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The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic
radiation of arbitrary intensity is developed. The Liouville–von Neumann equation for the density matrix is solved
analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With
the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical
ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray
lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.
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I. INTRODUCTION

The recent remarkable progress in x-ray free electron laser
technology [1–3] allows production of electromagnetic (EM)
wave pulses with intensity 1020 W/cm2 [3] exceeding the
peak brilliance of conventional synchrotron sources by many
orders of magnitude. For such intensities the electron-wave
field energy exchange over an x-ray wavelength is larger
than the photon energy, and the laser-matter interaction has
essentially multiphoton character [4]. Thus, in recent decades
the wide research field is opened up, where common nonlinear
effects are extended to high energy transitions for various
systems—from atoms [5–9], through molecules [10–13], to
plasma and solid samples [14–19]. In a solid sample or in
plasma with partially ionized atoms the main mechanisms
of x-ray absorption are connected with the deep bounded
electrons. In particular, the photoionization with relatively long
laser pulses from the K and L shells are responsible for x-ray
absorption [14,19]. In completely ionized underdense plasma,
there are several type of instabilities [20,21] which can be
developed at the laser plasma interaction causing collisionless
plasma heating for relatively long laser pulses. Besides, rela-
tivistic quantum effects may be essential for plasmas of high
densities [22,23]. For x-ray lasers of ultrarelativistic intensities
the stimulated Raman scattering and two-plasmon decay
instabilities can cause strong collisionless plasma heating [23].
For the short enough laser pulses the inverse-bremsstrahlung
absorption may become the dominant mechanism of the
absorption of strong laser pulses in plasma [24]. Among the
fundamental processes of laser-plasma interaction, the inverse
bremsstrahlung absorption of an intense laser field in plasma
is one of the contemporary problems that have applications
ranging from plasma diagnostics to thermonuclear reactions
and generation of intense x-ray radiation. Note that in the
field of intense x-ray laser, an electron may gain considerable
energies absorbing even a few quanta, which makes it an
effective mechanism for laser-plasma heating. The theoretical
description of this phenomenon in such superstrong radiation
fields requires one to go beyond the scope of common
quantum electrodynamics–Feynman diagrams corresponding
to the perturbation theory.

With the advent of lasers many pioneering papers have been
devoted to the theoretical investigation of the electron-ion

scattering processes in gas or plasma in the presence of a
laser field using nonrelativistic [24–35] as well as relativistic
[36–40] considerations. The appearance of superpower
ultrashort laser pulses of relativistic intensities has triggered
new interest in stimulated bremsstrahlung (SB) in a relativistic
domain, where investigations were carried out in the Born
[41–43], eikonal [38], and generalized eikonal [44]
approximations over the scattering potential. Beyond this
approximation for the infrared and optical lasers, in the
multiphoton interaction regime, one can apply classical theory
and the main approximation in the classical theory is low
frequency or impact approximation [24,30]. Low frequency
approximations have been generalized for the relativistic case
in Refs. [39,40], where the effect of an intense EM wave on
the dynamics of SB and nonlinear absorption of intense laser
radiation by a monochromatic electron beam and by relativistic
plasma due to the SB have been carried out. Regarding the solid
densities, the absorption coefficient of inverse-bremsstrahlung
may reach considerably large values. As was shown in
Ref. [45], where interaction of superstrong lasers with
thin plasma targets of solid densities was investigated
via particle-in-cell simulations, the inverse-bremsstrahlung
absorption is dominant for electron densities above 1021 cm−3.

For the infrared and optical lasers the quantum effects in
the SB process are smeared out due to smallness of the photon
energy. Meanwhile, for a intense x-ray radiation the nonlinear
over the field quantum effects will be considerable. Thus it is
of interest to consider x-ray multiphoton absorption via inverse
bremsstrahlung in ultradense classical as well as quantum
plasmas. In the present paper the inverse-bremsstrahlung
absorption of an intense x-ray laser field in the dense classical
and quantum plasmas is considered in the relativistic-quantum
regime considering a wave field exactly, while a scattering
potential of a plasma ion as a perturbation. The x-ray radiation
power absorbed in plasma is investigated for circularly and
linearly polarized waves arising from the second quantized
consideration. The Liouville–von Neumann equation for the
density matrix is solved analytically for a system initially in
thermodynamic equilibrium (grand canonical ensemble). With
the help of this solution we investigate the nonlinear inverse-
bremsstrahlung absorption rate for Maxwellian as well as for
degenerate quantum plasmas. It is shown that depending on the
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intensity of an incident x ray, one can achieve the quite large
absorption coefficients. Hence the considered mechanism may
serve as an efficient tool for ultrafast plasma heating.

The organization of the paper is as follows. In Sec. II, the
relativistic quantum dynamics of SB is presented with ana-
lytical results for density matrix and inverse-bremsstrahlung
absorption rate. In Sec. III, we consider the problem numeri-
cally. Finally, conclusions are given in Sec. IV.

II. BASIC MODEL AND THEORY

Let us consider the relativistic quantum theory of plasma
nonlinear interaction with the arbitrary strong EM wave field
by microscopic theory of electrons-ions interaction on the base
of the density matrix. The EM wave with the four-wave vector
k ≡ (ω/c,k) is described by the four-vector potential

Aμ = (0,A), (1)

where A is defined as

A(τ ) = A0{e1 cos ωτ + e2g sin ωτ },
(2)

τ = t − ν0r
c

, ν0 = ck
ω

, e1ν0 = e2ν0 = e1e2 = 0,

with the amplitude A0, unit polarization vectors e1,2, and
ellipticity parameter g. The ions are assumed to be at rest
and being either randomly or nonrandomly distributed in
plasma, the static potential field of which (for nucleus/ion—as
a scattering center—the recoil momentum is neglected) is
described by the scalar potential

A(e)(x) = (ϕ(r),0), (3)

where

ϕ(r) =
Ni∑
i

ϕi(r − Ri). (4)

Here ϕi is the potential of a single ion situated at the position
Ri , and Ni is the number of ions in the interaction region.

To investigate the quantum dynamics of SB we need the
quantum kinetic equations for a single particle density matrix,
which can be derived arising from the second quantized
formalism. As is known, the Dirac equation allows the exact
solution in the field of a plane EM wave (Volkov solution).
Although the Volkov states are not stationary, as there are no
real transitions in the monochromatic EM wave field (due to
the violation of energy and momentum conservation laws),
the state of an electron with a charge e and mass m in an EM
wave field can be characterized by the quasimomentum � and
polarization σ , and the particle state in the field (1) is given by
the wave function:

��σ =
[

1 + e/k/A

2c(kp)

]
uσ (p)√
2E�V

exp

[
− i

�
�x

]
× exp

{
i

�

[
eA0

c(pk)
(e1p sin ωτ − ge2p cos ωτ )

− e2A2
0

8c2(pk)
(1 − g2) sin(2ωτ )

]}
, (5)

where for any four-vector a: /a ≡ aμγ μ, γ μ ≡ {γ 0,γ 1,γ 2,γ 3}
are the Dirac matrices, V is the quantization volume, uσ is the
bispinor amplitude of a free Dirac particle with polarization σ ,
and � = (E�/c,�) is the average four-kinetic momentum or
“quasimomentum” of the particle in the periodic field, which
is determined via a free particle four-momentum p = (E/c,p)
and relativistic invariant parameter of the wave intensity ξ0 =
eA0/mc2 by the following equation:

� = p + k
m2c2

4kp
(1 + g2)ξ 2

0 . (6)

From this equation follows that

�2 = m∗2c2, m∗ = m

(
1 + 1 + g2

2
ξ 2

0

)1/2

, (7)

where m∗ is the effective mass of the particle in the monochro-
matic wave. The states (5) are normalized by the condition∫

�
†
�′σ ′��σ dr = (2π�)3

V δ(� − �′)δσ,σ ′ .

Cast in the second quantization formalism, the Hamiltonian is

H =
∫

�̂+Ĥ0�̂ dr + Hsb, (8)

where �̂ is the fermionic field operator, Ĥ0 is the one-
particle Dirac Hamiltonian in the plane EM wave (1), and
the interaction Hamiltonian is

Hsb = 1

c

∫
ĵA(e)dr, (9)

with the current density operator

ĵ = e�̂+γ0γ �̂. (10)

Making Fourier transformation

A(e)(x) = 1

(2π )3

∫
A(e)(q)e−iq·rdq,

the expression (9) will have a form

Hsb = 1

c(2π )3

∫
�̂+V (q)e−iq·r�̂ dq dr, (11)

where

V (q) =
∫ Ni∑

i

eϕi(r − Ri)e
−iq·rdr. (12)

We pass to the Furry representation and write the Heisen-
berg field operator of the electron in the form of an expansion
in the quasistationary Volkov states (5)

�̂(r,t) =
∑

σ

∫
d��â�,σ e

i
�

E�t��σ (r,t), (13)

where d�� = Vd3�/(2π�)3. In Eq. (13) we have ex-
cluded the antiparticle operators, since contribution of
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electron-positron intermediate states will be negligible for
considered intensities and photon energies εγ = �ω � mc2.
The creation and annihilation operators, â+

�,σ (t) and â�,σ (t),
associated with positive energy solutions satisfy the anticom-
mutation rules at equal times,

{̂a†
�,σ (t),̂a�′,σ ′(t ′)}t=t ′ = (2π�)3

V δ(� − �′)δσ,σ ′ , (14)

{̂a†
�,σ (t),̂a†

�′,σ ′(t
′)}t=t ′ = {̂a�,σ (t),̂a�′,σ ′(t ′)}t=t ′ = 0. (15)

Taking into account Eqs. (13), (10), (9), and (5), the second
quantized Hamiltonian can be expressed in the form

H = H0 + Hsb(t). (16)

The first term in Eq. (16) is the Hamiltonian of Volkov dressed
electron field

H0 =
∑

σ

∫
d��E�â+

�,σ â�,σ , (17)

while the second term

Hsb(t) =
∑
σσ ′

∫
d��

∫
d��′M�′,σ ′;�,σ (t )̂a+

�′,σ ′ â�,σ (18)

is the interaction Hamiltonian describing the SB with ampli-
tudes

M�′,σ ′;�,σ (t) = 1

V

∞∑
s=−∞

e−isωtM(s)
�′,σ ′;�,σ

, (19)

M(s)
�′,σ ′;�,σ

= V (qs)

2c
√

E�E�′
uσ ′(p′)

×
[
/ε0Bs +

(
e/B1s/k/ε0

2c(kp′)
+ e/ε0/k/B1s

2c(kp)

)
+ e2(kε0)B2s

2c2(kp′)(kp)
/k

]
uσ (p). (20)

In Eq. (20) the vector functions B
μ

1s = (0,B1s) and scalar
functions Bs , B2s are expressed via the generalized Bessel
functions Gs(α,β,ϕ):

Gs(α,β,ϕ) =
∞∑

k=−∞
J2k−s(α)Jk(β)ei(s−2k)ϕ, (21)

B1s = A0

2
{e1(Gs−1(α,β,ϕ) + Gs+1(α,β,ϕ))

+ ie2g(Gs−1(α,β,ϕ) − Gs+1(α,β,ϕ))}, (22)

Bs = Gs(α,β,ϕ), (23)

B2s = A2
0

2
(1 + g2)Gs + A2

0

2
(1 − g2)

× (Gs−2(α,β,ϕ) + Gs+2(α,β,ϕ)), (24)

and

�qs = �′ − � − s�k (25)

is the recoil momentum. The definition of the arguments α,β,ϕ

are

α = eA0

�c

[(
e1p
pk

− e1p′

p′k

)2

+ g2

(
e2p
pk

− e2p′

p′k

)2]1/2

, (26)

β = e2A2
0

8�c2
(1 − g2)

(
1

pk
− 1

p′k

)
, (27)

tan ϕ =
g
( e2p

pk
− e2p′

p′k

)( e1p
pk

− e1p′
p′k

) . (28)

Thus, in order to develop microscopic relativistic quantum
theory of the multiphoton inverse-bremsstrahlung absorption
of ultrastrong shortwave laser radiation in plasma we need
to solve the Liouville–von Neumann equation for the density
matrix ρ̂:

∂ρ̂

∂t
= i

�
[ρ̂,H0 + Hsb(t)], (29)

with the initial condition

ρ̂(−∞) = ρ̂G. (30)

Here we assume that before the interaction with an EM wave
the system was in thermodynamic equilibrium (thermal and
chemical) with a reservoir. Thus ρ̂G is the density matrix of
the grand canonical ensemble:

ρ̂G = exp

[
1

Te

(
� +

∑
σ

∫
d��(μ − E� )̂a+

�,σ â�,σ

)]
.

(31)

In Eq. (31) Te is the electrons temperature in energy units, μ is
the chemical potential, and � is the grand potential. Note that
the initial one-particle density matrix in momentum space is

ρσ1σ2 (�1,�2,−∞) = Tr
(
ρ̂Gâ+

�2,σ2
â�1,σ1

)
= n

(
E�1

) (2π�)3

V δ(�1−�2)δσ1,σ2 ,

(32)

where

n
(
E�1

) = 1

exp
[E�1 −μ

Te

] + 1
. (33)

We consider Volkov dressed SB Hamiltonian Hsb(t) as a
perturbation. Accordingly, we expand the density matrix as

ρ̂ = ρ̂G + ρ̂(1).

Then taking into account the relations

[̂a+
�′,σ ′ â�,σ ,ρ̂G] = (

1 − e
1
Te

(E�′−E�))ρ̂Gâ+
�′,σ ′ â

′
�,σ

and

[ρ̂G,H0] = 0,

for ρ̂(1) we obtain

ρ̂(1) = 1

i�

∫ t

−∞
dt ′

∑
σσ ′

∫
d��

∫
d��′M�′,σ ′;�,σ (t ′)

× e
i
�

(t ′−t)(E�′ −E�)
(
1 − e

1
Te

(E�′−E�))ρ̂Gâ+
�′,σ ′ â�,σ . (34)
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Now with the help of this solution one can calculate the desired
physical characteristics of the SB process. In particular, for
the energy absorption rate by the electrons due to the inverse
stimulated bremsstrahlung one can write

dE
dt

= Tr

(
ρ̂(1) ∂Hsb(t)

∂t

)
. (35)

It is more convenient to represent the rate of the inverse-
bremsstrahlung absorption via the mean number of absorbed
photons by per electron, per unit time:

dNγe

dt
= 1

�ωNe

dE
dt

, (36)

where Ne is the number of electrons in the interaction region.
Taking into account decomposition(

1 − e
1
Te

(E1−E2))Tr(ρ̂Gâ+
1 â2â

+
3 â4)

= (
1 − e

1
Te

(E1−E2))n1(1 − n2)δ23δ14,

with the help of Eqs. (34), (35), (36), and (20) for large t we
obtain

dNγe

dt
=

∞∑
s=1

dNγe(s)

dt
, (37)

where the partial s-photon absorption rates are given by the
formula

dNγe(s)

dt
= 8πs

�NeV2

∫ ∫
d��d��′

E�E�′
|V (qs)|2

∣∣B(s)
�′;�

∣∣2

× δ(E�′ − E� + s�ω)
(
1 − e

1
Te

(E�′−E�))
× n(E�′)(1 − n(E�)), (38)

where∣∣B(s)
�′;�

∣∣2 =
{∣∣∣∣EBs − e(pB1s)ω

(kp)c
+ e2ωB2s

2c2(kp)

∣∣∣∣2

− �
2q2

s c
2

4
|Bs |2

+ e2
�

2[kqs]
2

4(kp′)(kp)
[|B1s |2 − Re(B2sB

∗
s )]

}
, (39)

and δ(x) is the Dirac δ function that expresses the energy
conservation law in the SB process. The obtained expression
for the absorption rate is general and applicable to arbitrary
polarization, frequency, and intensity of the wave field. This
formula is applicable for a grand canonical ensemble and is
always positive. With the help of Eqs. (38) and (37) one can
calculate the nonlinear inverse-bremsstrahlung absorption rate
for Maxwellian, as well as for degenerate quantum plasmas.

III. NUMERICAL RESULTS AND DISCUSSION

For the obtained absorption rate (38) one needs to concretize
the ionic potential V (qs). In general, one should arise from
the Lindhard theory of screening. The latter is applicable
for quantum plasmas [46] and in the classical limit coincides
with the Debye theory. For our calculations the Thomas-Fermi
approximation is sufficient, namely the potential of a single ion
ϕi of charge number Za varies slowly on the scale of Fermi
wavelength �/pF , where pF is the Fermi momentum. Thus, in

this case in Eq. (4) we have screened Coulomb potential

ϕi(r) = eZa

r
exp(−�er), (40)

where

�e =
(

4πe2 ∂ne

∂μ

)1/2

(41)

is the Thomas-Fermi wave vector [46] which defines the
screening length �−1

e as a function of the plasma temperature
and density of electrons ne. For Maxwellian plasma ne ∝ eμ/Te

and �e = (4πe2ne/Te)
1/2

. For degenerate plasma ∂ne/∂μ =
3ne/(2εF ) is the density of levels at the Fermi energy εF and
�e = (6πe2ne/εF )

1/2
. Thus, taking into account the plasma

quasineutrality (ZaNi 	 Ne), from Eqs. (4), (40), and (12) for
randomly distributed plasma ions we have

|V (qs)|2 = Ne

16π2Zae
4(

q2
s + �2

e

)2 . (42)

Integrating in Eq. (38) over E�′ we will obtain the following
expression for partial absorption rates:

dNγe(s)

dt
= 2Zae

4s

π3�3c4

∫
m∗c2+s�ω

dE�d�d�′ |�||�′|∣∣B(s)
�′;�

∣∣2(
�2q2

s + �2�2
e

)2

× (
1 − e− s�ω

Te

)
n(E� − s�ω)(1 − n(E�)), (43)

where

|�′| =
√

|�|2 + �2s2k2 − 2
E�s�ω

c2
.

In general, the analytical integration over solid angles �,
�′ and energy is impossible, and one should make numerical
integration. The latter for initially nonrelativistic plasma and
at the photon energies �ω > Te is convenient to make

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3
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dN
γe

(s
)/

dt
 [f

s-1
]

Photon Number

χ0=1
χ0=2
χ0=3
χ0=4

FIG. 1. (Color online) Envelope of partial rate of inverse-
bremsstrahlung absorption via the mean number of absorbed photons
by per electron, per unit time (in femtosecond−1) for circularly
polarized wave in Maxwellian plasma is shown for various wave
intensities at εγ = 1 keV, Za = 13, ne = 1023cm−3, and Te = 100 eV.
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FIG. 2. (Color online) Same as Fig. 1 but for linearly polarized
wave.

introducing a dimensionless parameter

χ0 = eE0

ω
√

m�ω
, (44)

which is the ratio of the amplitude of the momentum
transferred by the wave field to the momentum at the one-
photon absorption. In Eq. (44) the dimensionless parameter
E0 = ωA0

√
1 + g2/c is the amplitude of the electric field

strength. Hence the average intensity of the wave expressed
via the parameter χ0 can be estimated as

Iχ0 = χ2
0 × 1.74 × 1012 W cm−2

[
�ω

eV

]3

.

The intensity Iχ0 strongly depends on the photon energy �ω. At
χ0 ∼ 1, the multiphoton effects become essential. Particularly,
for x-ray photons with energies εγ ≡ �ω = 0.1–1 keV, mul-
tiphoton interaction regime can be achieved at the intensities

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5  4  4.5  5

dN
γe

/d
t [

fs
-1

]

χ0

εγ=0.5 keV
εγ=1.0 keV

FIG. 3. (Color online) Total rate of inverse-bremsstrahlung ab-
sorption for circularly polarized wave in Maxwellian plasma vs
the dimensionless parameter χ0 for various photon energies at
ne = 1023cm−3, and Te = 100 eV.

 0

 0.5

 1

 1.5

 2

 1  1.5  2  2.5  3  3.5  4  4.5  5

dN
γe

/d
t [

fs
-1

]

χ0

εγ=0.5 keV
εγ=1.0 keV

FIG. 4. (Color online) Same as Fig. 3 but for linearly polarized
wave.

Iχ0 ∼ 1018–1021 W/cm2. In the opposite limit χ0 � 1, the
multiphoton effects are suppressed.

For all calculations as a reference sample we take ions with
Za = 13 (fully ionized aluminum) and consider plasma of
solid densities. In Fig. 1 and Fig. 2 the envelope of the partial
rate of inverse-bremsstrahlung absorption for circularly and
linearly polarized waves in Maxwellian plasma is shown for
various wave intensities at εγ = 1 keV, ne = 1023 cm−3, and
Te = 100 eV. As is seen from these figures, the multiphoton
effects become essential with the increase of the wave
intensity.

To show the dependence of the inverse-bremsstrahlung
absorption rate on the laser radiation intensity, in Fig. 3 and
Fig. 4 the total rate (37) with (43) for circularly and linearly
polarized waves in Maxwellian plasma versus the parameter
χ0 for various photon energies are shown. As is seen from these
figures, the rate strictly depends on the wave polarization, and
for the large values of χ0 it exhibits a tenuous dependence on
the wave intensity.

To compare with the linear theory [24], in Fig. 5 we
plot scaled absorption rate χ−2

0 dNγe/dt versus χ0. In the
scope of the linear theory the scaled absorption rate does not

 0
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 0.2

 0.3

 0.4

 0.5
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χ 0
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dN
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εγ=1.0 keV

FIG. 5. (Color online) Total rates of the inverse-bremsstrahlung
absorption scaled to χ 2

0 vs the parameter χ0 for setup of Fig. 3.
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FIG. 6. (Color online) Total rate of inverse-bremsstrahlung ab-
sorption of circularly polarized wave in Maxwellian plasma, as
a function of the plasma temperature is shown for various wave
intensities at εγ = 1 keV, Za = 13, and ne = 1023 cm−3.

depend on the wave intensity, while for the large values of
χ0 it is suppressed with the increase of the wave intensity.
To show the dependence of the considered process on the
plasma temperature, in Fig. 6 we plot the total rate of
the inverse-bremsstrahlung absorption of circularly polarized
laser radiation in Maxwellian plasma, as a function of the
plasma temperature for various wave intensities at εγ = 1 keV,
and ne = 1023 cm−3. The similar picture holds for linearly
polarized waves. Here for the large values of χ0 we have a weak
dependence on the temperature, which is a result of the laser
modified scattering of electrons irrespective of its’ initial state.

We have also made calculations for a degenerate quantum
plasma. In Fig. 7 and Fig. 8 the envelope of the partial rate of
inverse-bremsstrahlung absorption for circularly and linearly
polarized waves in degenerate plasma with Fermi energy
μ 	 εF = 11.7 eV (aluminum) is shown for various wave
intensities at εγ = 1 keV, and Te = 0.1εF . The total rate of
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FIG. 7. (Color online) Envelope of partial rate of inverse-
bremsstrahlung absorption for circularly polarized wave in degenerate
plasma with Fermi energy εF = 11.7 eV is shown for various wave
intensities at εγ = 1 keV, Za = 13, and Te = 0.1εF .
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FIG. 8. (Color online) Same as Fig. 7 but for linearly polarized
wave.

inverse-bremsstrahlung absorption via the mean number of
absorbed photons by per electron, per unit time in degenerate
plasma versus the parameter χ0 at εF = 11.7 eV and Te =
0.1εF is shown in Fig. 9. As is seen from these figures, the
rate strictly depends on the wave polarization, and for the large
values of χ0 it is saturated.

Note that our consideration is valid when the pulse duration
τ of an EM wave is restricted by the condition

τ < ν−1
eff , (45)

where ν−1
eff is the time scale during which the thermalization

of the electrons energy in plasma occurs. In the presence of
a laser field the electron-ion binary collisions take place with
the effective frequency

νeff 	 2πZae
4ne

m2〈v〉3
Lcb, (46)

where Lcb is the Coulomb logarithm, and 〈v〉 is the mean
values of electrons velocity in the laser field. For moderate
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FIG. 9. (Color online) Total rate of inverse-bremsstrahlung ab-
sorption for circularly and linearly polarized waves in degenerate
plasma vs the parameter χ0 at εF = 11.7 eV, Za = 13, and Te =
0.1εF .
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intensities one can write 〈v〉 	 χ0
√

εγ /m. For the considered
parameters we have νeff 	 1014–1015 s−1.

In an underdense plasma, there are several types of
instabilities [20,21,23], which can be developed on a time
scale shorter than the pulse duration. Hence the pulse duration
τ of an EM wave should also satisfy the condition

τ < �−1, (47)

where � is the maximal increment of the instability of the
plasma in the strong wave field. For strong laser fields, the most
fast growing instabilities are Raman sidescatter ones [21,23].
The maximal increment of stimulated Raman instability for
the range of parameters considered above is given by the
formula [21]

� 	
√

3

2
ω

(
ω2

p

2ω2
ξ 2

0

)1/3

=
√

3

2
ω

(
ωp

2ω
χ2

0
�ωp

mc2

)1/3

, (48)

where ωp = (4πe2ne/m)
1/2

is the plasma frequency. For the
considered parameters we have �/ω 	 5 × 10−3. Thus the
x-ray pulse duration should be τ < 0.1 fs. The latter can be
satisfied for x-ray sources. As is seen from Figs. 3, 4, and 9, for
the pulse durations τ � 0.1 fs one can achieve 100 eV absorbed
energy by per electron, which means that in plasma of solid
densities one can reach the plasma in excess of 106 kelvin
by x-ray lasers with the intensity parameter ξ0 ∼ 0.1.

IV. CONCLUSION

Concluding, we have presented the microscopic relativistic
quantum theory of multiphoton inverse-bremsstrahlung ab-
sorption of an intense shortwave laser radiation in the classical
and quantum plasma. The Liouville–von Neumann equation
for the density matrix has been solved analytically considering
a wave-field exactly, while a scattering potential of the plasma
ions as a perturbation. With the help of this solution we derived
a relatively compact expression for the nonlinear inverse-
bremsstrahlung absorption rate when electrons are represented
by the grand canonical ensemble. Numerical investigation of
the obtained results for Maxwellian, as well as for degenerate
quantum plasmas at x-ray frequencies and large values of laser
fields has been performed. The obtained results demonstrate
that for the shortwave radiation the SB rate, being practically
independent of the plasma temperature, is saturated with the
increase of the wave intensity. The obtained results showed that
in the x-ray domain of frequencies one can achieve an efficient
absorption of powerful radiation specifically in plasma of solid
densities and reach the plasma heating of high temperatures.
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