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Stochastic heating of a single Brownian particle by charge fluctuations
in a radio-frequency produced plasma sheath
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The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic
heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the
ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure
of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains
close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed
model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing
pressure, which approximately shows the expected scaling with p−2. The system under study is an example for
non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.
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I. INTRODUCTION

The Brownian motion of a single micrometer-sized particle
has attracted much attention in the last few years. The transition
from diffusive to ballistic motion was studied by means of
optical tweezers in gases [1] and in liquids [2,3]. By absorption
of laser light, the Brownian particle can attain a high surface
temperature, which leads to “hot Brownian motion” [4–6].
This is an interesting case for non-equilibrium Langevin
dynamics, in which the Brownian particle is in simultaneous
contact with two heat baths of cold incoming and hot outgoing
gas atoms.

A further interesting situation for non-equilibrium stochas-
tic motion is found in “complex” plasmas. Microparticles in a
plasma environment were often found to possess extremely
high kinetic temperatures, which reached 20–300 eV in
current-carrying particle clouds [7] or several ten eV in
multilayer particle clouds [8,9]. Only in two-dimensional
systems moderate temperatures of 390–1240 K were found
in monolayers [10] and 370–2890 K in small two-dimensional
clusters [11], which still substantially exceed the temperature
of the neutral gas (≈300 K) in which the microparticles are
embedded. For a pair of MF particles of rp = 2.4 μm confined
in a 1D trap at p = 1.8 Pa an enhanced temperature of 430 K
was reported recently [12,13].

The present state of understanding is that the excessive
temperatures in the 10–100 eV range are attributed to plasma-
induced instabilities of the microparticle system [14–16],
while the less violent heating mechanism is ascribed to
stochastic heating from charge fluctuations [17–19]. However,
neither this distinction into the two classes of unrelated phe-
nomena has been experimentally verified nor has the stochastic
heating by charge fluctuations been clearly separated from
collective phenomena in experimental situations. Therefore,
the primary goal of the present article is to study the Brownian
dynamics of an isolated microparticle in the absence of any
collective effects that are introduced by other microparticles.
In addition, the model for heating by charge fluctuations
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is scrutinized and all relevant parameters are determined
from particle-in-cell simulations of the plasma discharge. The
interplay of the Brownian motion of a microparticle in its gas
environment with an additional stochastic process is also inter-
esting in itself, because it involves the transition from Langevin
dynamics at equilibrium to a non-equilibrium situation.

II. EXPERIMENTAL DETAILS

For studying the Brownian dynamics we have designed an
experiment in which a single microparticle is suspended in the
sheath of a radio-frequency (r.f.) produced plasma (Fig. 1) with
an electrode gap of d = 30 mm width and 80 mm electrode
diameter. The sheath is a space-charge region with a vertical
electric field that is strong enough to levitate the negatively
charged microparticle according to the Millikan condition

qpĒ0 = mpg . (1)

Here, qp and mp are the charge and mass of the microparticle
and g the gravitational acceleration. The gradient of the time-
averaged electric field Ē0 and the smallness of the vertical
excursions provide a nearly harmonic vertical potential trap
with an eigenfrequency ω0 [20]. In the center of the r.f. powered
electrode a small manipulation electrode is inserted [21] that
can be biased with a positive voltage and serves to deform
the time-average potential contour (dashed line) to provide
horizontal confinement.

The particle motion is observed side-on with a high-speed
video camera (Mikrotron EoSens MC1362) that records a 2×
enlarged image covering 80 × 100 pixels corresponding to
526 × 657 μm2 region in real space. The maximum frame
rate is 4000 fps but typically 400 fps are used. A time-series
comprises 105 frames. In each frame, the particle position
is determined with subpixel resolution from the intensity
distribution in the particle image, which fills approximately
4 × 4 pixels. For the automatic determination of particle posi-
tions we use an algorithm that originates from [22], which uses
a suitable threshold value, blurring of the image by a Gaussian
filter and determines the “center-of-mass” for this blurred
intensity distribution. The plasma chamber and the camera
are mounted on an air suspension vibration-isolation table.
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FIG. 1. Sketch of the particle confinement in the sheath of an r.f.
parallel plate discharge. The equipotential (dashed line) is deformed
by a positive bias on the central manipulation electrode to provide
horizontal confinement.

For the present experiments we have primarily chosen
monodisperse spherical silica particles, which are non-porous
and have a well-specified mass density of ρp = (1850 ±
93) kg m−3 [23]. These particles are available with radii up
to 3.69 μm. Larger silica particles are porous and have a
less well-defined mass density. This maximum size limits our
experiments with silica particles. The silica particles are dried
at 230 ◦C for 2 h.

Additional measurements were made with melamine-
formaldehyde (MF) particles. MF particles are less suited for
these experiments because of their poor long-time stability,
which leads to a change in density [24] and a diminishing
radius [25]. The stability of the particles is improved by
drying at 130 ◦C for 2 h, which leads to a a reduced density
ρp ≈ 1440 kg m−3 (as estimated from Ref. [24]) compared to
1540 kg m−3 stated by the manufacturer [23]. The discharge
conditions were Urf = 80 Vpp and p = 10.2 Pa (argon) for
silica particles and 70 Vpp, 11 Pa for MF particles.

III. TEMPERATURE MEASUREMENTS

The determination of the proper kinetic temperature of the
microparticle requires two independent informations. First, we
need proper particle velocities. For this purpose the ballistic
regime of particle motion [1] is determined in the plot of the
mean-squared displacement (MSD) for an MF-particle with
a true radius rp = 2.89 μm shown in Fig. 2. The MSD of a
Brownian particle at temperature T in a parabolic trap with
eigenfrequency ω0 is given by [1,26,27]

〈[�x(τ )]2〉 = 2kBT

mpω2
0

[
1 − exp

(
−βτ

2

)

×
(

cos ω1τ + β

2ω1
sin ω1τ

)]
. (2)

FIG. 2. Mean-squared displacement in x and z directions as a
function of the delay time τ . The dashed solid line of slope 2 marks the
ballistic regime, which covers the time scales τ = (1–5) ms. The inset
shows the comparison of the area-normalized velocity distributions
f (vx) and f (vz) with best-fit Gaussians.

Here, ω2
1 = ω2

0 − (β/2)2. The ballistic regime is defined by
the scaling 〈[�x(τ )]2〉 ∝ τ 2. The frame rate of the video
recordings is chosen as 400 fps (τ = 2.5 ms), which defines
the time step for calculating 〈v2〉. The proper choice of the
frame rate is discussed in more detail in the Appendix.

The fit of the Uhlenbeck-Ornstein model (2) to the mea-
sured MSD-curve further yields the eigenfrequencies ωx =
18.1 s−1 and ωz = 94.0 s−1 for the horizontal and vertical trap,
as well as the friction coefficients βx = 20.1 s−1 and βz =
16.8 s−1. The difference between the two friction coefficients
is attributed to the low accuracy of extracting βx from the
MSD. The velocity distribution shown in the inset of Fig. 2 is
found very close to a Maxwellian.

Second, we need to find the proper mass of the particles.
This is done by measuring the Epstein friction coefficient β

with a method that is more accurate than the MSD fit. For this
purpose we use the velocity autocorrelation function (VAF),
which for a particle in a harmonic trap has the shape [27]

〈v(t)v(t + τ )〉 = kBT

mp

exp

(
−βτ

2

)(
cos ω1t − β

2ω1
sin ω1t

)
.

(3)

The particle radius rp is related to the friction coefficient by
[28]

β = δ
8p

πrpρmvth

(4)

with the coefficient for diffuse reflection δ = 1.44 [29], gas
pressure p, and gas thermal velocity vth. The close agreement
of the measured normalized VAF with Eq. (3) in Fig. 3 shows
that the VAF provides a sensitive method for determining β.

043106-2



STOCHASTIC HEATING OF A SINGLE BROWNIAN . . . PHYSICAL REVIEW E 92, 043106 (2015)

FIG. 3. Measured normalized velocity autocorrelation functions
for x and z directions in comparison with Eq. (3). The inset shows the
distribution of MF particle radii before (light line) and after drying
(heavy line).

This method works best for small particles, which have large
velocities and are not affected by the noise from errors in
position measurements. For each of the Brownian particles
we determine its proper radius from the Epstein drag. The
radius of silica particles is nearly unaffected by the drying
process with a radius reduction of δr = −0.02 μm. It becomes
substantial (δr = −0.16 μm) for MF particles, as shown in the
inset of Fig. 3. At last, we obtain the kinetic temperature as
Tk = (mp/kB)〈v2〉.

Finally, the accuracy of the obtained temperatures needs
attention. The determination of particle positions with subpixel
resolution from digital images was discussed in Refs. [22,30].
Possible error sources for particle velocities, such as pixel
locking, and their influence on kinetic temperatures were
described in Ref. [31]. Because of their mostly technical
nature, details of our data handling procedure are compiled
in the Appendix. The influence of the position error turns
out negligible. The typical confidence interval from the
bootstrapping analysis extends over ±5 K.

IV. CHARGE FLUCTUATIONS

A microparticle in a plasma is electrically charged due to
the flux of electrons and positive ions that reach the surface.
Because of the higher thermal velocity of the electrons the
net charge is negative. In collisionless plasmas, the net charge
is given by the orbital-motion-limited (OML) model [32,33].
Charge exchange collisions in the quasineutral plasma bulk
lead to enhanced ion currents and smaller negative charges
[34–36]. Recently, we have proposed a model for charging
and charge fluctuations with collision-enhanced ion currents
in the sheath [37].

The charge on the microparticle fluctuates because of the
graininess of the incoming flux, which represents a Markov
process [17,18]. When the particle charge deviates by δq

from its equilibrium value, a particle suspended in the sheath
experiences a stochastic force δq Ē0. Typical lifetimes of a

FIG. 4. Normalized surface potential ηs , levitation height z, and
lifetime of a charge fluctuation τch for SiO2 particles as a function of
the particle radius rp .

charge fluctuation are (10 − 40) μs (see Fig. 4). Since the
lifetime of a charge fluctuation in these low-density plasmas
is much greater than the r.f. period, the time-averaged electric
field Ē0 is used. The efficiency of stochastic heating increases
with the lifetime τch = γ −1

ch of the charge fluctuation. The
charging rate γch takes the general form [37]

γch = eIi

CpkBTe

f (vi,ηs) . (5)

Here, Ii is the ion current arriving at the particle surface,
Cp = 4πε0rp the capacitance of the particle and Te the electron
temperature. The function f (vi,ηs) depends on the ion velocity
vi at the levitation position and the normalized surface po-
tential ηs = −eφs/kBTe and has typical values f ≈ 2.5–3.5.
Details of the function f (vi,ηs) can be found in Ref. [37].
Efficient stochastic heating from charge fluctuations is there-
fore expected for small ion currents and large electric fields.
Therefore, stochastic heating should become prominent for
heavy particles that require a large electric field for levitation.

A proper expression for the temperature rise �Tk from
stochastic heating by charge fluctuations can be obtained as
follows: The superposition of classical Brownian motion and
stochastic heating by charge fluctuations in a harmonic trap can
be described by the stationary Klein-Kramers equation [38]

0 = β
∂

∂v
(vf ) + (

DA
v + DQ

v

)∂2f

∂v2
(6)

for the velocity distribution f (v) of the Brownian particle.
Here, DA

v and DQ
v are the diffusion coefficients in velocity

space due to atomic collisions and charge fluctuation
forces, respectively. The diffusion coefficients can be added
because the two processes are uncorrelated. The solution
of Eq. (6) is a Maxwellian with kinetic temperature Tk =
(mp/βkB )(DA

v + DQ
v ). The coefficient DA

v = (β/mp)kBTg
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TABLE I. Parameters for charging model from XPDP1 simulation.

p Urf Te nis vi0

Particle (Pa) (Vpp) (eV) (m−3) (m s−1) 〈ne〉/ni

SiO2 10 80 2.30 3.04 × 1014 326 0.8
MF 11 70 3.01 2.60 × 1014 320 0.8

is determined by the gas temperature [38]. The diffusion
coefficient in v-space DQ

v = DQĒ2
0/(m2

pγ 2
ch) contains the

charge diffusivity in Q-space DQ = γchσ
2
Q [39] with the

charge variance σ 2
Q ≈ 0.5eqp [17,40]. Replacing Ē0 by means

of the Millikan condition (1), we obtain the temperature rise

�Tk = σ 2
Qmpg2

kBβγchq2
p

, (7)

which states earlier results more precisely that were obtained
by treating the charge fluctuations as bandwidth-limited
white noise [9] or by means of the Langevin equation [19].
Equation (7) confirms the expected scaling of the temperature
rise �Tk ∝ mp/(qpβ γch). Note that σ 2

Q/qp is approximately
constant. Therefore, the temperature rise is only determined
by mp/qp and (βγch)−1. Both dependencies will be studied
experimentally in Sec. VI by varying the particle radius and
in Sec. VII by varying the gas pressure.

V. THE CHARGING MODEL

The plasma conditions for gas pressures of p = (10–11) Pa
are taken from particle-in-cell (PIC) simulations of the r.f.
sheath with the XPDP1 code [41,42]. This one-dimensional
code is appropriate for our system as long as the confinement
region for the microparticle has an almost stratified structure
of equipotentials. In this pressure range the sheath thickness
is typically 9 mm and the bulk plasma fills only the central
12 mm of the 30 mm gap between the electrodes. The influence
of the manipulation electrode is restricted to the outer part of
the sheath and its influence on the bulk plasma and plasma
production is weak. For lower gas pressures, however, the
sheath region expands even further and the central bulk plasma
gradually disappears. Then, the manipulation electrode may
affect a larger volume and the overall potential structure
needs reexamining in more detail using a two-dimensional
simulation code. This extension is beyond the scope of the
present investigation.

Although experiments in the pressure regime of about 10 Pa
resulted in bi-Maxwellian electron distributions in the plasma
center [43], our simulations yield an electron distribution
function at the sheath edge that is nearly Maxwellian and
represents the hot component of the bi-Maxwellian. The
resulting parameters for the charging model in the sheath are
compiled in Table I.

The particle charge qp, ion charging current Ii , and γch

are described by the model in Ref. [37]. The plasma density
ni0 at the sheath edge and the ion flux density ni0vi0 into
the sheath are taken from the simulation. The particle charge
and the electric field Ē0 are obtained by simultaneously
solving the Millikan condition (1) and the floating condition,
Ii + 〈Ie〉 = 0. Due to the periodic sheath expansion and con-

traction, the period-averaged electron density at the levitation
height is only ≈80% of the ion density.

In accordance with the PIC simulations, we assume a linear
increase of the time-averaged space charge in the outer parts
of the sheath, which results in a square law for the electric
field. For the conditions in Table I for silica particles the
model calculations yield the normalized surface potential ηs ,
the levitation height z in the sheath, and the lifetime of a charge
fluctuation τch as a function of the particle radius.

With increasing particle radius (and mass) the levitation
height moves ever deeper into the sheath. Since the levitation
field increases with mp/qp, the ion Mach number increases ac-
cordingly. The increasing Mach number leads to a reduction of
the OML current to the grain. This reduction is responsible for
the increase of the normalized surface potential ηs and, from
Eq. (5) for the increase of the lifetime of a charge fluctuation.

The ion drift velocity at the levitation height, vi =
(eĒλ/mi)1/2 is determined from the ion mobility in a weakly
collisional sheath using a constant mean free path of λ =
7.0 mm/[p(Pa)] [44]. The ion current to the microparticle is
then calculated from the OML model. This is justified, because
the final deflection of the ion orbit by the microparticle occurs
on a distance much shorter than the mean free path. Hence, the
increase of the particle cross section is still given by the OML
factor, but using the proper local ion drift velocity.

VI. VARIATION OF THE PARTICLE SIZE

We first study the evolution of the kinetic temperature with
increasing particle size at gas pressures near 10 Pa, which are
typical of many experiments with dust clusters.

The measured kinetic temperatures Tk,x and Tk,z are shown
in Fig. 5 together with the predicted temperature rise from
Eq. (7). For both species of particles, the experimental data are

FIG. 5. The measured kinetic temperatures for (a) silica and
(b) MF particles in comparison with the predicted temperature rise
from charge fluctuations (solid line). The dashed line corresponds to
2 × �Tk . The dotted line marks the gas temperature (290 K).
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found close to the gas temperature of 290 K, which is marked
by a dotted line. We ascribe the scatter of the data points to
residual uncertainties of the particle mass. For silica particles
we observe a weak rise of the kinetic temperature with particle
mass. A similar temperature rise is only found for the largest
MF particles. This result is generally in agreement with the
expectation that heavier particles require a larger levitation
field, which in turn determines the heating rate.

Our heating model that combines the charging model
[37] with plasma parameters from PIC simulations gives a
reasonable quantitative description of the heating process by
charge fluctuations. In particular, we find that the temperature
rise with particle size should be small. On average, the
experiments indicate a weak trend of such a temperature rise.
The observed trend of the experimental data would be even
better described by twice the heating rate from Eq. (7) as
indicated by the dashed line in Fig. 5. In view of the data scatter
no significant difference between Tk,x and Tk,z can be stated.

VII. PRESSURE VARIATION

A substantial temperature rise can be expected by lowering
the gas temperature. The temperature rise predicted by Eq. (7)
on the one hand depends on the lifetime of the fluctuations
τch = γ −1

ch . From Eq. (5) we see that the charging rate γch is
proportional to the ion charging current, which is proportional
to the plasma density at the sheath edge.

The plasma density in the center of rf-discharges at very
low pressures generally shows an erratic dependence on gas
pressure [45], which can be attributed to the accumulation of
cold electrons in the plasma center.

On the other hand, detailed probe measurements [46] have
shown that the density of hot plasma electrons, which are
able to penetrate the sheath and determine the dust charge,
scales with the gas pressure, ni ∝ p. This scaling would
already predict a temperature rise for decreasing gas pressure.
Moreover, the temperature rise depends also on the cooling
rate β. According to the Epstein formula (4) we have a scaling
β ∝ p. Combining these two aspects, we expect that the
temperature rise at pressure reduction approximately scales
as �Tk ∝ p−2. Therefore, a pressure reduction by a factor of
three should roughly give a temperature rise by an order of
magnitude.

Since we have learned in the preceding paragraph that
the heating is most efficient for the largest particle mass, we
use the largest available silica particle size of rp = 3.69 μm.
The experiment is made by trapping a single particle at the
lowest pressure (p = 3 Pa) that provides stable levitation. Then
the Brownian motion for this specific particle is recorded at
stepwise increasing gas pressure. This procedure eliminates
any ambiguity in the particle radius. Further, we have learned
before that the silica particle ensures long-time stability.

The resulting kinetic temperatures Tk,z are compiled in
Fig. 6(a). The error bars represent an uncertainty of 10%.
As a guide to the eye, the estimated temperature rise ∝p−2

is shown by the solid curve. The observed temperature rise
generally confirms the expected scaling from the combined
influence of extended lifetime of a fluctuation and reduced
cooling rate when the pressure is lowered.

FIG. 6. (a) The measured kinetic temperature Tk,z for a silica
particle of 3.69 μm radius. The full curve indicates the estimated p−2

scaling. The dotted line marks the gas temperature (290 K). (b) The
normalized friction coefficient β/p as obtained from the VAF.

The Epstein friction β obtained from the VAF is used on
the one hand to verify the pressure scaling β ∝ p. On the
other hand, deviations from this scaling could be taken as an
indication for a competing instability, which may also be a
source of heating. The normalized friction coefficient β/p in
Fig. 6(b) shows no significant dependence on the gas pressure.
This confirms the Epstein formula and rules out any substantial
reduction of the friction coefficient by instabilities, such as the
delayed charging instability [47].

VIII. DISCUSSION

The experimental techniques have been thoroughly refined
to make precise measurement of kinetic temperatures near
room temperature accessible. Since the kinetic temperature
is the product of the mean-squared velocity and the particle
mass, we have applied a proper determination of particle
velocities in the ballistic regime. Further, the particle mass
was determined from precise values of the Epstein friction
coefficient obtained from the VAF. The position error was
found to have a negligible influence on the kinetic temperature.
In this way we could clearly demonstrate that for a gas
pressure of the order of 10 Pa the kinetic temperature of
an isolated silica particle remains close to gas temperature.
For MF particles the substantial corrections from the Epstein
drag lead to consistent temperatures. In this way, we can
conclude that excessive temperatures reported at these plasma
conditions for many-particle systems can be attributed to
collective instabilities.

We have presented a detailed heating model that is based
on reliable plasma parameters from PIC simulations and
contains no fit parameters. This model allows for an absolute
comparison between theory and experimental data. In the
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accessible range of particle sizes and at 10 Pa pressure, the
predicted heating effect from charge fluctuations is as small as
the experiments show. On average, a weak trend of temperature
rise with increasing particle mass becomes visible in the
experimental data, although the remaining scatter is of the
same order as the temperature increase.

A pronounced heating effect, however, is found when
the gas pressure is reduced. Pressure reduction increases the
lifetime of a fluctuation and reduces the cooling rate. Since
both aspects act simultaneously, a general scaling �T ∝
p−2 was expected and could be generally confirmed by the
experimental data. For a refined analysis, the scaling of the
plasma parameters with gas pressure need to be determined.
This remains a challenging task, because PIC simulations with
a two-dimensional code will be necessary that describe the
sheath region including the distortion by the manipulation
electrode. Detailed experiments and comparative simulations
will be the subject of future investigations.

During pressure reduction the normalized friction coef-
ficient β/p remained constant as expected from Epstein’s
formula. This finding rules out any competing instability, such
as the delayed charging instability [47] that was observed by
other authors at pressures p < 2 Pa. Such an instability would
otherwise manifest itself by a gradual reduction of the damping
rate even before the instability sets in.

The experiments with single Brownian particles have ex-
cluded all collective heating mechanisms. In this way we could
show that the motion of the microparticle under the sole
influence of classical Brownian motion in the gas and white
noise from charge fluctuation forces leads to a Maxwellian
velocity distributions at a slightly enhanced temperature, mean
square displacements and velocity autocorrelations in close
agreement with the Uhlenbeck-Ornstein-Wang model [26,27].

FIG. 7. Resulting kinetic temperatures as a function of the chosen
time step τ . The dashed line represents the transition from the
diffusive to ballistic regime given by the Uhlenbeck-Ornstein model,
which approaches T true

k for τ → 0. The solid line is the error model
from Eq. (A1). The vertical dotted line marks the standard sampling
rate of fs = 400 fps.

The topic of Brownian motion under the influence of addi-
tional stochastic heating from charge fluctuations will continue
to be an interesting topic, because it is a particular situation, in
which the second stochastic process introduces fluctuations
but no damping. Stochastic heating by charge fluctuations
cannot be interpreted as a second heat bath, as was the case in
hot Brownian motion. Rather, we have shown above that the
superposition of a stochastic process without damping can be
correctly described by the Klein-Kramers equation (6), which
allows a quantitative prediction of the temperature rise (7).
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APPENDIX: EXPERIMENTAL ERRORS AFFECTING
THE KINETIC TEMPERATURE

Particle velocities result from the difference �r of positions
at a chosen time step τ . When the time step is chosen too
small, the resulting velocity v = �r/τ is affected by the error
σr of the position measurement and asymptotically approaches

FIG. 8. (Color online) (a) The velocity distribution function
f (vz) from the data used in the inset of Fig. 2. The full line gives the
best fit, (b) residue of this fit, (c) temperature distribution from the
bootstrap analysis.
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spurious velocities v = 21/2σr/τ [31]. On the other hand, a too
large time step leads to apparently reduced temperatures by
leaving the ballistic regime. The optimum choice for τ can be
obtained from a high-speed recording with a sampling rate of
fs = 4000 fps. In this time series the time step for evaluating
the velocity τ = N/fs is varied by skipping an increasing
number N of frames [31]. The resulting kinetic temperatures
are plotted vs. τ in Fig. 7.

The data points show the expected increase ∝τ−2

below the inflection point. Above the inflection point,
the kinetic temperature decreases as expected from the
Uhlenbeck-Ornstein model. The dashed curve is a fit based
on Eq. (2) to these data, which approaches T true

k for τ → 0.
The position error σr in this measurement can be extracted by
fitting the temperatures below the inflection point by an error
model (solid line in Fig. 7) that describes the deviation from
the true kinetic temperature T true

k

Tk = T true
k + mp

NskB

2σ 2
r

τ 2
. (A1)

Here Ns = 104 is the sample size of individual velocity
measurements in this time series at N = 10 skipped frames
and the individual errors are assumed to follow Poisson

statistics. This fit yields σr = 1.9 μm. Compared to the
effective pixel size of 7 μm in real space coordinates we
achieve a subpixel resolution of about 1/4 pixel.

As optimum choice for Tk we could use the value at the
inflection point of this curve. However, this information is only
available after an elaborate data analysis. For practical reasons,
we have therefore chosen a fixed predetermined sampling rate
fs = 400 fps, which lies in the plateau close to the inflection
point. Accordingly, we neglect the small correction originating
from using Tk(400 fps) instead of T true

k in this paper.
Besides these systematic error sources, the statistical error

in fitting the measured distribution function by a Gaussian
can be estimated by “bootstrapping” [48]. Confidence limits
are obtained by taking the residue of the fit as an estimate
for the statistical error. This is done by adding randomized
errors taken from this residue to the best-fit Maxwellian and
repeating the fitting procedure 500 times. In Fig. 8(a) the best
fit Maxwellian f (vz) is shown for the same data as in the inset
of Fig. 2 together with (b) the residue and (c) the temperature
distribution from the bootstrap analysis.

The confidence interval, which contains 95% of the
bootstrapped temperature values, extends over ±5 K. This
statistical error is much smaller than the observed scatter of
the measured temperatures in Fig. 5, which hints at additional
still unidentified error sources.
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