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Very fast averaging of thermal properties of crystals by molecular simulation
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Knowledge of approximate harmonic behavior of crystals is introduced into a new “mapped averaging”
framework to yield alternative expressions for the thermodynamic properties of crystalline systems. The
expressions separate the known harmonic behavior from residual averages, which thus encapsulate anharmonic
contributions to the properties. With harmonic contributions removed, direct measurement of these anharmonic
contributions by molecular simulation can be accomplished without contamination by noise produced by the
already-known harmonic behavior. We show with application to the Lennard-Jones model that first-derivative
properties (pressure, energy) can be obtained to a given precision via this harmonically mapped averaging at
least 10 times faster than by using conventional averaging, and second-derivative properties (e.g., heat capacity)
are obtained at least 100 times faster; in more favorable cases, the speedup exceeds a millionfold. Free-energy
calculations are accelerated by 50 to 1000 times. Data obtained using these formulations are rigorous and
not subject to any added approximation, and in fact are less sensitive to inaccuracies relating to finite-size
effects, potential truncation, equilibration, and similar considerations. Moreover, the approach does not require
any alteration in how sampling is performed during the simulation, so it may be used with standard Monte
Carlo or molecular dynamics methods. However, the mapped averages do require evaluation of first and second
derivatives of the intermolecular potential, for evaluation of first and second thermodynamic-derivative properties,
respectively. Apart from its usefulness to simulation, the formalism developed here may constitute a basis for
new theoretical treatments of crystals.
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I. INTRODUCTION

The lattice dynamics (LD) method forms the foundation for
our understanding of the properties of crystalline systems [1,2].
It is based on the assumption that the intermolecular energy of
the crystal is, for the given volume, at a local minimum with
respect to atom positions, and that lattice vibrations are small
in magnitude compared to the intermolecular spacing. This
permits the use of a harmonic approximation, in which the
energy is expanded to second order in the atom displacements.
The result is an approximate Hamiltonian that can be solved in
closed form for the dynamic and thermodynamic behaviors, us-
ing either quantum or classical mechanics. Volume-dependent
thermal effects can be evaluated with the quasiharmonic
extension of this treatment.

At low temperature or high pressure, LD works very
well and provides a description of crystal behavior that is
adequate for many purposes. However, atomic vibrations grow
with increasing temperature and decreasing density, and the
harmonic approximation begins to fail. Consequently, there
are many conditions of interest for which LD is inadequate.
In such situations, the most reliable alternative is molecular
simulation.

Molecular simulation as normally practiced for the eval-
uation of anharmonic thermal properties does not exploit
the harmonic character of the crystal to improve calculation
of averages. Thus, even at conditions where LD provides
an excellent description, simulation essentially “starts from
scratch” in evaluating the properties, making no use of the LD
characterization. Consequently, the precision of the properties
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computed by molecular simulation is severely compromised,
inasmuch as the stochastic averaging must contend with fluc-
tuations contributed by the harmonic component of the energy.
There is a clear inefficiency in computing stochastically a large
contribution that is already known analytically.

In this work, we develop and demonstrate an approach that
remedies this problem. By repurposing a class of methods
formulated to improve free-energy (FE) calculations, we show
that the harmonic character of the crystal can be leveraged to
provide in essence a direct measurement of the anharmonic
contributions to the properties. The FE methods are due to
Jarzynski [3], who suggested that the convergence of FE
calculations can be accelerated via “targeted perturbation.”
Here, a coordinate mapping r → r′ couples well-defined
collective atom displacements to a FE perturbation trial,
λ → λ′, such that the positions r′ are more appropriate than r
to the perturbed state λ′. This has the effect of increasing the
overlap of the sets of configurations relevant to the λ and
λ′ systems, respectively. Good configuration-space overlap
is critical to ensuring that FE perturbation methods provide
accurate and precise results: precision is enhanced when many
configurations generated in λ are statistically important in the
λ′ state; accuracy requires that all states important to λ′ are
represented while sampling λ [4,5]. It is difficult in general
to formulate a mapping that is effective in improving overlap,
and consequently the targeted-perturbation idea has not seen
wide use. However, for crystalline systems, we show that the
harmonic approximation can provide guidance.

Targeted perturbation was formulated specifically to cal-
culate FE differences for finite perturbations. We develop it
here instead for differential perturbations, and rather than
applying the technique toward FE calculations per se, we
employ it to form FE derivatives. In this manner we devise new
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forms of ensemble averages for thermodynamic properties.
The resulting framework provides the mechanism needed to
introduce efficiencies based on the harmonic character of the
crystal, which is used to formulate an appropriate mapping.
Once specified, the approach is easily implemented and entails
only a simple reformulation of the averages taken in an oth-
erwise standard molecular simulation. Importantly, although
the harmonic approximation enters into the development of the
method, only the precision—not the accuracy—of the results is
affected by the validity of this approximation. The alternative
ensemble averages derived here are rigorous formulas for the
associated properties, and the advantage they provide is in
achieving the goal of isolating the anharmonic contributions
from harmonic behavior.

In the next section, we present the general formulation of
the “mapped averaging” method. We then introduce a mapping
specific for crystalline systems, and with it we develop formu-
las for mapped averages of thermal and volumetric properties.
In Sec. III, we demonstrate the effectiveness of these formulas
in providing properties by molecular simulation, using the
Lennard-Jones model as an example. The mapped averages
yield anharmonic properties directly by simulation, and we
show in this section that such quantities furthermore have
appealing features relating to the robustness of the property
estimates they provide; they are, for example, much less
susceptible to finite-size effects than conventional averages.
We conclude in Sec. IV, where we summarize the present
work and offer some ideas for further development.

II. FORMALISM AND METHOD

A. Free-energy derivatives

We define a unitless FE as A ≡ βA, where β ≡ (kBT )−1

with T the temperature and kB the Boltzmann constant, and A

is the FE of a d-dimensional system of N molecules in volume
V ; for a monatomic system, r is then a dN-dimensional
vector. Likewise, we define U(r; λ) ≡ βU , where U is the
configurational energy. The FE is a function of λ, which
we treat as multivariate. Jarzynski [3] showed that the FE
difference �A ≡ A(λ′) − A(λ) between states λ′ and λ can
be expressed as a targeted-perturbation ensemble average in
the λ system:

�A = − ln〈Je−�U 〉λ, (1)

where �U ≡ U(r′; λ′) − U(r; λ), and J ≡ |∂r′/∂r| is the
Jacobian of the mapping.

Our interest is in expressions for the thermodynamic
properties of the λ system, and these are given as derivatives of
the FE. Accordingly, we consider a differential perturbation in
λ: λ′ = λ + dλ, and expand to second order in dλ to develop
expressions for the first [3] and second derivatives of A with
respect to elements of λ′ (as indicated by subscripts):

Aν = −〈Jν〉 + 〈 Uν〉, (2a)

Aμν = 〈Jμ〉〈Jν〉 − 〈Jμν〉 + 〈 Uμν〉 + Cov[ Uμ,Jν]

+ Cov[Jμ,Uν] − Cov[ Uμ,Uν], (2b)

where Cov[X,Y] ≡ 〈XY〉 − 〈X〉〈Y〉. In the case where J is
independent of r, it may be removed from the ensemble
averages, and its covariances are zero; then

Aν = −Jν + 〈 Uν〉, (3a)

Aμν = JμJν − Jμν + 〈 Uμν〉 − Cov[ Uμ,Uν]. (3b)

The derivatives of U can be separated into parts due to the
mapping and parts due to any direct dependence on λ′ (for
fixed r). Using ∂ν to represent the latter,

Uν = ∂νU − βF · rν, (4a)

Uμν = ∂μνU − βF · rμν + βrμ · � · rν

− [∂μ(βF) · rν + ∂ν(βF) · rμ], (4b)

where βF ≡ −∇rU is the force vector and β� ≡ ∇r∇rU is
the force-constant matrix. All derivatives in Eqs. (2)–(4) are
evaluated at r′ = r and λ′ = λ.

B. Temperature and volume mapping

We consider now the specific case in which the FE
derivatives are with respect to (reciprocal) temperature and
volume, i.e., λ ≡ (β,V ). We then arrive at expressions for
the energy and pressure (via first derivatives), heat capacity,
bulk modulus, and thermal pressure coefficient (via second
derivatives), all based on a mapping informed by the harmonic
approximation.

Before proceeding, we give special consideration to the
treatment of the volume-change mapping. The conventional
way to evaluate derivatives of the FE with volume in fact
already uses a mapped average: when performing a volume
change, molecule positions are scaled homogeneously with
the size of the box, thereby preventing any molecules from
landing outside the box when the volume is decreased, or
leaving empty gaps when the volume is increased. It has
long been recognized that this formulation provides a better
average than one where the positions are not mapped. Care
must be taken in the handling of periodic boundary conditions
(PBCs) in connection to this mapping—particularly when
using nonpairwise potentials—but the necessary procedures
are well understood [6,7] and correctly implemented in most
simulation codes. To avoid such complications in connection
to the proposed harmonic mapping, we take measures to
separate the uniform scaling from it. Specifically, we express
the new mapping in terms of position coordinates r that
are, by definition, divided by the box length L (such that
V = Ld ). In this formulation, the potential energy is written
as U(Lr; λ). Hence, the conventional uniform scaling (and any
PBC complications that accompany it) enters the framework
for AV via the term ∂VU in Eq. (4a), while the proposed
harmonic mapping is isolated in the βF · rV contribution; a
corresponding separation is made for the second derivatives.

The structural effects resulting from changes of state in a
harmonic system can be expressed in terms of the deviation
of each molecule from its lattice site. Accordingly, we define
the mapping in terms of �r ≡ r − R, where R is the vector
of lattice-site coordinates (which, in our L-scaled coordinate
system, is independent of volume, so R′ = R). Specifically,
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TABLE I. Ensemble averages required for first- and second-derivative properties, showing both conventional and harmonically mapped
formulations.

Property Definition Conventional average Harmonically mapped average

Configurational
energy

U = Aβ 〈U〉 d(N−1)
2β

+ 〈U + 1
2 F · �r〉

Pressure P = −AV

β

ρ

β
+ 〈Pvir〉 �P̂ + 〈Pvir + fV F · �r〉

Isochoric
Heat capacity

T CV = −βAββ βVar[U ] d(N−1)
2β

+ β Var[Uanh] − 1
4 〈F · �r + �r · � · �r〉

Isothermal
bulk modulus

B

V
= AV V

β

ρ

βV
− 〈∂V Pvir〉 − βVar[Pvir]

1
V
�B̂ − β Var[Panh] − 〈∂V Pvir + fV V F · �r

+2fV ∂V F · �r − f 2
V �r · � · �r〉

Isochoric thermal
pressure coefficient

T γv = AβV − AV

β
N

Vβ
+ βCov[U,Pvir]

�P̂ + β Cov[Uanh,Panh] + 1
2 〈fV F · �r

+∂V F · �r − fV �r · � · �r〉
Uanh ≡ U − Ulat + 1

2 F · �r; Panh ≡ Pvir + fV F · �r − Plat; Pvir = −∂V U ; Plat = −∂V Ulat; Blat = −V ∂V Plat; ρ ≡ N/V ;

fV = β�P̂−ρ

d(N−1) ; fV V = f 2
V − 1

V

β�B̂−ρ

d(N−1) ; �P̂ ≡ P̂ − Plat; �B̂ ≡ B̂ − Blat; ∂V F = 1
V d

(F − r · �) (consult [7] in treating r).

we have, for a classical monatomic crystalline system,

�r′ = f (β ′,V ′)�r, (5a)

where the function f is

f (β ′,V ′) ≡ L

L′

(
β

β ′

)1/2(
V

V ′ e
−β[δA−δUlat]

)1/d(N−1)

. (5b)

Here, δX ≡ X(V ′) − X(V ) is the change in property X

resulting from this scaling, and Ulat(V ) is the perfect-lattice
energy; N − 1 rather than N appears in the exponent because
we work with a system having fixed center of mass (c.m.)
(this is enforced in the mapping by ensuring that the c.m.
of the atoms coincides with the c.m. of the lattice). The
temperature dependence of this scaling is based on the T 1/2

dependence of the vibration amplitude of a classical harmonic
system; this scaling was used previously to formulate an
efficient temperature-perturbation scheme to measure the FE
of crystals [8,9]. For the volume dependence, we estimate
δA ≈ −P̂ δV + B̂δV 2/2V , where P̂ and B̂ are parameters
selected to approximate the pressure and bulk modulus,
respectively. The measured properties do not depend on those
parameters, but their uncertainties do; there is always an
optimum value that minimizes the uncertainty. For reasons
related to the treatment of finite-size effects (see Sec. III C),
we used quasiharmonic analysis to estimate P̂ and B̂, and
we observed that this choice is not far from the optimum.
A similar scaling was used recently to formulate an efficient
volume-change move for isobaric simulations of crystals [10].
Both the volume and temperature scaling can be reasoned as
distributing the nonlattice free-energy change of the crystal
uniformly and isotropically among all the molecules.

Given this mapping, the Jacobian of transformation and the
necessary energy derivatives can be easily derived. First, the
Jacobian (expressible as |∂�r′/∂�r| because R is constant) is

J (β ′,V ′) = f (β ′,V ′)d(N−1) (6)

(the full Jacobian used in Eq. (3) multiplies this by a factor of
(V ′/V )N−1 to account for the uniform coordinate scaling).
This is independent of r, so we can use the form of the

derivatives given in Eq. (3). Second, the energy derivatives
can be obtained by plugging the first and second derivatives of
r (viz., rν = fν �r and rμν = fμν �r) into Eq. (4), yielding

Uν = ∂νU − βfν F · �r, (7a)

Uμν = ∂μνU − βfμν F · �r + βfνfμ�r · � · �r

− [fν∂μ(βF) + fμ∂ν(βF)] · �r. (7b)

Expressions for some thermodynamic properties derived
from these formulas (using harmonic estimates of P̂ and B̂)
along with their conventional counterparts are summarized in
Table I. These include the energy U and pressure P as first-
derivative properties, and the three {T ,V } second-derivative
properties: the isochoric heat capacity, CV ≡ (∂U/∂T )V ;
the isothermal bulk modulus, B ≡ −V (∂P/∂V )T ; and the
isochoric thermal pressure coefficient, γv ≡ (∂P/∂T )V .

To illustrate that these “harmonically mapped averages”
give directly the anharmonic contribution, let us consider the
expression for the configurational energy, U . For a harmonic
system, −1/2 F · �r is, in every configuration, exactly equal
to the total energy (beyond Ulat), so the mapped average (U +
1/2 F · �r) is identically Ulat if applied to a harmonic system.
Added to this average is the analytic expression for the energy
of a harmonic system (1/2 kBT per degree of freedom), which
emerges naturally from the Jacobian derivative in Eq. (3a). The
volume-perturbation mapping is less rigorous—it assumes all
phonon modes scale equally with volume—so for a harmonic
system we cannot expect a contribution of zero to the volume-
derivative averages for every configuration. For the pressure,
the primary contribution is P̂ , and added to this is an average
comprising terms that tend to offset to the extent that the system
is harmonic.

A noteworthy feature of Eqs. (7) is that, in the case
of volume derivatives, the quantities directly relating to the
harmonic mapping (i.e., those other than ∂VU and ∂μVU) are
given in terms of �r (rather than r) and the total forces and
their derivatives. The complications from PBC [6,7] afflicting
quantities such as F · r—which prevent it from being evaluated
as written, in terms of the total force F on each molecule—are
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not present in F · �r. Moreover, the PBC-affected uniform-
scaling contributions are compartmentalized (appearing as Pvir

and ∂V Pvir in Table I) and unchanged by the harmonic map-
ping. These features are especially helpful when harmonically
mapped averaging is implemented using established modeling
packages (e.g., LAMMPS and VASP), which typically provide
means to compute the uniform-scaling quantities with PBC,
while also providing access to the total force on each atom.
Incidentally, for molecular dynamics (MD) simulations, the
forces are computed in the process of advancing the atom
positions. Consequently, the force vector F is available “for
free,” allowing the first-derivative quantities [Eq. (7a)] to be
evaluated with little added computational overhead.

C. Simulation details

We demonstrate the mapped averaging approach with
application to the Lennard-Jones (LJ) model, defined by the
pair potential u(r) = 4εLJ[(σLJ/r)12 − (σLJ/r)6], where σLJ

and εLJ are the LJ size and energy parameters, respectively,
and r is the pair separation. In what follows, all quantities and
results are presented in units such that σLJ and εLJ/kB are unity
(“LJ units”).

We performed standard canonical-ensemble (NV T ) Monte
Carlo (MC) simulations [11] over thermodynamic conditions
within the region of stability of the LJ fcc solid [12]. Most
calculations were performed for cubic box of N = 500 atoms,
although some simulations of larger systems (N = 4 n3 atoms,
with n = 6,7, . . . ,10) were conducted to study finite-size
effects. The LJ potential was truncated at rc = 3.0, except for
simulations performed to analyze the long-range correction,

which considered cutoffs as large as 7.5. We collected both
conventional and mapped averages as defined in Table I, with
samples taken after every N MC trials (which we define as one
“cycle”). The quasiharmonic estimates of the pressure and bulk
modulus (P̂ and B̂) were obtained through polynomial fitting
of the harmonic free-energy versus volume, and then analytic
differentiation of the fitting function. Runs of 1 × 107 MC
trials were performed (after 2 × 106 steps of equilibration)
at each state point, and each run was repeated 100 times
with different random-number seeds, to collect error statistics.
We also conducted canonical-ensemble MD simulations to
study the effect of time step on the averages. For these
simulations, the temperature was controlled using an Andersen
thermostat [13] applied every 100 MD steps, and samples for
the averages were taken every 10 MD steps (which thus defines
a cycle for the MD simulations).

Most of the simulations were conducted to follow an
isochore of density ρ = 1.0 or an isotherm of temperature
T = 1.0. According to [12], the melting temperature of that
isochore is Tmelt = 0.930 while the solid melting density of
the isotherm is ρmelt = 1.011 (both in LJ units).

It is worth emphasizing that sampling of configurations is
unaffected by the use of harmonically mapped averaging. The
entire difference in the proposed method is the collection of
averages in the fourth column of Table I, versus the averages
given in the third column. The MC and MD methods used to
conduct the simulations were unchanged from conventional
techniques.

All calculations were performed on 2.83-GHz Intel�

CoreTM 2 Quad CPU Yorkfield Q9550 processors using the
ETOMICA molecular simulation package [14].
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FIG. 1. (Color online) Views of the precision of harmonically mapped averaging in comparison to conventional averaging. Values plotted
in (a) are for each configuration; (b) and (c) are averages over 1 × 107 MC steps. Lines in (b) and (c) simply join the points, and bars are 68%
confidence intervals. Difficulty ratio in (d), (e), and (f) is ratio of D ≡ t1/2σ for conventional versus mapped averaging, where t is CPU time
required to obtain a result with uncertainty σ [15]. To give a physical scale, using argonlike parameters, the pressure for states in (d) ranges
from about −150 to +150 MPa, and for (e) about 1 TPa to 200 MPa. Data in (f) show performance along the melting line.
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III. RESULTS AND DISCUSSION

A. Difficulty of measuring free-energy derivatives

In Fig. 1 we present several plots that illustrate the im-
proved performance of mapped averaging versus conventional
averaging. First, Fig. 1(a) provides a direct picture of the
fluctuations in calculation of the energy per molecule. The
comparison shows clearly that the conventional method suffers
greatly from fluctuations in the harmonic contribution to the
integrand. What is particularly notable in this case is how
small the mapped-average fluctuations are relative to the
difference from the harmonic-contribution average (3/2 kBT ).
The mapped average almost immediately provides a value of
the anharmonic contribution that is statistically significant on
this scale. In contrast, the conventional method would require
a long period of averaging to be able to discern this difference,
i.e., to provide an energy that is meaningfully different from
the simple harmonic energy.

Figure 1(b) plots the average energy for two isochores,
each from near-zero temperature up to the melting temperature
for the given density (Tmelt = 2.615 at ρ = 1.2 [12]). The
data are presented as Uanh/T 2, which remains finite as
T → 0; this is the integrand used to compute FE differences
via thermodynamic integration (TI) in temperature along an
isochore (see Sec. III B). The size of the error bars and
the scatter in the data clearly show that the result from the
mapped average is much more precise, for the same amount
of computation. As a consequence, the precision of the FE
difference computed via integration of these data is markedly
improved as well (see Sec. III B).

Figure 1(c) illustrates the same, but for the isochoric
heat capacity CV , a second-derivative property. The trivial
3(N − 1)kB/2 harmonic contribution is subtracted and the
data are presented as CV,anh/T , which is finite as T → 0. The
conventional and mapped averages are mutually consistent (as
they must be, because neither involves any approximation),
but the data for conventional averaging are widely scattered,
far more than the mapped average. Such behavior is typical
for stochastic averages of second-derivative properties. CV

is given as a variance of the energy (see Table I), which
is noisy by itself as shown in Fig. 1(a). On the other hand,
the mapped-average data show less scatter because CV,anh is
given as a variance of the less noisy anharmonic energy plus
a canonical average that vanishes near zero temperature (see
Table I).

Figures 1(d)–1(f) show the performance of the methods
in terms of the “difficulty,” D ≡ t1/2σ , defined in terms of
the central-processing unit (CPU) time t required to obtain a
stochastic average with uncertainty σ . This measure accounts
for any extra computational effort needed to perform the
mapped average, providing a more fair comparison with the
conventional method than might be given by the uncertainties
alone [15]. Each plot compares performance via the ratio of
difficulties of the methods (Dconv/Dmap). The square of this
quantity gives the ratio of CPU times required by conventional
versus mapped averaging to achieve a result of the same
precision.

Figures 1(d) and 1(e), respectively, demonstrate the tem-
perature and volume dependence of the performance. In
each case, the system becomes more harmonic toward the

zero of the abscissa and reaches melting at the opposite
end. Performance improvements cluster according to whether
the property is a first- or second-derivative quantity. As the
conditions move away from melting, the efficiency shown by
harmonic mapping becomes just extraordinary: first-derivative
properties are computed with 100 to 10 000 times less effort,
while speedup for the second-derivative properties exceeds a
millionfold for the highest density examined.

Figure 1(f) gives the difficulty ratio for each property along
the melting line, starting from the triple point (Ttp = 0.687
and ρtp = 0.963) [12]. These are the conditions where the
crystal deviates most from harmonic behavior, and thus where
harmonically mapped averaging is least effective. Even here,
in this worst-case condition, performance of the new method
is 10 to 20 times faster for first-derivative properties, and about
100 times faster for second-derivative properties.

The second-derivative quantities reported above were
computed for each state point via a single simulation us-
ing fluctuation-based formulas (see Table I). An alternative
procedure is to compute mapped averages of the relevant
first-derivative quantity over a whole range of thermodynamic
states, and then fit and differentiate these data to get the
second-derivative property. Comparison of these two schemes
is computationally fair only if the interest is in a single
second-derivative property over that range (as we assume
here), not just in a single state. In addition, it is interesting to
see how the efficiency of measuring first-derivative quantities
(conventional and mapped) will be reflected in deriving the
second derivatives from them.

We take the isochoric heat capacity CV as an example [the
bulk modulus B (not shown here) behaved similarly]. The
behavior of Uanh/T 2 [see Fig. 1(b)] makes it an easier function
to fit, compared to fitting Uanh directly. However, the slope of
Uanh/T 2 does not directly yield CV , so additional analysis is
needed to extract the uncertainty in the heat capacity from the
raw data. We used second- and fourth-order polynomial fits
of the conventional and mapped averages, respectively, from
near-zero temperature to 1.1 Tmelt (to improve fitting results up
to the melting point). Figure 2 shows the error in CV /T from
fitting and differentiating, versus direct ensemble averaging.
It is clear that the fitting is more efficient than the direct
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FIG. 2. (Color online) Comparison of the uncertainties from the
conventional and mapped measurements of heat capacity using
“direct” method (i.e., formulas in Table I) vs differentiation of a
polynomial fit of Uanh/T 2.
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method for both conventional and mapped averages. Fitting
and differentiating the conventional first-derivative average is
approaching the efficiency of the direct measurement of CV us-
ing the mapped average, although the latter remains markedly
better. Fitting and differentiating the mapped first-derivative
average is the best approach of all, in the present context of
computing the full behavior of one second-derivative property.

To summarize: for evaluation of second-derivative prop-
erties, the choice of whether to fit first-derivative mapped
averages, or perform direct measurement of the second-
derivative mapped average, depends on the circumstance. If a
single state point is of interest, or if multiple second-derivative
properties are required, then direct averaging is preferred. If
a range of state conditions is needed, and the state variable
being varied is that appropriate to the necessary differentiation,
then the fit-and-differentiate approach should be considered;
this method is also an appealing option for cases where
the configurational second derivatives [components of the �

matrix in Eq. (7b)] are not easily determined.

B. Difficulty of measuring free energy

One of the important applications of measuring the energy
is to evaluate the FE using the well-known TI technique [11].
This application is one where direct measurement of the
anharmonic contributions is particularly valuable. The TI for-
mulation for the change in configurational FE with temperature
is

βA(T ) = β0A(T0) −
∫ T

T0

U (T̃ )

kBT̃ 2
dT̃ . (8)

When integrating from low temperature, a practice used
previously by us [8,9,16] and others [17] is to separate
the configurational FE into lattice-energy, harmonic, and
anharmonic contributions:

βA(T ) = βUlat + βAharm(T ) + βAanh(T ), (9a)

where

βAharm(T ) = 1

2

d(N−1)∑
i

ln

(
�ωi

kBT

)
− d

2
ln N + ln ρ, (9b)

βAanh(T ) = −
∫ T

0

Uanh(T̃ )

kBT̃ 2
dT̃ . (9c)

In the harmonic contribution, ωi are the eigenvalues of the
Hessian matrix of the potential energy, and the last two terms
are center-of-mass contributions (which may be neglected in
the thermodynamic limit).

The motivation for using the separation given in Eq. (9)
rather than integrating Eq. (8) directly is to remove 1/T 2

and 1/T divergences of the integrand of Eq. (8)—due to
lattice and harmonic contributions, respectively—as T → 0,
leaving the integral of Uanh/T 2, which is well behaved [as
seen in Fig. 1(b)]. Now, added to this, we have the benefits
provided by mapped averaging for evaluation of Uanh/T 2.
The low-temperature uncertainty in this quantity is the largest
source of uncertainty in the FE when evaluated via TI from
low temperature; this is also where harmonically mapped
averaging is most effective in improving precision. In this
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FIG. 3. (Color online) Difficulty in measuring the free energy.
The small jumps in the TI results are due to changing the order of the
polynomial fit (see text).

manner, we see that the tremendous benefit provided by
harmonic mapping at low temperature impacts the calculation
of the FE even at temperatures approaching melting.

To demonstrate, we examine the stochastic uncertainty
in the anharmonic FE computed according to Eq. (9c). We
integrate the same functions that were fit to Uanh/T 2 in the
previous section (which there were instead differentiated to
obtain CV ). Figure 3 shows the difficulty D for measuring the
FE using the TI method (both conventional and mapped), in
comparison to that for the widely used Frenkel-Ladd (FL)
integration scheme [18,19]. The small discontinuity in the
TI uncertainty is due to changing the polynomial order with
temperature. The FL difficulty is independent of T , because
the integration is done over an internal coupling parameter
and the process is largely unaffected by temperature. The
difficulty of TI increases with temperature, which is primarily
because the computational effort is cumulative with T . The
computational cost of the conventional TI rises very quickly
at low temperature, due to the large uncertainty in Uanh/T 2

at these conditions, and matches the difficulty of FL over
most of the temperature range. The efficiency of harmonically
mapped averaging is much better than both conventional TI
and FL. Remembering that CPU time goes as the square of
the difficulty, the performance speedup at low temperature
approaches 1000-fold. In fact, mapped-averaging TI can yield
the entire A versus T isochore up to the melting temperature,
for about 50 times less computational effort than required by
FL for a single temperature point.

Before closing this section, we should address issues
relating to quantum effects. All of the foregoing FE methods
have assumed classical behavior, even though we are invoking
the limit of zero temperature in the calculations. If quantum
effects are unimportant at the ultimate temperature of interest,
then it is acceptable to use an entirely classical treatment in
the TI process, as long as we are consistent and use a classical
harmonic reference [i.e., Eq. (9b)] for the low-temperature
behavior. Conversely, if the temperature of interest for the
calculations is one where quantum effects are significant,
then they must be introduced at some point. However, even
then, this need not necessarily be done during the TI process.
One can perform the TI assuming classical mechanics, and
then perform additional FE calculations (at the temperature
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of interest) to introduce the quantum effects [20,21]. Alterna-
tively, it is possible, if desired, to include quantum effects in
Aharm and throughout the TI calculation; details of how this
is accomplished with mapped averaging will be considered in
future work. The preferred approach taken to these issues will
depend on the larger context in which the FE calculation is
performed.

C. Thermodynamic limit

Extrapolation to the thermodynamic limit is used to evaluate
properties accurately at the macroscopic level. The usual
way to do this entails simulating the system at progressively
larger values of N and/or rc, and extrapolating the data to
the limits 1/N → 0 and 1/rc → 0. This procedure can be
computationally expensive, inasmuch as it requires at least
two simulation sizes at each state point (or more, to ensure
the extrapolation is linear) and necessarily involves larger
systems and longer-ranged interactions than the minimum
that one might prefer to use. In this section, we examine
both the finite-size and long-range corrections (FSC and
LRC, correcting for N < ∞ and rc < ∞, respectively),
exploiting knowledge of the harmonic behavior in that limit.
Harmonically mapped averaging plays a role as it estimates,
directly and precisely, the anharmonic contribution. We find
that the anharmonic contribution is much less sensitive to
N and rc than are the lattice and harmonic contributions.
This suggests a strategy in which the harmonic behavior is
extrapolated to the thermodynamic limit separately from the
anharmonic contributions. The pressure is taken as an example
to demonstrate these considerations.

Figure 4 presents the system-size dependence of the
pressure. The main figure shows both the pressure P (N )
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FIG. 4. (Color online) Finite-size effects of measuring the pres-
sure directly (no correction) and using the HarmFSC correction
[Pharm(∞) − Pharm(N )]. All data were computed via harmonically
mapped averaging with rc = 3.0. Inset: Effect of temperature on
the finite-size effects of the corrected pressure. Each line is the
HarmFSC-corrected pressure for the indicated temperature, minus
the value for N → ∞ (i.e., the y intercept), which is subtracted
to allow a common scale for all temperatures. Lines are linear fits
weighted by uncertainties.

as measured in simulation (direct), and the same value but
with a correction [16] added based on extrapolation of the
harmonic-system contribution:

PHarmFSC(N ) = P (N ) + (Pharm(∞) − Pharm(N )). (10)

Pharm(∞) is obtained by extrapolation of Pharm(N ) versus 1/N ;
this is much easier to accomplish than extrapolation of P (N )
itself, as it involves no molecular simulation. Thus, the finite-
size dependence of the corrected pressure is due only to the
anharmonic contribution. It can be noticed that the slope of the
corrected pressure is much smaller than the direct one, and in
fact it is almost flat. Hence, a quick (but accurate) estimate of
the pressure in the 1/N → 0 limit can be obtained using only a
single simulation of a relatively small system. Similar behavior
has been observed [8,9,16] in measuring the FSC of the FE.

The effect of temperature on the size dependence of the
corrected pressure is depicted in the inset of Fig. 4. The slope
increases with temperature, showing that the finite-size effects
of the corrected pressure grow as the system deviates from
harmonicity. However, the slope of the corrected pressure at
the highest temperature visited (T = 0.8) is still much smaller
(≈6 times smaller) than that of the direct one.

By way of explanation, one should consider that the effect
of increasing the system size N (or equivalently, V ) at
constant rc is to admit a finer spectrum of short-wavelength
fluctuations while also introducing new fluctuations at larger
length scales. The new short-wavelength fluctuations will not
differ qualitatively from those present at smaller system sizes,
and so one might expect their effect on the properties to be
small. The longer-wavelength fluctuations are qualitatively
different, but typically they have small amplitudes, and hence
they are adequately characterized by a harmonic treatment. The
consequence is that most of the finite-size effects are captured
by the extrapolation of the harmonic contribution alone, as
demonstrated here.
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FIG. 5. (Color online) Infinite-range pressure as estimated by
three choices for the correction to the finite-range simulation average:
the standard LRC (assuming homogeneous medium) [11]; LatLRC ≡
Plat(∞) − Plat(rc); and HarmLRC ≡ Pharm(∞) − Pharm(rc). Pressure
estimates are plotted as a function of the potential-cutoff radius used
in the simulation. Some points from LRC and LatLRC with short rc

are out of the scale (as indicated by their absence where other points
are plotted at a given rc). All data were obtained via harmonically
mapped averaging of a system of N = 4000 LJ atoms.
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Assuming that the model of interest is not one with a
truncated potential, full characterization of the thermodynamic
limit should consider also extrapolation to an infinite cutoff.
The effect of truncation on the pressure for fixed N is
depicted in Fig. 5, showing different choices for the LRC
(the uncorrected pressure is not presented as it is outside the
range of the plot). First, we examine application of the standard
LRC [11]—which assumes a homogeneous, isotropic medium
beyond rc—to the measured pressure. This treatment provides
an unsatisfactory result: for the smaller rc values (2.5 and
3.0), the corrected pressure is off the scale of the figure, and,
even worse, no systematic trend is exhibited with increasing rc,
precluding a meaningful extrapolation. Second, we use a lattice
correction (LatLRC), which is defined as Plat(∞) − Plat(rc). A
truncation of rc = 300 is used to estimate the infinite-lattice
pressure, which is converged to the eighth digit to the infinite-rc

limit. This approach greatly improves upon the standard LRC,
in that it exhibits a linear behavior with 1/r3

c . However, its
slope is still noticeable, and the rc = 2.5 corrected pressure
falls out of the scale of the figure. To improve this correction
even more, a harmonic correction (HarmLRC), defined as
Pharm(∞) − Pharm(rc), is added. Thus, the cutoff dependence
of this “lattice + harmonic” correction is due only to the
anharmonic contribution. The figure shows that the slope is
markedly reduced, and in fact it is statistically flat. Unlike the
behavior of the FSC, for LRC the temperature has a negligible
role on the anharmonic pressure versus rc relation; running
MC at different temperatures (including melting) finds the
same statistically flat dependence (not shown). In contrast, we
find that the sensitivity of the LRC and LatLRC corrections
increases with increasing temperature.

We see then that using a small cutoff (as small as rc = 2.5
for this LJ prototype) gives a quick, yet accurate, measure
of the 1/rc → 0 limit while, in contrast, a cutoff of at least
rc = 6.5 is required for other corrections to get statistically
similar results. The cost of this larger cutoff is considerable, as
a simulation with rc = 6.5 requires about 17 times more effort
than one using rc = 2.5. This extra cost to obtain comparable
accuracy adds to the cost of obtaining comparable precision
(Sec. III A) for the conventional versus mapped averaging.

D. Effect of mapping on the trajectory properties

While Fig. 1(a) shows how small the standard deviation of
the harmonically mapped energy is relative to the conventional
one, the uncertainty of the average depends also on the
correlation in the data. Figure 6 presents the autocorrelation of
the quantities sampled to compute the energy via mapped and
conventional averaging. The figure clearly shows the faster
decay of the mapped-average (U + F · �r) correlation, which
reaches zero (on the scale of the figure) after less than half
the sampling required for the correlation of the conventional
average (U ) to approach zero. In practical terms, the faster
decay of correlations translates into more independent samples
for a given number of MC or MD steps. This is demonstrated
in Fig. 7, which presents the fraction of MC cycles that
yield an effectively independent sample. The measure is
defined as Var/(σ 2M), where Var is the sample variance of
the measured quantity and M is the total number of MC
trials (summed over independent runs) performed to yield
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FIG. 6. (Color online) Normalized autocorrelation function of
the conventional and mapped measurements of the energy. A
trajectory of 2 × 105 cycles is used.

an average with uncertainty σ . Consistent with Fig. 6, the
figure shows that two to four times more independent samples
can be obtained using mapped averaging versus conventional
averaging, even though both are taken over the same set of
configurations. Similar conclusions (albeit with less effect)
are made from study of correlations in MD simulation (not
shown).

Study of the LRC and FSC in Sec. III C showed that the
anharmonic contributions are dominated by short-wavelength
fluctuations, whereas harmonic contributions are affected also
by long-wavelength fluctuations. The latter will take longer to
decorrelate, and consequently any quantities they contribute to
will require longer periods for decay of their autocorrelation,
as seen here.

A related but distinct consideration is the amount of
sampling required for the system to equilibrate after starting
from a nonequilibrated initial configuration. This point is
examined in Fig. 8, which shows the process of equilibra-
tion for both averaging methods. The instantaneous energy
difference (from the average) is normalized by the initial
energy difference of each method in order to distinguish
between the equilibration speed and accuracy (U0 − Uavg is
much larger for conventional averaging). As a marker for
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FIG. 7. (Color online) Number of independent energy samples
out of 2 × 105 measured samples. The number of independent
samples is estimated as Var/σ 2 with Var and σ the sample variance
and uncertainty, respectively.
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FIG. 8. (Color online) Equilibration rate of conventional and
harmonically mapped averages. All data are normalized to the initial
energy U0 (off the average Uavg). The dotted lines are the normalized
uncertainties from a production run of 1 × 104 MC steps.

equilibration, we used the point where that normalized energy
difference is equal to the likewise-normalized uncertainty
corresponding to a short (1 × 104 trials) production run (this
uncertainty was given by scaling it up from a much longer run,
where it could be determined more precisely). We observe
about three times smaller equilibration time with the mapped
average.

Finally, we studied the effect on harmonic mapping of
inaccuracies in the sampling of configurations. Specifically,
in Fig. 9 we examine conventional and mapped averages as
a function of the step size used in a MD simulation, fixing
the total physical time simulated. A larger step size will yield
configurations that deviate more from the theoretically correct
trajectory, for the given potential, initial conditions, etc. The
figure shows that the mapped average is much less sensitive
to these inaccuracies. Therefore, a larger time step can be
used in the MD simulation without losing as much accuracy
in the property measurements. This is especially important
with models like those based on density functional theory
(DFT), where the cost of each MD step is expensive; allowance
for larger time steps permits the simulation based on mapped
averaging to visit much longer dynamics than the conventional
method.
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FIG. 9. (Color online) Convergence of the average energy with
respect to MD time-step size. Red line simply joins the points. All
points are generated using the same integration time, t = 5000 (LJ
units).

IV. CONCLUSIONS

We have introduced and detailed the performance of har-
monically mapped averaging for the calculation of properties
of monatomic crystals. The method entails a reformulation
of the ensemble averages taken in an otherwise standard
molecular simulation. The idea has been applied here to
calculation of first- and second-derivative properties (with
respect to both temperature and volume), and it shows
extraordinary efficiency in comparison to standard approaches.
Harmonically mapped averaging yields properties to a given
precision with tens to millions of times less computational
effort, depending on property and state condition. We have
demonstrated that the technique shows significant advantage
in other respects as well: the quantities it measures are less
susceptible to finite-size effects and truncation of the potential,
they equilibrate and decorrelate more quickly, and they are less
affected by small inaccuracies in sampling. The methodology
requires no change to the sampling algorithm, and the
averages it specifies are straightforward to implement. They
do, however, require evaluation of first and perhaps second
derivatives of the potential, and the difficulty and expense in
implementing such a calculation has to be weighed against the
efficiencies brought by the mapped average. First derivatives
are usually available, as they are needed to compute forces
for MD simulations; if second derivatives of the potential are
too difficult to access, one may turn to numerical derivatives of
ensemble averages to obtain second-derivative thermodynamic
properties, as demonstrated in Sec. III A.

Methods developed here can be extended to handle crys-
talline systems in other contexts: (1) In preliminary studies
we find mapped averaging to be effective for more complex
models, including multibody potentials (viz., the extended
Finnis-Sinclair model of tungsten, and DFT-based simulations
of aluminum and of iron). (2) Extension to molecular crystals
should be possible, and effective to the extent that the
crystal still has harmonic character. The appropriate mapping
for rotation is not obvious, but there is work to build on
when attempting this [9]. (3) The treatment presented here
has been entirely classical. Nuclear quantum effects can be
handled using semiclassical or path-integral methods [22].
It is likely that harmonically mapped averaging can be used
to some benefit when applied to such simulations. However,
the temperature dependence exhibited by quantum harmonic
systems differs markedly from the classical form, so the
mapping given by Eq. (5) will require reformulation. (4)
Harmonically mapped averages of the energy and heat capacity
can be performed in NPT simulations, in the same manner
as described here for NV T . There is of course no need to
compute the pressure then, but the underlying concept can be
applied to enhance sampling of the volume [10]. (5) In terms
of properties, we have focused here on an important but not
comprehensive set of solid-phase behaviors, and the method
could be extended to handle others. In particular, anisotropic
mappings can be formulated to improve calculation of other
elastic constants. A noteworthy feature of the method is that
all mapped averages can be measured simultaneously, because
the enhancement is not targeted at modifying sampling.

Finally, we should point out that, apart from their usefulness
to molecular simulation, the alternative formulation of the
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ensemble averages given here are, in and of themselves,
intrinsically interesting: they isolate anharmonic effects in
a way that is novel, nontrivial, and rigorous. Indeed, they
may form a basis for new understanding or new theories
for crystalline behavior. Such considerations are as of now
completely unexplored.
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