λ8

2

)(
uxF

(1)
y + uyF

(1)
x

)] + ∂0y

[(
1 − λ1

2

)
u · F(1) −

(
1 − λ8

2

)(
uxF

(1)
x − uyF

(1)
y

)]}
= 0. (A16c)

Moreover, we can obtain the following expression under the low Mach number assumption that

∂t0 (uiuj ) = −uj∂0ip − ui∂0jp + uiF
(1)
j + ujF

(1)
i . (A17)

With the help of Eq. (A17), Eqs. (A15b), (A15e), and (A15f) can be expressed as

−λ1e
(1)

δt

= 2(1 − Aλ1)(∂0xux + ∂0yuy) + 3λ1u · F(1), (A18a)

−λ7p
(1)
xx

δt

= 2

3
(1 − Aλ7)(∂0xux − ∂0yuy) + λ7

(
uxF

(1)
x − uyF

(1)
y

)
, (A18b)

−λ8p
(1)
xy

δt

= 1

3
(1 − Aλ8)(∂0xuy − ∂0yux) + λ8

2

(
uxF

(1)
y + uyF

(1)
x

)
. (A18c)

Considering that εe(1) = f̂1 − f̂
e(0)
1 , the derivative term (∂xux + ∂yuy) in f̂

e(1)
1 can be obtained as

∂xux + ∂yuy = − f̂1 − f̂
e(0)
1 − 3δt u · F

2(1/λ1 − A)δt

. (A19)

Meanwhile, the derivative terms in f̂
e(1)
7 and f̂

e(1)
8 can also be obtained in a similar way.
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Substituting Eq. (A18) into Eqs. (A16b) and (A16c), we can obtain that

∂t1(ux) = ∂0x

[
c2
s

(
1

λ1
− 1

2
− A

)
δt (∂0xux + ∂0yuy)

]
+ ∂0x

[
c2
s

(
1

λ7
− 1

2
− A

)
δt (∂0xux − ∂0yuy)

]

+ ∂0y

[
c2
s

(
1

λ8
− 1

2
− A

)
δt (∂0xuy + ∂0yux)

]
, (A20a)

∂t1(uy) = ∂0x

[
c2
s

(
1

λ8
− 1

2
− A

)
δt (∂0xuy + ∂0yux)

]
+ ∂0y

[
c2
s

(
1

λ7
− 1

2
− A

)
δt (∂0yuy − ∂0xux)

]

+ ∂0y

[
c2
s

(
1

λ1
− 1

2
− A

)
δt (∂0xux + ∂0yuy)

]
. (A20b)

Coupling the equations on the t0 and t1 scale, the macroscopic equations (1) can be obtained.
Similarly, with the help of Eq. (A12e), we can rewrite Eq. (A12f) as

Dĝ + δt

2
D2 ĝ = −�′

δt

( ĝ − ĝ(eq)) + R̂ + δt

2
∂t R̂. (A21)

We can also derive equations on the t0 and t1 time scale as follows:

∂t0φ + ∂0x(φux) + ∂0y(φuy) = R1, (A22a)

∂t1φ = ∂0x

[
c2
s

(
1

λ′
3

− 1

2
− B

)
δt∂0xφ

]
+ ∂0y

[
c2
s

(
1

λ′
5

− 1

2
− B

)
δt∂0yφ

]
. (A22b)

Combining the equations on t0 and t1 scale, we can then
obtain Eq. (2). Similarly, the derivatives in Eq. (21) can be
calculated locally as follows:

∂xφ = −3
[
ĝ3 − ĝ

e(0)
3

] − 3δtR3/2

(1/λ′
3 − B)δt

, (A23a)

∂yφ = −3
[
ĝ5 − ĝ

e(0)
5

] − 3δtR5/2

(1/λ′
5 − B)δt

. (A23b)

APPENDIX B: ANALYSIS OF THE CHOICE OF λ4 (OR λ6)
FOR THE NO-SLIP BOUNDARY CONDITION

Numbers of previous studies have indicated that the
relaxation rate λ4 has a significant influence on the precise
implementation of the no-slip boundary condition. Therefore,
the choice of λ4 in the present MRT model will be carefully
analyzed in this section.

As shown in Fig. 19, we consider a steady incompressible
Poiseuille flow driven by a constant force F = ρ(Fx,0) for
simplicity, in which we assume that

∂ψ

∂t
= 0, ρ = const, uy = 0,

∂ψ

∂x
= 0, (B1)

where ψ is an arbitrary flow variable.
To begin with, we can obtain the following expressions

based on the relationship between f and f̂ at the node i = 1:

f 1
1 − f 1

3 = 1
3j 1

x − 1
3q1

x , (B2)

f 1
5 − f 1

6 = 1
3j 1

x + 1
6q1

x + 1
2p1

xy, (B3)

f 1
8 − f 1

7 = 1
3j 1

x + 1
6q1

x − 1
2p1

xy, (B4)

from which we can obtain

j 1
x = ux − δt

2
Fx. (B5)

Next, the postcollision distribution functions can also be
expressed in a similar way as follows:

f ′1
1 − f ′1

3 = 1
3j ′1

x − 1
3q ′1

x , (B6)

f ′1
5 − f ′1

6 = 1
3j ′1

x + 1
6q ′1

x + 1
2p′1

xy, (B7)

f ′1
8 − f ′1

7 = 1
3j ′1

x + 1
6q ′1

x − 1
2p′1

xy, (B8)

where ψ ′ (ψ = f,q,p) are the postcollision distribution
functions. Meanwhile, the postcollision distribution functions

FIG. 19. Schematic of force driven flow and the lattice
arrangement.

043305-16



MULTIPLE-RELAXATION-TIME LATTICE BOLTZMANN . . . PHYSICAL REVIEW E 92, 043305 (2015)

in moment space in Eqs. (B6)–(B8) can be obtained from
Eq. (10), and they can be expressed as

j ′1
x = (1 − λ3)j 1

x + λ3ux +
(

1 − λ3

2

)
Fxδt , (B9)

q ′1
x = (1 − λ4)q1

x − λ4ux −
(

1 − λ4

2

)
Fxδt , (B10)

p′1
xy = (1 − λ8)p1

xy + λ8

3
Aδt (∂xuy + ∂yux), (B11)

where Eq. (B11) can be rewritten as follows with the aid of
Eq. (13):

p′1
xy =

[
1 − λ8 − Aλ8

(1/λ8 − A)

]
pxy. (B12)

Then, substituting Eq. (B5) into Eq. (B9), we can obtain that

j ′1
x = ux + Fxδt

2
. (B13)

In addition, we can get the following relationship from the
unidirectional property of the flow:

f 1
1 − f 1

3 = f ′1
1 − f ′1

3 . (B14)

Combining Eqs. (B2), (B5), (B6), (B10), and (B13), we can
obtain

q1
x = −ux −

(
2

λ4
− 1

2

)
Fxδt , (B15)

q ′1
x = −ux −

(
2

λ4
− 3

2

)
Fxδt . (B16)

It should be noted that the relationships between the
distribution functions at i = 1 and 2 are

f 2
5 − f 2

6 = f ′1
5 − f ′1

6 , f 1
8 − f 1

7 = f ′2
8 − f ′2

7 . (B17)

Similarly, substituting Eqs. (B3), (B4), (B7), and (B8)
into (B17), we can obtain the expression of p1

xy as follows:

p1
xy = (1/λ8 − A)[(2/λ8 − 2A − 1)(u1 − u2) − 3Fxδt ]

3(2/λ8 − 2A − 1)
,

(B18)

and then p′1
xy can also be obtained with the help of Eq. (B12).

Furthermore, we can also obtain the following relationship as
the bounce-back scheme is adopted:

f 1
5 − f 1

6 = f ′1
7 − f ′1

8 . (B19)

With these results at hand, the relationship between u2 and u1

can now be obtained as follows:

u2 = 3u1 +
[

2 − 4τq − 3

2(τν − A − 0.5)

]
Fxδt , (B20)

where τq = 1.0/λ4 = 1.0/λ6 and τν = 1.0/λ7 = 1.0/λ8.
As for the steady Poiseuille flow considered here, the

velocity can be written as

ui = 4uc

yi

L

(
1 − yi

L

)
+ us, i = 1,2, (B21)

where yi = (i − 0.5)δx , uc = FxL
2/8ν, and us represents

the slip velocity resulting from the bounce-back boundary
condition. Substituting Eq. (B21) into Eq. (B20), we can obtain
the dimensionless slip velocity,

Us = us

uc

= −16(τq − 0.5)(τν − A − 0.5) − 3

3
�2, (B22)

where � = δx/L, and Us can be zero if τq is chosen as [8(τν −
A) − 1]/[16(τν − A) − 8]. Thus, the corresponding relaxation
rates λ4 and λ6 in the present model to satisfy the no-slip
boundary condition are

λ4 = λ6 = 16(τν − A) − 8

8(τν − A) − 1
. (B23)
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