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A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated
by a high-intensity laser pulse of fs–ps duration is proposed. The model is confirmed by detailed comparisons
with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission
and the quasistatic magnetic field generation in laser-plasma interaction experiments.
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I. INTRODUCTION

Recent developments of high-power laser sources raise the
acute problem of electromagnetic pulse generation in laser-
target interactions. On one side, these electromagnetic pulses
can be very harmful for diagnostic equipment at distances of
a few meters from the source. On another side, it can be an
attractive way to produce intense quasistatic magnetic fields
with various applications.

The electromagnetic pulse created during the interaction
of an intense subpicosecond laser pulse with a solid target
contains two spectral components [1–3]. The first one is
related to the current of fast electrons ejected from the target
and corresponds to an electromagnetic emission in the THz
domain [4]. Although the amplitude of such a current could
be rather high, the pulse duration is too short and electronic
circuits are not sensitive in this spectral domain [5]. The
second one is due to the neutralization current flowing through
the target holder. It is much longer, of the nanosecond time
scale, corresponding to the GHz spectral domain. Depending
on the target-holder system, this neutralization current can
be oscillating, generating a so-called electromagnetic pulse
(EMP), which propagates into the interaction chamber [6]
and may be harmful for electronic devices. The neutralization
current can also be aperiodic and used for new applications
related to directed electromagnetic pulses and for production
of strong quasistatic magnetic fields [7,8].

Experimental demonstration of the dominant role of the
neutralization current in the EMP generation together with a
simple analytical model and large-scale numerical simulations
has been published recently [6,9]. But detailed numerical
simulations of the target charging process require large-scale
simulations with hydrodynamic, Monte Carlo, and particle-in-
cell codes [6], which do not allow a systematic investigation
of the EMP dependence with the experiment parameters. We
propose here a simplified quasianalytical model permitting a
rapid evaluation of the target charge in function of the target
and laser parameters. It allows us to identify the relevant effects
in this multiphysics process of laser-matter interaction and to
predict the EMP characteristics. The analysis reveals different
charging regimes depending on the laser and target parameters.
The paper is organized as follows. Section II presents a
qualitative description of the target charging physics. The
following sections give the model details and the associated
evolution equations: the electrons cloud in Sec. III and the

potential barrier in Sec. IV. Section V contains comparison
with experiments and discussions of specific cases. The
Appendices A, B, C, and D gather the calculation details of
some parts of the model. The model is accompanied with a
FORTRAN90 program (ChoCoLaT.f90) calculating the charging
current and the final charge for a given set of input parameters.
The practical details of the numerical equations solver and
instructions for users are presented in Appendix E.

II. GLOBAL DESCRIPTION

Interaction of intense short laser pulses with solid targets
results in a strong electron acceleration and heating. Some of
these hot electrons are ejected from the target, while others
spread and dissipate their energy inside of it. We assume the
target to be thick enough compared to the range of electron
propagation. Schematically, one may imagine a cylindrical
cloud of hot electrons with radius and height Rh, a temperature
Th, full of Nh electrons, centered on the laser focal spot, and
expanding with time, see Fig. 1. A fraction of the electrons
is traveling out the target front face to a distance of the
order of their Debye length λDh. They are creating a sheath
potential φth at this target front surface, retaining a majority of
electrons inside. Only the most energetic ones can escape this
potential barrier and leave the target definitely. These escaping
energetic electrons constitute the electric current Jh charging
positively the target. Moreover, these escaped electrons are
at the origin of another (dipolar) contribution to the potential
barrier, φE . It corresponds to the net positive charge distributed
over the target surface. Thus, the global potential barrier can
be evaluated by adding these two potentials � = φE + φth.
This description illustrates the coupling of different elements
of the problem: the hot electron cloud, the potential barrier at
the target surface, and the ejection current Jh.

For modeling those phenomena, we are considering space-
averaged hot electron characteristics and writing down simple
evolution equations for them. The major simplifying assump-
tions are described by a Maxwell-Jütner energy distribution
function. It is expressed as:

fh(ε,Th) = γ p

A exp(−ε/kBTh), (1)

where p is the electron momentum, γ is the relativistic factor,
and ε is the energy, see Fig. 2. This figure also illustrates the
fraction of electrons which can possibly escape from the target:
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FIG. 1. (Color online) Scheme of target charging by laser and the
key interaction parameters.

ε � e��, with �� the potential barrier defined in Sec. IV.
The normalization factor A in the distribution function (1) is
defined as 1 = ∫ ∞

0 fhdε. The use of such a distribution for
the hot electrons is justified by a fast collisional relaxation of
laser-heated electrons in the solid target at low energy.

The laser parameters are Elas (the energy), tlas [the duration,
full width at half maximum (FWHM)], λlas (the wavelength),
ηlas (the energy absorption coefficient), and rlas [the focal ra-
dius, half width at half maximum (HWHM)]. The temporal and
spatial profiles of the laser pulse are assumed to be Gaussian
functions. The dimensionless laser vector potential is alas =
0.85λlasI

1/2
las and the laser intensity is Ilas = 0.65Elas/(tlasπr2

las)
in the units of 1018 W cm−2 [10].

The model requires the temperature of electrons accelerated
by the laser. Various scaling laws have been proposed for this
initial temperature and for the laser absorption coefficient.
Those issues are still creating controversy because of a
large variation of the interaction conditions and laser pulse
characteristics. We do not want to enter into such details,
which are out of the scope of this paper. Thus, we consider
here the laser absorption coefficient ηlas as a free parameter,
which is reported in the existent literature to vary in the range

FIG. 2. (Color online) Maxwell-Juttner distribution function and
the potential barrier �.

between 10 and 50% (fixed at 40% for this article, except
when specified). As for the initial hot electron temperature we
choose Beg’s empirical law [11] in the interval 0.03 � alas � 1
and the ponderomotive scaling [12] for higher laser intensities:

T0 = mec
2 max

{
0.47 a

2/3
las ,

√
1 + a2

las − 1
}
. (2)

For the intensities below 1015 W cm−2 (alas � 0.03), the
temperature is estimated from the model of laser collisional
absorption [13], T0 = 3mec

2a
4/3
las . These expressions agree

with the experimental data within a factor of 2 [10].
We introduce also three averages over the distribution

function:

〈·〉 =
∫ ∞

0
fh(ε,Th)dε, (3a)

〈·〉0 =
∫ ∞

0
fh(ε,T0)dε, (3b)

〈·〉hot = 1

Ahot

∫ ∞

|e��|
fh(ε,Th)dε, (3c)

with Ahot = ∫ ∞
|e��| fhdε being a fraction of electrons that may

escape the target. The simple brackets (3a) define the average
over the whole distribution function (1). The subscript “0” (3b)
stands for the initial temperature T0 in the distribution function.
The bracket with subscript “hot” (3c) defines the average over
the escaped electrons only, with an energy larger than |e��|.

We summarize here the various notations used in the article.
The laser parameters have the subscript “las.” The subscript
“0” stands for the initial value of the variable. The subscript
“h” defines the hot electron variable during its evolution. The
subscript “hot” defines the average over the escaped electrons
only, with an energy higher than |e��|.

III. THREE EFFECTS THAT MODIFY THE HOT
ELECTRON CLOUD

The dynamics of the hot electron cloud is due to three
major processes discussed in the following four subsections: in
Sec. III A the laser heating, in Sec. III B the hot-cold electron
collision cooling, and in Sec. III C the hot electron ejection
from the target. The product of the cloud temperature and the
number of electrons in the cloud gives the total energy of the
cloud Wh. Those three effects modify Wh by changing Nh

and/or Th. Then the cloud parameters that we monitor are the
temperature Th and the electrons number Nh. In Sec. III D we
describe the evolution of the cloud radius Rh.

A. Laser heating

The laser heating creates the hot electrons, following the
Maxwell-Juttner energy distribution function at a temperature
T0. We assume a linear production of hot electrons within the
time of laser energy injection tlas. The total number of hot
electrons is noted Ntot and is the ratio between the laser energy
and the initial hot electron average energy:

Ntot = ηlasElas

〈ε〉0
. (4)
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The hot electron production rate is estimate as:

∂tNh = Ntot

tlas
if t < tlas. (5)

The laser injects Ntot electrons at an energy 〈ε〉0 during
tlas. Due to the energy conservation, we assume that the hot
electron average energy and temperature are constant during
the injection period.

To summarize, the laser heating increases the number of
hot electrons and sustains their temperature during the laser
pulse time.

B. Hot electron collisional cooling

The hot-cold electrons collisions are responsible for the
energy transfer from the hot electrons to the bulk electrons. The
characteristic collision time is defined by the electron diffusion
length divided by the thermal speed. It is averaged over electron
energy distribution so we define tee as the mean free flight
time, see Appendix A. The collisional cooling proceeds in
three temporal steps. The first is for tlas, when we assume
that the temperature is constant. However, collisions with cold
electrons imply a reduction of the number of hot electrons from
the cloud. This is particularly important for tee � tlas where
some hot electrons disappear from the cloud even before the
laser pulse ends. It results in a loss term with the characteristic
time tlife which is the mean free flight time plus a cooling time,
defined in Appendix A:

∂tNh = −Nh/tlife if t < tlas. (6)

The second effect is the hot electron temperature reduction.
There are two cases. First, during the laser pulse and before
the first collision there is no cooling. After that time, the
collisions linearly reduce the hot electron temperature with the
characteristic time tee. Then the electron temperature equation
reads:

∂tTh = −Th/tee if t > tlas + tee. (7)

The collisional cooling can also be seen as a reduction of the
hot electron energy Wh. For t < tlas, the cloud loses electrons
of the energy 〈ε〉0 but for t > tlas, it is the mean energy 〈ε〉 of
hot electrons which is reduced and not the number of electrons.

C. Hot electron ejection

The hot electrons with an energy higher than the potential
barrier |e��| can escape from the cloud if they propagate in
the correct direction. Assuming an ejection cone of half-angle
β, we consider that a fraction �β = (1 − cos β)/2 of electrons
has the appropriate direction for ejection, see Appendix A.
We define the current Jh as the flux of the electrons which
have enough energy to escape the potential. It is defined later
in Eq. (18c). Considering the ejection surface πR2

h, the hot
electron current reads:

Jh = e �β nhot πR2
h

∫ ∞

|e��|
fhv dε, (8)

where e is the elementary charge and v is the electron speed.
The ejection of the most energetic electrons modifies the

electron distribution by reducing its energy and the number of

electrons. The reduction of the number of hot electrons in the
cloud is defined by the ejection current:

∂tNh = −Jh/e. (9)

The energy loss is related to the temperature evolution. We
assume that the temperature is proportional to the averaged
energy of the electrons: Th ∝ 〈ε〉 = Wh/Nh. Then the variation
of the total hot electron energy Wh reads: ∂tWh = −Jh〈ε〉hot/e.
Combining this equation with Eq. (9) we obtain:

∂t 〈ε〉 = −〈ε〉Jh

Nhe

(
1 − 〈ε〉hot

〈ε〉
)

. (10)

With the assumed proportionality between 〈ε〉 and Th, we
obtain an expression for the temperature ejection loss:

∂tTh = −ThJh

Nhe

(
1 − 〈ε〉hot

〈ε〉
)

. (11)

Furthermore, the ejection is limited not by the number of
electrons in the cloud but by the number of electrons, which
have enough energy to escape. This condition imposes a limit
on the ejected charge, which takes two forms, whether it is
applied during or after the laser pulse. During the laser pulse,
we assume that the ejection current cannot be larger than the
amount of ejectable electrons created by the laser:

Ih,max = e
ηlasElasAhot

tlas〈ε〉0
if t < tlas. (12)

After the laser pulse, the collision cooling does not affect
the number of hot electrons. Then we define a maximal number
of electrons, which is ejectable from the cloud. The maximal
charge ejectable is then the charge ejected during the laser
pulse plus the maximal remaining charge:

Q(t > tlas)max = Q(tlas) + eNh(tlas)Ahot. (13)

If this maximum is reached, then the ejection current is
stopped.

D. Cloud radius description

The cloud radius Rh is related to the electron mean free
path. We assume that the hot-cold electron collisions damp the
hot electron energy, whereas the collision of a hot electron with
an ion only affects its propagation direction and not its energy.
The characteristic hot electron-ion collision time tei is given
in Appendix A. The radius evolution depends on the average
electron speed, which is not related to the cloud temperature
Th. Indeed, the cloud expands from the very beginning of the
laser pulse. As these electrons propagate out of the laser focal
spot they are losing their energy and the cloud expansion is
slowed down. However, we already assumed that the cloud
temperature Th is sustained by the laser, while the energy of
electron defining the cloud radius is decreasing.

If tlas � tee, then this difference between the electrons in
the laser spot and the cloud periphery is negligible as all hot
electrons are created instantly compared to the cooling time.
But in the opposite case, tlas � tee, the thermal electron speed
would be nonphysically sustained on a time greater than its
own cooling time. In order to circumvent this controversy,
which is due to model simplifications, we introduce a local
temperature h, without laser sustainment, which represents
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the mean energy of the first electron created by the laser. Here
the thermal speed and the diffusion time tee are calculated
with the distribution function fh(ε,h), Eq. (1). For the sake
of simplicity, the h evolution accounts only for the hot-cold
electron collision term with the initial condition 0 = T0. The
initial value of the hot electron cloud radius is equal to the
focal spot radius R0 = rlas.

Then we obtain the following equations for the radius
evolution:

∂th = 0 if t < tee, (14a)

∂th = −h/tee if tee < t, (14b)

∂tRh = 〈v〉 if t < tei, (15a)

∂tRh = 〈v〉2tei

2Rh

if tei < t. (15b)

Note that with those equations, it is the cloud radius which is
sustained by the laser and no longer the thermal speed.

E. Hot electron evolution equations

We summarize here the full set of equations describing
the evolution of the hot electron cloud. They contain three
main effects explained before. The equation for the number of
electrons in the cloud, with N0 = 0 as the initial value:

∂tNh = Ntot

tlas
− Nh

tlife
− Jh

e
if t < tlas, (16a)

∂tNh = −Jh

e
if t > tlas. (16b)

The equation for the cloud temperature with T0 as the initial
value:

∂tTh = 0 if t < tlas, (17a)

∂tTh = JhTh

eNh

(
1 − 〈ε〉hot

〈ε〉
)

if tlas < t < tee + tlas, (17b)

∂tTh = JhTh

eNh

(
1 − 〈ε〉hot

〈ε〉
)

− Th

tee
if t > tee + tlas. (17c)

These equations are completed with the following expres-
sions for the cloud volume and density:

Vh = πR2
h(Rh − rlas), (18a)

nh = Nh

Vh

, (18b)

nhot = NhAhot

Vh

. (18c)

IV. POTENTIAL DESCRIPTION

A. Thermal potential

The thermal potential is generated by the charge separation
at the target surface [14–16]. Consequently, one needs to
model the charge separation first and then to compute the
associated potential. As the accelerated electrons can move in
every direction, some of them move out of the target but are
repelled back by the potential φth associated with the space

FIG. 3. (Color online) Density profiles for ions (full line) and
electrons (dashed line) near the target edge.

charge. The electron space charge is described by the Poisson
equation, Eq. (19), assuming the Boltzmann distribution of
electrons in the potential:

ε0∇2φth = −e[ni − nh exp(eφth/kBTh)], (19)

where ε0 is the vacuum dielectric permittivity. The ion density
is described by a Heaviside function, ni = nhH(ξ ), where the
coordinate ξ = 0 defines the target surface. This hypothesis is
valid as long as the ion density scale length is smaller than the
hot electron Debye length defined below. We focus on the laser
axis direction: It is the escaping direction for the hot electrons.

The problem is intricated by the fact that Eq. (19) has
a divergent solution for the potential in one dimension [17].
Therefore formally no electron can escape the target. However,
the pure one-dimensional (1D) model fails on distances larger
than the electron cloud radius. A relatively simple approximate
solution can be found assuming that the electron cloud radius
is larger than the hot electron Debye length. As the electron
density is a converging function in the 1D model, see Fig. 3,
we apply it in three dimensions assuming that it is localized
within the radius r < Rh. The 1D electron density distribution
reads:

ne(r < Rh,ξ )

= Nh

Vh

{
1 + [exp(−1) − 1] exp (κξ/λDh) ξ < 0,

[exp(1/2) + ξ/λDh

√
2]−2 ξ > 0,

(20)

where λDh is the hot electron Debye length and κ = ( exp(1) −
1)/

√
2 exp(1). The derivation of this expression is discussed

in Appendix B.
The potential φth is then estimated from a three-dimensional

calculation with the electric charge density given by Eq. (20):

φth(x,r)

= e

4πε0

∫ ∞

−∞

∫ Rh

0

∫ 2π

0

[ni(ξ ) − ne(ξ )] dξ ρ dρ dθ√
(x − ξ )2 + r2 + ρ2 − ρr cos θ

.

(21)

The system coordinates and an example of φth reconstruction
are presented in Fig. 4. It is important to note here that
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FIG. 4. (Color online) (top) Three-dimensional geometry of the
potential numerical reconstruction and (bottom) the map of potential
for Rh/λDh = 50, negative values for x/λDh > 0 and positive values
for x/λDh < 0.

the potential normalized to the hot electron temperature,
φ̂th = eφth/kBTh, depends only on the normalized radius R̂ =
Rh/λDh. This is a universal function which can be tabulated
or analytically interpolated. Once the potential φ̂th(r,x) is
calculated, we define the thermal part of the barrier as a
difference between the minimum and maximum φth values
averaged over the cylinder section.

The normalized potential along the laser axis can also be
evaluated analytically. Details are provided in Appendix C.
The analytical expression reads:

φ̃th(z) = λ + z√
(z + λ)2 + 1

× ln

[√
(z + λ)2 + 1

√
z2 + 1 + 1 + z(z + λ)

(
√

(z + λ)2 + 1 − z − λ)λ

]
− sinh−1(z) − ln 2

+
{− ln(λ) if z < 0
−2 ln(λ + z) + ln(λ) if z > 0 (22)

FIG. 5. (Color online) Comparison of the potential φ̂th from the
analytical calculation or from the numerical reconstruction.

with λ = √
2eλDh/Rh and z = x/Rh. Figures 5 and 6 shows

a comparison between the potential found from the numerical
reconstruction and from the analytical calculation. The poten-
tial φth reaches its maximum at the target edge z = 0. Inside

FIG. 6. (Color online) (bottom) Comparison of the minimum and
the maximum of the thermal potential and (top) the minimum position
of the thermal potential. Data from the analytical calculation or from
the numerical reconstruction.
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FIG. 7. (Color online) Scheme of four successive charged disks
at a time t , which were born at four arbitrary times t1 < t2 < t3 <

t4 < t .

the target the potential is positive approaching the asymptotic
value φth(−∞) = 0. Outside the target the potential sign
switches and reaches its minimum value φ̃th min at the position
zmin 
 −2/ ln λ. Then it approaches the asymptotic value
φth(∞) = 0.

Knowing the precalculated function φ̂th and accounting for
the normalization, one obtains the potential φth as a function
of Th, nh, Rh and implicitly of the time t .

B. Electrostatic potential

The electrostatic potential is created by the positive charge
at the surface of the target left by the current of ejected hot
electrons. We consider it as a surface charge homogeneously
distributed over a disk of a radius Rp. At each time step dt ′, a
new positive charge Jh(t ′)dt ′ is appearing at the target. If the
target material is a conductor, this surface charge spreads over
the whole the target surface at the speed of light c,

Rp(t ′,t) = Rh(t ′) + c (t − t ′) with 0 < t ′ < t. (23)

Then the elementary potential distribution along the disk axis
reads:

dφE(t ′,t,x) =
Jh(t ′)

[√
R2

p(t ′,t) + x2 − |x|]
2ε0πR2

p(t ′,t)
dt ′.

For conducting targets, the total electrostatic potential can be
represented as a superposition of homogeneously charged ele-
mentary disks in expansion. This is represented schematically
in Fig. 7. The total electrostatic potential φE is then defined as
follows:

φE(t,x) =
∫ t

0
dt ′

Jh(t ′)
[√

R2
p(t ′,t) + x2 − |x|]

2ε0πR2
p(t ′,t)

. (24)

It is positive everywhere and decreases to zero at infinity,
|x| → ∞.

FIG. 8. (Color online) Two examples of the total potential � =
φth + φE , and the effective potential barrier ��.

C. Determination of the potential barrier

Knowing both potentials, φE and φth, one can determine
the potential barrier for escaping electrons ��. It is defined
as a difference between the maximum and the minimum of the
potential � as a function of the axial coordinate x for a given
radial position. The potential maximum is located at or close
to the target surface where both potentials have a positive sign.
Asymptotically, both potentials tend towards zero at |x| → ∞.
As concerning the potential minimum, two situations can
occur: Either the total potential is positive everywhere, and
then the maximum value of the potential defines the height
of the potential barrier, or the thermal potential dominates,
and the total potential switches sign and the height of the
potential barrier is defined by the difference between the
potential maximum and minimum. Both situations are shown
in Fig. 8. If |φth = (t,xmin)| < φE(t,xmin), then the minimum
at the position xmin is local and the minimum of the whole
potential is 0 at |x| = ∞. If |φth(t,xmin)| > φE(t,xmin), then
the minimum is φE(t,xmin) + φth(t,xmin). These two cases are
cast into the formula:

��(t) = φE(t,0) + φth(t,0)

− min{φE(t,xmin) + φth(t,xmin),0}. (25)

V. RESULTS AND DISCUSSIONS

A. Comparison with experimental results

The model described in the previous section is realized
as numerical program written as a FORTRAN90 script. It can
be compiled and executed on a PC. The numerical details
are presented in Appendix E. Here we present a comparison
of the model with an experiment performed on the laser
ECLIPSE [6,9]. The laser pulse was focused on a solid flat
disk of 1 cm diameter and 3 mm thickness. Several materials
have been tested: aluminum, copper, and tantalum. The charge
left on the target was measured by integrating the neutralization
current through the target holder with a fast oscilloscope.

Figure 9 shows in each panel the charge measured in the
experiment and that predicted by the model for all the metallic
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FIG. 9. (Color online) Experimental measurements of the charge (symbols) and the model predictions (curves) for scans on the laser energy
and on the laser pulse duration: Elas = 20 to 80 mJ, tlas = 30 fs to 5 ps, λlas = 800 nm, rlas = 6 μm, and ηlas = 40%.

targets. The overall agreement with the model is reasonable.
In the worst cases, the difference does not exceed a factor of
3. This is acceptable keeping in mind the voluntary simplicity
of the model, which aims at qualitative understanding of the
charging phenomenon and at calculating the charge estimate.

We can define three different ejection regimes: (i) the
steady-state ejection regime corresponds to laser pulses longer
than the cooling time; (ii) the full ejection regime corresponds
to very short and intense laser pulses where the hot electrons
have, in average, an energy greater than the potential barrier;
and (iii) the thermal ejection regime is intermediate between
the two previous limits. The limits of those regimes are
presented in Fig. 10 where tee is compared to tlas and the
potential barrier is compared to the hot electron energy. This
comparison is performed with values averaged over the time
with a charge weight function. For example, the time average
of the hot electron energy is

〈ε〉 =
∫ tlas+tlife

0 〈ε〉Jh(t)dt

Q(tlas + tlife)
. (26)

B. Three ejection regimes

1. Steady-state regime

For the pulse duration longer than the cooling time,
the cloud is sustained by the laser. Indeed, in this limit,
Eqs. (15), (16), and (17) are reduced to their equilibrium
values. The temperature is kept constant at the initial level T0

according to Eq. (2). The cloud radius reaches its maximum
value, which can be estimated as

Rh 
 rlas + tlife〈v〉0. (27)

The number of hot electrons in the cloud is obtained by solving
the steady-state Eq. (16a) neglecting the ejection current. In

this regime,

Nh 
 Ntottlife/tlas. (28)

As the temperature is constant and the cloud is sustained,
the thermal potential is constant. The electrostatic potential
reaches an equilibrium value because the ejection current
contribution in Eq. (24) is compensated by the increase of
the charged disk radius. Consequently, the ejection current Jh

is also constant and it can be approximated if we provide an
average value of the electrostatic potential. It can be found by
averaging Eq. (24) over tlas, assuming Jh to be constant. In this

FIG. 10. (Color online) Ejection regime limits for Elas = 80 mJ,
λlas = 800 nm, rlas = 6 μm, and ηlas = 40% for the aluminum (blue),
tantalum (red), and copper (green) targets. The regime limits are close
for all materials as shown by the three set of curves.
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FIG. 11. (Color online) Temporal evolution of the cloud radius, Rh (a), the total number of hot electrons, Nh (b), and the ejection current,
Jh (c) in the steady-state regime (dashed lines) and the comparison with their approximated values in this regime (solid lines). tlas = 10 ps,
Elas = 80 mJ, λlas = 800 nm, rlas = 6 μm, and ηlas = 40%.

approximation, Eq. (23) is also simplified with the limiting
value given by Eq. (27) for Rh. Indeed, the cloud radius is
sustained at its maximum during the whole emission time. The
average value of the potential is then obtained from Eq. (25)
using the averaged electrostatic potential:

φE(0) 
 Jh

2ε0c

[(
1 + Rh

ctlas

)
ln

(
1 + ctlas

Rh

)
− 1

]
, (29a)

φE(xmin) 
 φE(0) + Jhxmin

2ε0c

[
1

ctlas
ln

(
1 + ctlas

Rh

)
− 1

Rh

]
.

(29b)

One obtains for the ejection current and the target charge:

Jh 
 −�βe
Ntot

tlas〈v〉0

∫ ∞

|e��|
fh(ε,T0)v dε, (30a)

Q 
 Jhtlas. (30b)

which is a simple differential equation since Jh is a function
of ��. Figure 11 presents a comparison between the model
and this approximation in the steady-state regime.

2. Full ejection regime

For very short pulse durations, the laser intensity is high as
is the hot electron temperature. The first consequence is that the
total number of hot electrons Ntot decreases. Each hot electron
takes more energy, but their number is relatively smaller,
according to Eq. (4). Also, the potential barrier is not high
enough to keep the hot electrons inside the target. The thermal
barrier is weak because the hot electron density is low, despite
the high temperature. The electrostatic barrier remains low also
because the number of hot electrons is small. Figure 10 already
illustrates these features by a comparing the hot electron
average energy with the average potential barrier. Combining
these observations we define the full ejection regime where the
electron average energy is higher than the potential barrier. The
ejection time is larger than the pulse duration but shorter than
the lifetime. The ejection process happens mainly during the
mean collision time tee where the ejection terms dominate, as
shown in Fig. 12. In this regime, a rough approximation of the
target charge is simply Qh ≈ eNtot, that is, the total number
of hot electrons generated with the laser. Figure 13 shows the
comparison between the model result and this approximation.

The full ejection regime correspond to the laser pulse duration
less than 10 fs for this set of parameters.

3. Thermal regime

This regime is between the two previous ones. The pulse
duration is shorter than the cooling time, but the laser intensity

FIG. 12. (Color online) Temperature and charge evolution in the
full ejection regime. The charge is already at 80% of its maximum at
the time tee. Elas = 0.8 J, tlas = 5 fs, λlas = 800 nm, rlas = 6 μm, and
ηlas = 40%.
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FIG. 13. (Color online) Comparison between Qtot and the final
charge obtained in the full ejection regime: Elas = 0.8 J, λlas =
800 nm, rlas = 6 μm, and ηlas = 40%.

is not high enough to invalidate the barrier efficiency. Physics
is mainly determined by the cooling of the hot electron cloud
in the target. There is no simplification available in this regime
because all the model variables are evolving.

C. Charge independence on the target material

A feature of the target charge measured in our experiments
is its weak dependence on the target material. Figure 9 shows
a comparison of the measured charge for targets made of three
metals: They show the same behavior despite different target
densities and atomic numbers. According to our model, the
material parameters are playing a role in defining the cooling
time and thus affecting the temporal evolution of Nh, Rh, and
Th. The observed charge independence on the target material
has two explanations depending on the ejection regime.

In the full ejection regime, the hot electron ejection pro-
ceeds before any collisional cooling processes. Equation (16b)
for Nh so as Eq. (15a) for Rh are then independent of the target
parameters. Figure 14 shows the value of the ratio Nh/(Rh −
rlas) present in the current equation for the full-ejection regime.
This ratio is independent on the target material.

In the steady-state regime, Rh and Nh are approximately
constant because the ejection proceeds during the laser pulse.
Equation (16a) can be simplified as Eq. (28). The electron
cloud radius can be approximated at the first order to Eq. (27).
It appears then that the ratio Nh/(Rh − rlas) in the ejection
current expression is again independent on tlife, the only
target parameter present in those expressions. The ratio
Nh/(Rh − rlas) for this regime is presented in Fig. 14. It is also
independent of the target parameters in the steady-state regime.

The material independence in the intermediate regime
is less obvious. However, accounting for the continuity
between the two previous regimes, we can assume it without
demonstration from the model simplification. Figure 14 shows
that the ratio Nh/(Rh − rlas) is approximately constant in this
regime and the model results in Fig. 9 tend to confirm the
charge independence on the target material in this regime.

The last parameter which is material relevant is the laser
absorption coefficient in Eq. (4). We arbitrary keep its value

FIG. 14. (Color online) Time evolution of Nh/(Rh − rlas) for
three materials. The electron surface charge is material independent
except a slight deviation in the thermal regime. Elas = 0.8 J,
λlas = 800 nm, rlas = 6 μm, and ηlas = 40%.

equal to 40% for all the laser parameters used in the present
article. The charge model variations are only linear with the
value of ηlas but it can explain the experimental variations
of the charge, in particular in Fig. 9 at Elas = 80 mJ for tlas

greather than 1 ps. The laser absorption calculation is out of
the scope of this article, and its better evaluation may improve
the results of the model.

D. Small targets

The size of the target can be compared to several charac-
teristic lengths present in the model; from the smallest to the
largest these are the hot electron Debye length λDh, the hot
electron cloud radius Rh, and the electrostatic potential radius
Rp. The first two dimensions involve the target thickness and
are out of the scope of this article. The third one involves
the target radius. If the target is sufficiently small, then the
electrostatic potential propagation must be restrained to the
target radius Rt . Equation (23) becomes:

Rp(t ′,t) = min{Rh(t ′) + c (t − t ′),Rt } with 0 < t ′ < t. (31)

Then, after Rp reaches the target boundary, the surfacic charge
accumulates and the electro-static potential increases with the
charge until it suppresses the current completely. Therefore,
it is expected that small targets accumulate a smaller charge.
In the experiment described in Ref. [6], the charge does not
depend on the target size: The target is too large to demonstrate
this effect, see Fig. 15(a). The authors of experiments [18,19]
report on the EMP variation with the target size, which can be
related to the charge variation: The targets are small enough,
see Figs. 15(b) and 15(c). Our model gives the same charge
tendencies with respect to the target and laser parameters as
observed in the experiments.

To quantify this target size effect, we start with the
simple case of a large-enough target. Indeed, if the potential
redistribution time Rt/c is larger than the charge ejection time
tej , then the model predicts a maximum ejected charge. The
ejection time can be estimated by tej = max {tlas,tee}. Then, if
Rt < ctej = Rmin, the ejected charge may be reduced. Note
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FIG. 15. (Color online) Effect of the target size on the EMP
signal observed on different laser facilities. Dots are experimental
measurements for the charge (a) and for the EMP electric field [(b) and
(c)]. Lines are charge model predictions. (a) Top curve and dots are
from ECLIPSE facility [6] (Elas = 80 mJ, tlas = 50 fs, λlas = 800 nm,
rlas = 7.5 μm, and ηlas = 40%). Bottom curve of panel (a) and the
curve of panel (b) are from Ref. [19] (Elas = 150 mJ, tlas = 150
ps, λlas = 1064 nm, rlas = 150 μm, and ηlas = 40%). (c) Data from
the TITAN facility [18] (Elas = 200 J, tlas = 20 ps, λlas = 1050 nm,
rlas = 10 μm, and ηlas = 40%).

that this criterion does not account for the neutralization
current, which naturally decreases the surfacic charge. We
find Rmin = 0.5 mm for the ECLIPSE experiment [Fig. 15(a)],
Rmin = 30 mm for the experiment in Ref. [19] [Figs. 15(a)
and 15(b)], and Rmin = 20 mm for the TITAN experiment
[Fig. 15(c)]. All these estimates are consistent with the
experimental observations.

Let us consider another example of a small target ex-
periment [20], conducted at the VULCAN facility. A short
laser pulse was interacting with a thin gold wire. The authors
evaluated the target charge to be 48 nC. In this case, the target
must be considered as a small target because its radius is small,
Rt = 125 μm. The electrostatic potential is spreading only in
one direction, which leads to the charge limitation. Using the
data from Ref. [20], Elas = 26 J, tlas = 1 ps, rlas = 5.6 μm,
ηlas = 20%, λlas = 1064 nm, and Rt = 125 μm, we find that
the target charge equals 40.4 nC, which is comparable with the
measured value.

E. Dielectric targets

The use of dielectric targets is considered as a way to
suppress the return current and the strength of the electro-
magnetic pulse. The main difference from metallic targets
is in their very small conductivity. This prevents the cold
electrons reorganizing to minimize the potential. This case
can be included in the model with the modified calculation of
the electrostatic potential. Equation (23) becomes

Rp(t ′,t) = min{Rh(t ′) + c (t − t ′),Rh(t)} with 0 < t ′ < t.

(32)

Zero target conductivity forces the surfacic charge to accu-
mulate in a disk limited by the hot electron cloud size. For
cases with hot electron speed close to light speed, the lack of
conductivity does not change significantly the charge because
the hot electron cloud extension emulates the charge spread.
But for cases where the hot electron speed is significantly
smaller than the light speed, the restriction of the charge
spread to Rh concentrates the charge and produces a higher
electrostatic potential. The final charge accumulated on a
dielectric target is then lower than on a metallic target.

As an illustration, Fig. 16 shows the ejected charge with
a Teflon target from the model and from the ECLIPSE
experiment. The target charge is approximately the same as
for the metallic targets in the case of short laser pulses, see
Fig. 17(a), but it decreases much faster for longer laser pulses
as it is shown in Fig. 17(b). This is explained by a stronger
electrostatic potential. The experimental setup is the same as in
Fig. 9 and as described in Refs. [6,9]. Because of the insulation
between the laser impact and the holder inserted into the target,
the measurement of the neutralization current gives only a
fraction of the ejected charge. A relation between the holder
neutralization charge and the target charge is calculated in
Appendix D and it depends strongly on the setup used. The
neutralization current in the holder is always smaller with
dielectric targets as for the associated EMPs. This conclusion
assumes that there is no electrical breakdown between the laser
impact and the holder.

F. Holder effect

Until now, we assumed that the target is connected to the
ground by a conducting rod but the recharge current is activated
after the charge accumulation of the target is completed. This
corresponds to a holder having a large inductance, so the
neutralization current is delayed enough to make an effective
insulation during the target charging. Here we consider an
effect of the holder on the charge accumulation assuming that
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FIG. 16. (Color online) Experimental measurements of the
charge and the model predictions for a scans on the laser energy and
on the laser pulse duration with a Teflon target. Stars and squares are
two identical targets. Lines are the model prediction. λlas = 800 nm,
rlas = 6 μm, and ηlas = 40%. (a) Laser energy scan Elas = 30 to 90
mJ at tlas = 30 fs. (b) Laser pulse duration scan tlas = 30 fs to 5 ps at
Elas = 80 mJ.

the neutralization current is active during the charge ejection. It
can totally cancel the charge accumulation if the characteristic
neutralization time tn is much smaller than the ejection time tej .

A relation between the characteristic ejection and neutral-
ization time defines the recharge regime. The neutralization
time is roughly estimated to tn = L/c: the time for a charge to
travel the holder length L at the light speed. It is 150 ps for a
5-cm holder. This estimate indicates the experimental setups,
which can generate strong EMP signals. Figure 17 shows the
electric field measured on different laser facilities versus the
laser energy. Blue points correspond to the experiments with
maximal EMPs while red points corresponds to conditions,
where EMPs are limited by the neutralization current. As an
example: EMPs obtained on the ECLIPSE experiment with
Elas = 0.1 J have the same amplitude as the ones obtained on
the NIF with Elas = 100 kJ. On the ECLIPSE experiments, the
ejection time is between 1 and 20 ps, while the neutralization
time equals 100 ps: the target charging is maximal and it is not
affected by the neutralization current. For the NIF conditions,

the ejection time is equal to the laser pulse duration (1 ns) and
it is greater than the neutralization time by a factor of 10: The
target charging is strongly limited by the neutralization as well
as the EMP strength. That is why the EMP problem is most
acute for the laser facilities, which gather a high energy and a
short pulse duration.

The holder effect can be included in the model for the cases
where the ejection time is much greater than the neutralization
time. It prevents the apparition of the surfacic charge and of
the associated electrostatic potential. In the case tn � tej , this
effect is accounted for by simply removing the electrostatic
part of potential barrier. It becomes then:

��(t) = φth(t,0) − φth(t,xmin). (33)

For cases where the ejection time and neutralization time
are comparable, the model has to be completed with the
equation that links the electrostatic potential of the target to
the neutralization current:

U = Rin − L∂t in, (34)

where R and L are the resistivity and inductance characterizing
the impedance of the holder and in the neutralization current.
The tension U takes place of the electrostatic part of the
potential barrier:

��(t) = U + φth(t,0) − φth(t,xmin). (35)

Equation (34) is highly dependent on the experimental setup
and its analysis is out of the scope of the present paper. But
a simple example can be provided. In the experiment [8],
a capacitor-coil target generates a very high magnetic field:
500 T within a millimetric volume during 1 ns. The target is
composed of two disks linked by a small spire and is insulated
from the ground. The laser ejects electrons from one disk,
which are collected on the other one. The neutralization current
goes into the spire and generates the magnetic field. In this ex-
ample, the laser pulse duration is longer than the characteristic
time of the neutralization current. It means that the target is
neutralized during the electron ejection. Canceling the elec-
trostatic part of the potential, and using the laser parameters
Elas = 200 J, tlas = 1 ns, λlas = 1024 nm, rlas = 20 μm, and
ηlas = 40%, we find a target charge of 60 μC, which is ejected
in 1 ns. As the ejection current corresponds to the neutralization
current of the same magnitude of 60 kA, the spire of a 250 μm
radius produces a magnetic field of 150 T. Note that this rough
estimate does not include all physical mechanisms at play in
the production of such a high magnetic field.

VI. CONCLUSION

We developed a simple model allowing us to estimate
the charging current and the total charge produced on the
target by the escaped hot electrons in a high-power laser-target
interaction. The model agrees with existing experimental data
and provides understanding of the major physical processes.
The simple code allows a rapid evaluation of the target
charge knowing target and laser parameters. It is described
in Appendix E and in the Supplemental Material [22].

Further developments of the model are possible. The
spectrum of ejected electrons can be extracted from the model.
One can also calculate the electromagnetic emission due to the
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FIG. 17. (Color online) Amplitude of the EMP electric field at 50 cm of the target from various laser facilities versus the laser energy. Blue
zone (left) shows the EMP induced by the target charging. Red zone (right) shows the EMP damped by the neutralization.

ejection current,which is typically in the THz frequency range.
The model can be also adapted to thin targets.

The global conclusion on this target charging mechanism
is its robustness. Many variables are coupled and many
physical effects intervene. Nevertheless,a relatively simple
model accounting for the hot electron relaxation and the
surface electrostatic potential provides reasonable estimates
for practically interesting conditions and opens ways for
mitigation strategies.
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APPENDIX A: COLLISIONS

The collision model is based on the paper by K. Kanaya
and S. Okayama [21], which describes the slowdown of
an electron inside a solid target. The model calculates the
averaged penetration depth, the energy, and the momentum
deposition after one, two, or three collisions of the beam
electrons with the electrons and the ions of the target
according to the collisions probabilities, see Fig. 18. This
model originally developed for a monoenergetic electron
beam is generalized here by taking an average over the
electron energy distribution (1). The characteristic collision
times are obtained as follows. First, we set the scattering
radius of a hot electron of energy ε according to Ref. [21]:

Rm = 2.76 × 10−11ε5/3

ρZ8/9

(1 + ε0.978 × 10−6)5/3

(1 + ε1.957 × 10−6)4/3
, (A1)

with ρ being the target density in g/cm3, A the target mass
number, Z the target atomic number, and ε the hot electron
energy expressed in eV. The hot-cold electron collision time
is obtained as a ratio of the averaged scattering radius by the

averaged hot electron speed:

tee = 〈Rm〉
〈v〉 . (A2)

The hot electron-ion collision time is obtained by adding a
weight coefficient to tee:

tei = tee

1 + g
, (A3)

with the factor g = 0.187 Z2/3 which accounts for the electron
ion collision ratio. The cooling time is defined as the time inter-
val needed for the temperature to decrease from T0 to 0.01 T0:

tcool =
∫ T0

0.01 T0

tee

T
dT . (A4)

FIG. 18. (Color online) Modified diffusion model of electron
beam penetration in a target: Rm is the maximum range, χD the
penetration depth, χE the maximum energy dissipation depth, and
rB the backscattering range. Figure extracted from Ref. [21] with
permission.
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The electron ejection angle is expressed as a solid angle ratio
with half angle β:

�β = sin2 (β/2)

β = arctan
2.2g(1 + g)

1 + 2g − 0.21g2
. (A5)

APPENDIX B: HOT ELECTRON DENSITY PROFILE

We detail here the calculation of the density profile of the hot
electron cloud. In the major part of the electron cloud, the hot
electron density is assumed to be homogeneous with its value
nh = Nh

Vh
. This assumption is insufficient at the target surface

where the charge separation generates the thermal potential
φth. The problem is in one dimension along the laser axis ξ .
We solve the Poisson equation (19) assuming the Boltzmann
distribution of electrons in the potential well:

ε0∂
2
ξ φth = −e[ni − nh exp(eφth/kBTh)], (19)

where ε0 is the vacuum dielectric permittivity. The ion density
is described by a Heaviside function, ni = (Nh/Vh)H(−ξ ),
where ξ = 0 defines the target surface. Equation (19) is
simplified by applying the following normalization: φ̂ =
eφth/kBTh and ξ̂ = ξ/λDh. The ξ̂ derivations are noted with ′.
One obtains:

φ̂′′ = exp φ̂ if ξ̂ > 0, (B1a)

φ̂′′ = exp φ̂ − 1 if ξ̂ < 0. (B1b)

The boundary conditions for this 1D problem along axial
direction are φ̂′(∞) → 0, which corresponds to the absence
of the electric field far away in front of the target, and
φ̂(∞) → −∞ and φ̂(−∞) → 0 are imposed by the plasma
neutrality far inside the target. We assume also the continuity
of the solution at ξ̂ = 0. This equation has a divergent solution
for the potential in one dimension [17], but a solution for the
electron density is convergent.

Equations (B1) are integrated with a multiplication by φ̂′
on both sides. Then we obtain:

1
2 φ̂′ 2 = exp φ̂ + C1 if ξ̂ > 0, (B2a)

1
2 φ̂′ 2 = exp φ̂ − φ̂ + C2 if ξ̂ < 0. (B2b)

We apply the boundary conditions to find that C1 = 0 and
C2 = −1. Equating Eqs. (B2a) and (B2b) we obtain the
solution at the surface: φ̂(0) = −1. Then Eq. (B2a) is rewritten.
We introduce the function χ̂ = φ̂ + 1, which is zero at ξ̂ = 0,
in Eq. (B2b). This equation is linearized using the Taylor
development near ξ = 0. Note the minus sign in (B3b) is
chosen to satisfy the convergence and the sign conventions:

φ̂′ 2 = 2 exp φ̂ if ξ̂ > 0, (B3a)

χ̂ ′ = −
√

2/ exp(1)

[
1 − 1 − exp(1)

2
χ̂

]
if ξ̂ < 0. (B3b)

We integrate one more time and use the continuity con-
dition φ̂(0) = −1 to find the integration constants. The
equation (B3a) has several solutions, but only the following

one satisfies the convergence and the sign conventions:

φ̂ = −2 ln[exp(1/2) + ξ̂ /
√

2] if ξ̂ > 0, (B4a)

φ̂ = −1 + 2

1 + exp(1)
[1 − exp(κξ̂ )] if ξ̂ < 0. (B4b)

We note κ = exp(1)−1√
2 exp(1)

. The inside solution, Eq. (B4b), is
only valid close to the surface. Because of its divergence,
Eq. (B4a) is also valid only close to the surface. In that sense,
this solution is not straightforwardly applicable, but it can be
used to determine the electron density which is close to the
surface.

ne(ξ ) = Nh

Vh

[exp(1/2) + ξ/λDh

√
2]−2 if ξ > 0, (B5a)

ne(ξ ) = Nh

Vh

{1 + [exp(−1) − 1] exp(κξ/λDh)} if ξ < 0.

(B5b)

APPENDIX C: THERMAL POTENTIAL CALCULATION

The reconstruction of the thermal potential is based on
the electron density profile. We demonstrate here that we
can find a solution using a 3D calculation and avoiding
the divergence of the 1D solution of φth. We start with the
simplification of Eq. (21). Keeping the 1D hypothesis for
the charge distribution, we can describe the whole volume
by successive dξ thickness disks at a position ξ with a
surface charge σe(ξ ) = e[ni(ξ ) − ne(ξ )]dξ . Each of those
disks generates a potential at the position x along the laser
axis:

dφth(ξ,x) = σe(ξ )dξ

2ε0

[√
Rh

2 + (ξ − x)2 − |ξ − x|]. (C1)

Then, for a given position x, we integrate the contributions
coming from each position ξ with the surface density σe(ξ ). It
is written as follows:

φth(x) =
∫ ∞

−∞

σe(ξ )dξ

2ε0

[√
Rh

2 + (ξ − x)2 − |ξ − x|]. (C2)

For the contribution inside the target, we simplify the integra-
tion assuming that the whole charge density is at ξ = 0. The
surface charge is then obtained by the integration of Eq. (B5a)
to conserve the electroneutrality. One obtains:

σin = eNh

Vh

∫ ∞

0
dξ [exp(1/2) + ξ/λDh

√
2]−2

= eNhλDh

Vh

√
2

exp(1)
, (C3)

φth(x) = −
∫ ∞

0

eNh

[√
Rh

2 + (ξ − x)2 − |ξ − x|]
2ε0Vh[exp(1/2) + ξ/λDh

√
2]2

dξ

+ σin

2ε0

(√
Rh

2 + x2 − |x|). (C4)

The first step is a rearrangement, gathering the absolute
valued variable and the other ones. We also introduce the
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same normalization as in Appendix B and the notations
z = x/Rh, λ = √

2 exp(1)λDh/Rh, and ζ = ξ/Rh. Then the
potential reads:

φ̂th(z) = φ̂1(z) + φ̂2(z), (C5a)

φ̂1(z) = 1

λ

√
1 + z2 −

∫ ∞

0

dζ

(ζ + λ)2

√
1 + (ζ − z)2, (C5b)

φ̂2(z) = −|z|
λ

+
∫ ∞

0

dζ

(ζ + λ)2 |ζ − z|. (C5c)

We start with φ̂1. The integral in (C5b) has a general
solution:

φ̂1(z) =
√

1 + z2

λ
−

{
λ + z√

(z + λ)2 + 1
ln[

√
1 + (ζ − z)2

×
√

(z + λ)2 + 1 + 1 + (z + λ)(ζ − z)]

− (λ + z) ln(λ + ζ )√
(z + λ)2 + 1

−
√

(z − ζ )2 + 1

λ + ζ

− sinh−1(z − ζ )

}∞

0

. (C6)

This results in a function of z and a diverging part:

φ̂1(z) = λ + z√
(z + λ)2 + 1

× ln

√
(z + λ)2 + 1

√
z2 + 1 + 1 + z(z + λ)

[
√

(z + λ)2 + 1 − z − λ]λ

+ 1 − sinh−1(z) − sinh−1(∞). (C7)

The diverging part will be canceled by the other integral φ̂2.
Accounting for the absolute value, the integral can be presented
as:

φ̂2(z) = z

λ
+

∫ ∞

0

ζ − z

(ζ + λ)2
dζ if z < 0. (C8a)

φ̂2(z) = − z

λ
+

∫ z

0

z − ζ

(ζ + λ)2
dζ

+
∫ ∞

z

−z + ζ

(ζ + λ)2
dζ if z > 0. (C8b)

All the general integrals of (C8) can be calculated explicitly
and we obtain:

φ̂2(z) = − ln(λ) − 1 + ln(∞) if z < 0. (C9a)

φ̂2(z) = −2 ln(λ + z) − 1 + ln(λ) + ln(∞) if z > 0.

(C9b)

While gathering the expressions for φ̂1 and φ̂2, the
diverging parts compensate each other according to the
relation sinh−1 ∞ − ln ∞ = ln 2. We finally get the following

expression for the thermal potential:

φ̃th(z) = λ + z√
(z + λ)2 + 1

× ln

[√
(z + λ)2 + 1

√
z2 + 1 + 1 + z(z + λ)

(
√

(z + λ)2 + 1 − z − λ)λ

]
− sinh−1(z) − ln 2

+
{− ln(λ) if z < 0
−2 ln(λ + z) + ln(λ) if z > 0. (C10)

APPENDIX D: RECHARGE CURRENT IN
DIELECTRIC TARGETS

The charge Q accumulated on a dielectric target differs
from the neutralization charge Qn. Here we calculate the ratio
between those two quantities after the end of the neutralization
process. The charge Q generates a potential difference with the
ground, which induces a neutralization current in the holder.
This charge is the measured one Qn. After the end of the
neutralization process the charge Qn is distributed along the
holder. Figure 19 presents a scheme of the potential distribution
at the equilibrium. As there is no current, we set a relation
between tensions:

V1 = V2 −
∫ θz

0
Eθrdθ, (D1)

with θz = sin−1 (a/
√

a2 + z2) the angle at the holder surface.
The potentials V1 and V2 are calculated with the mirror charge
assumption:

V1 = 0, (D2a)

V2 = Q

4πε0

[
1√

d2 + (h − z)2
− 1√

d2 + (h + z)2

]
. (D2b)

The tangential electric field between the holder and the ground

as its shape chosen to verify the Poisson equation ∇ �̇E = 0,
with the lineic charge distribution qn(z):

Eθ = qn(z)

4πε0

1

r sin θ
. (D3)

FIG. 19. (Color online) Notation of the distances and a scheme
of the potentials among the target, the holder, and the ground at
equilibrium.
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Combining these three equations, we find the charge distribution q(z) along the holder:

qn = Q

2 ln
(

tan θz

2

)[
1√

d2 + (h − z)2
− 1√

d2 + (h + z)2

]
. (D4)

The integration of qn from 0 to H provides the value of Qn as a function of geometric parameters and the charge Q. It can be
approximated by the following relation:

Qn = Q

2 ln(2H/a)
ln

{
(h + √

d2 + h2)2

[h − H +
√

d2 + (H − h)2][h + H +
√

d2 + (H + h)2]

}
. (D5)

In this calculation, there are additional hypothesis. The third-
dimension variations are considered as negligible since H �
d. Also the relative dielectric constant of the target is assumed
close enough to 1.

The ratio Qn/Q depends strongly on the position of the
laser spot with respect to the holder. A numerical simulation,
using the setup described in Ref. [6], of the neutralization
current with and without insulating between the charge
Q position and the edge of the holder has benchmarked
the calculation. The results are presented in Fig. 20. The
integration of neutralization current confirms the calculated
ratio: One finds Qn/Q = 0.28 from the simulation and 0.22
from (D5) (with H = 43 mm, h = 45 mm, a = 0.5 mm, and
d = 1.7 mm).

APPENDIX E: CODE DESCRIPTION

1. Numerical descriptions

Figure 21 shows the global scheme of the solver [22]. The
temporal scheme is a simple Euler’s scheme but the different
contributions are split to fit the physics evolution. At the first
time step, the radius must evolve one time before any use the
cloud volume to avoid a null initial value.

FIG. 20. (Color online) Time dependence of the neutralization
charge through the holder with a perfect conductor target and with
a Teflon target. Laser parameters: Elas = 80 mJ, tlas = 50 fs, and
rlas = 4 μm. Data obtained from numerical simulations with the setup
described in Ref. [6].

2. Units and normalizations

Time(ps) temperature: normalized to (mec
2)

Length (μm) number of hot electron: (nC)

Charge (nC) speed: normalized to (c)

Current (kA) energy: normalized to (mec
2)

laser energy (J) target density: (g/cm3)
Output units are specified in the output files.

3. User commands

Compilation command: gfortran -O3 -fdefault-real-8 Cho
CoLaT.f90

Launch command:./a.out 〈 〉, where the argument is the
four-digit number of the input file.

Input file: Its name is input_0001.txt. The format is txt and
ascii and an example is provided in Ref. [22].

4. Code’s outputs

The code produces three files named output_scalar_
0001.txt, output_fdistr_0001.txt, and output_potent_0001.txt
with the number corresponding to the input file one. Each file
has the same header gathering the input data plus the initial
temperature, the cooling time, the total charge, and the rate of
electron accelerated. After this header, the scalar file contains
the time evolutions of Rh, λDh, Th, nh, Nh, ��, J , and Q.
The potential file contains the time evolutions of ��, φE(0),
φE(xmin), φth(xmin), φth(0), and xmin. The distribution function
file contains the time evolutions of A, Ahot, 〈v〉, 〈v〉hot, 〈ε〉,
〈ε〉hot.

5. CFL illustration

The code involves a time step dt and an energy discretiza-
tion dε. The code is limited by a CFL time versus energy. This
CFL is not analytically defined but explored numerically in
Fig. 22(a). We also provide in Fig. 22(b) the typical shapes
of the current associated with the typical troubles. The green
one is the reference. The dashed red curve presents a default
at t = 0.04 ps: The time step is too big and the first time
step charge generates an overestimated electrostatic potential,
which strongly damps the current on the second time step. This
default does not change the integration value but can make the
resolution unstable.
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FIG. 21. (Color online) Schematic process of the equation solver.

FIG. 22. (Color online) (a) Final charge obtained for various values of dt and dε. The converged result equals 3.40 nC. (b) Temporal
evolution of the current for different resolutions: Elas = 0.08 J, rlas = 6 um, λlas = 800 nm, tlas = 0.5 um, and ηlas = 40%.
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