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Bistable intrinsic charge fluctuations of a dust grain subject to secondary
electron emission in a plasma
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A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and
primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted
from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The
fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable
macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations,
manifested by the passage of the grain charge between two macrostates, was shown to be possible.
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I. INTRODUCTION

Various mechanisms, including ion and electron collisional
collection and resulting secondary emission of ions or elec-
trons, contribute to the charging of a dust grain in a plasma.
Since the collision of plasma particles with the grain occurs
at random times, the net electric charge possessed by the
grain fluctuates in time even if the plasma parameters such
as temperature and number densities are fixed. These kinds
of fluctuations, which take place in systems with discrete
particles, are known as intrinsic noise [1]. This noise cannot be
switched off as it is inherent in the actual physical mechanism,
e.g., electron or ion electron collision or emission in grain
charging mechanism, which is responsible for the evolution
of the system. Intrinsic charge fluctuations refer to random
variation of the grain charge by this intrinsic noise.

Description of intrinsic charge fluctuations of grains was
the subject of a number of studies [2–15]. Cui and Goree [2]
studied the fluctuations through a Monte Carlo approach and
concluded that they are most important for small grains.
The grain charge is correlated with the grain size so this
conclusion is consistent with the net elementary charge Z

possessed by the grain having fluctuations with Zrms ∝ √|〈Z〉|
suggested by Morfill et al. [16]. Cui and Goree [2] also showed
that the fluctuating charge of small grains could experience
positive values. It is known that the grain mean charge at
equilibrium is negative because a charging grain collects
mobile electrons more than ions until it reaches equilibrium.
Matsoukas and Russell [3] proposed a one-step process master
equation [1] for the grain charge density function, then derived
a Fokker-Planck equation for it and showed that if the condition
e2/4πε0RkBTe � 1, where R is the radius of the grain and Te

is the electron temperature, is satisfied, the charge distribution
at stationary states is Gaussian with average and variance
related to the ion and electron currents to the grain. Defining the
system size as � = 4πε0RkBTe/e

2, Shotorban [9] derived a
Gaussian solution at nonstationary states for the Fokker-Planck
equation formulated through the system size expansion of
the master equation [1]. In the nonstationary state Gaussian
solution, the rate of the mean grain charge correlates with the
rate of charge to the net current. This mean equation is the
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macroscopic equation [1] of the grain charging system, and it
is the same equation widely used for negligible fluctuations,
which is the charge conservation law for the grain. The rate of
the grain charge variance is correlated with the currents and
their derivatives evaluated at the charge mean. Shotorban [13]
lately extended this model to include multicomponent plasmas
where there are various kinds of singly or multiply charged
negative or positive ions and showed that the grain charge
distribution still follows Gaussianity when � is sufficiently
large.

In all the above discussed references, collisional collections
of electrons and ions were the only mechanism of charging.
The secondary electron emission (SEE) of electrons is another
mechanism, which is important when sufficiently energetic
electrons or ions are present. The electron yield, the ratio of
emitted electrons to incident ones, is a function of primary
electron energy and the physical and chemical state of the
surface. Gordiets and Ferreira [6] obtained an analytical
solution for the PDF at stationary states for a master equation
that included the effect of the electron detachment, e.g., SEE,
assuming that the grain charge does not experience positive
values, i.e, a half-infinite range Z = 0,−1,−2, . . . . This kind
of stationary-state solution is unique for the master equation of
a general one-step process with a half-infinite or finite range
of the variable whereas it is not unique for a sample space
consisting of all integers [1]. Later, Gordiets and Ferreira [8]
formulated an improved version of the master equation that
they had originally proposed [6], relaxed the half-infinite range
assumption, and derived an approximate analytical solution for
the PDF at the stationary state. This approximation is not well
justified for grains where the PDF varies substantially in a
small range of charges. Khrapak et al. [7] studied the effects
of thermionic emission and UV irradiation, separately, while
electron collisional collection was present. They concluded
that Zrms ∝ √|〈Z〉| is valid for these situations as well. Lately,
Mishra and Misra [15] studied the fluctuations in a multicom-
ponent plasma through a population balance equation resem-
bling the master equation. They also included the influence of
photoemission from dust through irradiation by laser light in
their study. It is noted that all works above but Refs. [10,14]
rely on Markov approaches for a description of grain charge
fluctuations.

The most well-known effect of SEE on grain charging is
perhaps its associated bifurcation phenomena: Two identical
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grains in the same plasma environment may have two different
stable charge values, one positive and one negative [17,18].
Thus a small variation in the parameters may cause a rapid
change from one equilibrium charge to another. Interestingly,
Lai [19] showed that in the spacecraft charging, the bifurcation
phenomena caused by SEE could involve three stable equilib-
rium charge values. The experimental study of Walch et al. [20]
on charging of grains with energetic electrons that resulted in
secondary electron emission, showed the distribution of grain
charge could be bimodal. However, they asserted that the lack
of a unique value may be due to fluctuations in the plasma
parameters or small differences in the grains.

The current study is on the influence of SEE on grain
charge intrinsic fluctuations with a focus on bistability.
Bistability occurs in stochastic systems with two stable
macrostates [1,21]. The bistability of the grain charging system
is associated with the bifurcation phenomena described above.
The fluctuations in a bistable system may be metastable [1],
where the fluctuations are at one macrostate for a while and
at a random time, a passage to the other macrostate takes
place and at a random time, the system returns to the first
macrostate. Whether or no the metastability of grain charge
intrinsic fluctuations occurs is investigated in this work. In
Sec. II, first, a master equation describing the fluctuations of the
grain charge in the presence of SEE mechanism is presented,
and then currents of ions, primary electrons and secondary
electrons of a Maxwellian plasma and a non-Maxwellian
plasma are shown. In Sec. III, results are shown and discussed.
Conclusions are made in Sec. IV.

II. MATHEMATICAL FORMULATION

Assuming that the charging of the grain undergoes a Markov
process, the following master equation can be formulated for
the probability density function of the grain charge P (Z,t):

dP (Z,t)

dt
= (E − 1)f0(Z)Ie(Z)P (Z)

+
M−1∑
n=1

(E−n − 1)fn+1(Z)Ie(Z)P (Z)

+ (E−1 − 1)Ii(Z)P (Z), (1)

where E is an operator defined by Ekg(Z) = g(Z + k) for
any integer number k, n indicates the number of secondary
electrons emitted from the grain upon the impact of one
primary electron, M is the maximum number of secondary
electrons that can be emitted, Ii(Z) and Ie(Z) are the currents
of ions and primary electrons to the grain, respectively,
and fn(Z) is the probability distribution of emission of n

electrons in a single incident of a primary impact, i.e., the
fraction of primary electrons that result in the emission of n

secondary electrons in one single attachment incident. Hence,
the rate of the attachment of the primary electrons that do not
cause secondary emission is f0(Z)Ie(Z), and fn(Z)Ie(Z)
indicate the rate of the attachment of the primary electrons that
cause the emission of n secondary electrons in one incident.
The jump process associated with the master Eq. (1) is a sudden
change that the grain charge experiences once a primary
electron is attached and secondary electrons are emitted, or

once an ion is attached. In other words, Z(t), the charge of
the grain at time t, jumps to Z(t) + n − 1 once a primary
electron is attached and n secondary electrons are emitted,
and jumps to Z(t) + 1 once an ion is attached. The master
equation of Gordiets and Ferreira [8] is a special case of Eq. (1)
with M = 3. Also, two following special cases of the master
equation (1) regarded as one-step processes are worth noting.

(1) M = 0, which corresponds to a case where no SEE
occurs, i.e., f0(Z) = 1 and fn(Z) = 0 for n > 0. In this case,
the second term on the right-hand side of Eq. (1) vanishes and
the master equation of the grain charing is retrieved [3,9].

(2) M = 1, which corresponds a case that at most one
secondary electron is emitted so f0(Z) < 1 and f1(Z) = 1 −
f0(Z).

Defining the system size � as a reference constant charge
number and having changed the variable Z = �φ(t) + �1/2ξ ,
where Z is modeled by a combination of a deterministic part
φ(t) scaled by �, and a random part ξ scaled by �1/2, a
macroscopic equation associated with Eq. (1) can be derived
through the system size expansion method [1,13]:

dφ

dt
= a1(φ), (2)

where a1(φ) = �−1In(�φ), In(.) = Ii(.) − Ie(.) + Is(.) is the
net current to the grain, and Is(.) is the SEE current to the grain.
A solution of the macroscopic Eq. (2) is a time-dependent
macrostate of the grain charging system while the solution of
a1(φ) = 0 is a stationary macrostate of the system [1].

Van Kampen [1] classifies the stable, bistable, and unstable
stochastic systems through a1(φ) in Eq. (2): A stochastic
system is stable when a′

1(φ) < 0 where a′
1(φ) ≡ da1/dφ; it

is bistable when there are two stable stationary macrostates,
i.e., there are two solutions for a1(φ) = 0 and at the vicinities of
them, a′

1(φ) < 0 holds; and it is unstable when a′
1(φ) > 0. This

classification is in harmony with the bifurcation phenomenon
reviewed in Sec. I based on the roots of the net current.
In other words, having neglected the fluctuations of Z, i.e.,
ξ = 0, one obtains Z = �φ and Eq. (2) is readily simplified to
dZ/dt = In(Z), which can be used to find the time evolution
of Z. If an initial Z is within the domain of attraction of a
stable root of In(Z) = 0, then Z approaches it at the stationary
state when there are no fluctuations. Each root is associated
with one stationary macrostate of the system and the system
stability discussed above can be similarly done through the
sign of I ′

n(Z). When the fluctuations of the grain charge are
taken into account, there is a probability for a fluctuation to
carry the charge from the domain of attraction of one root to
another.

The SEE current is correlated with Ie(Z) and fn(Z), and
this correlation is found through the mean secondary electron
yield defined by

n(Z) = Is(Z)/Ie(Z). (3)

In addition, n(Z) is correlated with fn(Z) through
the definition of the mean n(Z) = ∑M

n=1 nfn(Z). Using
these two equations and the normalization condition, i.e.,
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∑M
n=0 fn(Z) = 1, one obtains

Is(Z) =
[

1 − f0(Z) +
M∑

n=2

(n − 1)fn(Z)

]
Ie(Z). (4)

Here, a binomial distribution is proposed for fn(Z):

fn(Z) =
(

M

n

)
pn(1 − p)M−n, (5)

where for M > 0, p = n(Z)/M where n(Z) is given in Eq. (3).
Binomial distributions are used for the Monte Carlo modeling
of SEE in the electron-surface collision [22]. For M = 1
in Eq. (5), f0(Z) = 1 − n(Z) and hence, f0(Z)Ie(Z)P (Z) =
[Ie(Z) − Is(Z)]P (Z). For M = 1, the summation term in
Eq. (4) is zero. It is noted that Ie(Z) − Is(Z) is the net electric
current to the grain so the charging process for M = 1 is
modeled as each primary electron impact incident causing no
or only one secondary electron emission. In Eq. (5), a sufficient
condition for the positivity of fn(Z) is 1 − p > 0, which is
equivalent to

n(Z) < M. (6)

This inequality sets the requirement for the minimum M .
Following Meyer-Vernet [17], who investigated the bi-

furcation phenomena associated with SEE, a Maxwellian
plasma and non-Maxwellian plasma are considered here.

For Maxwellian plasmas, it can be shown [13,23] that

Ie(Z) = � ×
{

1 + Z
�

Z � 0,

exp
(

Z
�

)
Z < 0,

(7)

Ii(Z) = �n̂i

√
T̂i

m̂i

×
{

1 − Z

T̂i�
Z � 0,

exp
( − Z

T̂i�

)
Z > 0,

(8)

where ni and Ti are the number density and temperature of ions,
respectively. Also, T̂i = Ti/Te, m̂i = mi/me, n̂i = ni/ne,

� = 4πε0RkBTe

e2
, (9)

� = πR2ne

√
8kBTe

πme

= �ωpeR√
2πλDe

, (10)

where λDe =
√

ε0kBTe/nee2 is the electron Debye length and
ωpe =

√
nee2/ε0me is the electron plasma frequency.

Using the theory of Sternglass [24], the SEE current is
obtained [17]:

Is(Z) = 3.7δM� ×
{(

1 + Z

�T̂s

)
exp

( − Z

�T̂s
+ Z

�

)
F5,B

(
EM

4kBTe

)
Z � 0,

exp
(

Z
�

)
F5

(
EM

4kBTe

)
Z < 0,

(11)

where

F5(x) = x2
∫ ∞

0
u5 exp(−xu2 − u)du,

F5,B(x) = x2
∫ ∞

B

u5 exp(−xu2 − u)du,

where B = √
4kBTeZ/�EM and T̂s = Ts/Te where Ts is the

temperature of the emitted secondary electrons. In Eq. (11),
δM is the maximum yield which is around unity for metals and
at the order 2–30 for insulators, and EM is the peak primary
electron energy, a model constant ranging from 300 to 2000 eV.
The values of these two parameters for various dust materials
can be found in Ref. [17].

Electrons in the non-Maxwellian plasma are assumed to
have a bi-Maxwellian distribution that occurs in a number
of circumstances. A bi-Maxwellian distribution was derived
by Weibel [25] from the Boltzaman equation for electrons
with anisotropic distribution of velocities that cause spon-
taneous growth of transverse electromagnetic waves. This
phenomenon, also known as Weibel instability, is observed in
astrophysical plasmas ([26], and references therein) and fusion
plasmas ([27], and references therein). A bi-Maxwelllian
distribution of electrons was also observed in several labo-
ratory setups including Ref. [28]. The experiments of Godyak
et al. [29] revealed that electrons have a non-Maxwellian
distribution in low-pressure capacitively coupled rf plasmas.

At a very low pressure, where stochastic electron heating
dominates, the distribution is bi-Maxwellian whereas at a
moderately low pressure, where collisional electron heating
dominates, the distribution is Druyvesteyn. The electron
current to the grain in the bi-Maxwellian plasma is obtained
by adding an identical term, where ne and Te are to be replaced
by nH and TH , to the right side of Eq. (7) and changing ne to
ne − nH in the first term when using this distribution [17].

-4 -3 -2 -1 0 1 2 3z

-0.4

-0.2

0.0

0.2

I n(Ω
z)

 / 
Γ

SEE (Case 1)
SEE (Case 2)
SEE (Case 3)
No SEE

FIG. 1. (Color online) Dimensionless net current versus dimen-
sionless grain charge z = Z/�, where � = 4πε0RkBTe/e

2 and � =
πR2ne

√
8kBTe/πme, for Ts/Te = 1.5 in a Maxwellian plasma [17];

case 1, δM = 15 and EM/4kTe = 45.6; case 2, δM = 14.85 and
EM/4kTe = 45.6; case 3, δM = 15 and EM/4kTe = 47.
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III. RESULTS AND DISCUSSIONS

Dimensionless net current is plotted against dimensionless
grain potential in Fig. 1 for a Maxwellian plasma [17]. Seen
in this figure is that when the SEE mechanism is lacking,
the net current curve crosses the horizontal axis only at one
point so there is only one root. The system is stable in this
case as I ′

n(Z) < 0 for all values of Z. This negativity is due
to attaching electrons, which are more mobile than attaching
ions. On the other hand, it is seen in the figure that when the
SEE mechanism is present, the net current may have up to
three roots, one negative and two positive roots (cases 1 and
2). The root at the middle is unstable whereas two others are
stable so the grain charge fluctuations are bistable in cases 1
and 2. In case 3, only one stable root exists and for all values
of Z except the domain restricted between local maxima and
minima, the system is stable. It is noted that the SEE cases

seen in Fig. 1 are different through small changes made in the
SEE current parameters δM or EM . The triple root situations
in Maxwellian plasmas are conditional on both a high value of
δM and a somewhat low value of EM/kBTs [17].

The PDF of the grain charge obtained through a numerical
solution of the master equation (1) for a Maxwellian plasma
(cases 1–3 illustrated in Fig. 1) for two grain sizes R = 5
and R = 30 nm are shown in Fig. 2. A prominent deviation
from Gaussian distribution is observed for most of the cases
seen in this figure. However, the PDF was verified to be very
close to Gaussian for M = 1 in Figs. 2(d)–2(f) as compared
to a Gaussian solution obtained by the system size expansion
method [9,13]. For R = 5 nm and M = 1, seen in Fig. 2(c),
the PDF is bimodal, i.e., with two distinct local maxima, and
for two other values of M , it is not. It is born in mind that for
all cases in Figs. 2(a)–2(d), there are two stable roots of the
net current so they all are considered bistable according to the
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FIG. 2. (Color online) Probability density function of grain charge in a Maxwellian plasma; (a) case 1 with R = 5 nm; (b) case 1 with
R = 30 nm; (c) case 2 with R = 5 nm; (d) case 2 with R = 30 nm; (e) case 3 with R = 5 nm; (f) case 3 with R = 30 nm. Gaussian solutions
are obtained by the system size expansion method [9,13]. See the caption of Fig. 1 for parameters associated with cases 1–3.
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FIG. 3. Grain charge variation in time in a Maxwellian plasma
with SEE; (a) case 1 with R = 30 nm and M = 3; (b) case 2 with
R = 5 nm and M = 1; (c) case 3 with R = 5 nm and M = 3. The
dotted lines show the roots of the net current.

classification at the beginning of this section. A bimodal PDF
is also seen in Fig. 2(b) for a larger grain with R = 30 nm.
However, when the same SEE parameters are used for smaller
grain R = 5 nm, no bimodal distribution is observed [see
Fig. 2(a)]. No bimodal distribution is observed in Figs. 2(e)
and 2(f) which is for the SEE cases with only one root of the
net current. Although, in these two subfigures, the deviation
of the distribution from Gaussianity is substantial for M = 2
and 3.

Figure 3 displays time histories of grain charges. The
discrete stochastic method [13], adapted from Gillespie’s
algorithm [30,31]), is utilized to simulate the grain charge
variation governed by the master equation (1). Time histories
seen in Figs. 3(a) and 3(b) are for the bistable cases shown in
Fig. 2(b) for M = 3 and Fig. 2(c) for M = 1, respectively. The
fluctuations in these two cases are characterized by two distinct
time scales: one associated with fluctuations around two
stable charges and the other associated with the spontaneous
switches between them. A system with this behavior is called
metastable [1]. A switch from the negative stable charge to
the positive one is attributed to a sequence of incidents most
of which increase the grain charge by one or two elementary
charges. These incidents could be the attachment of an ion or
the attachment of a primary electron that results in the emission
of two or more of secondary electrons. On the other hand, the
switch from the positive stable charge to the negative one
is attributed to a sequence of incidents most of which are the
attachments of a primary electron without emitting a secondary
electron. Figure 3(c) which corresponds to the PDF shown in
Fig. 2(e) with M = 3 is not bistable as the net current in this
case has only one root.

Shown in Fig. 4 is the net current variation against the
grain charge in a bi-Maxwellian plasma. For the shown SEE
cases, there are two negative and one positive roots for the

FIG. 4. (Color online) Dimensionless net current versus dimen-
sionless grain charge z = Z/� in a bi-Maxwellian plasma; Te =
Ti = 25 eV, δM = 3, EM/kBTe = 16, Ts/Te = 1, TH /Te = 100, and
M = 3 [17].

net current so the system is bistable in both SEE cases. The
positive root is very close to the origin of the coordinates and
the net current has a very sharp variation around this root.
Although the curves of the SEE cases shown in this figure
seem very similar, they are different as the negative roots in
the case with nH/ne = 0.035 are slightly closer to each other
than the case with nH/ne = 0.04. The root of the net current
in the “No SEE” case is substantially far from the roots of the
SEE cases. Moreover, it is found that in the “No SEE” case, the
net charge (the root of the net current) in the bi-Maxwellian
plasma, where nH/ne = 0.04, is with a factor of five larger
than that in a Maxwellian plasma where nH/ne = 0. The
reason for this large difference is that a small fraction (slightly
over 4%) of the electrons in the bi-Maxwellian plasma have
much higher temperature, TH/Te = 100, whereas all electrons
in the Maxwellian plasma have the cold temperature Te. An
increase in the electron temperature results in a more negative
net charge on the grain, as an electron has more kinetic energy
in the average sense to overcome the repulsion between itself
and the grain [3]. It is also noted that a triple root situation
is expected to occur in a bi-Maxwellian plasma more than
a Maxwellian plasma. According to Meyer-Vernet [17], a Te

higher than a few 10 eV and a TH higher than several 100 eV,
values typical in the solar wind and possible in planetary

FIG. 5. (Color online) Probability density function of grain
charge in a bi-Maxwellian plasma. See the caption of Fig. 4 for
parameters.
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FIG. 6. Grain charge fluctuations in a bi-Maxwellian plasma with
SEE, M = 3, and initial charge Z(0) = 0; (a) nH /ne = 0.035 and
R = 1 nm; (b) nH /ne = 0.04 and R = 1 nm.

magnetospheres, should result in triple roots for grains with
nonmetallic surfaces.

Figure 5 displays the grain charge PDF in the studied
bi-Mawellian plasma for two grain sizes. All three cases shown
in this figure are associated with the SEE cases in Fig. 4 and
the system is classified bistable in all. However, the bimodal
distribution is observed for smaller grain with R = 1 nm
at both nH/ne = 0.035 and 0.04. Although the difference
between these two values is around 13%, the bimodal forms
of their associated PDFs are very different. The peak value
of the PDF seen at around Z = 0 for nH/ne = 0.035 is at
least an order of magnitude larger than that for nH /ne = 0.04.
For this case, the value of the left peak is an order of
magnitude larger than the right peak. For the grain with a
larger radius R = 3 nm, no bimodal behavior is observed. For
this case, also, a Gaussian solution is obtained by the system
size expansion with an initial condition 〈Z(0)〉/� = −3. An

excellent agreement between the Gaussian solution and the
master equation solution is observed. When 〈Z(0)〉 = 0 is
used, the solution at the stationary state is a sharp Gaussian
function at around Z = 0. Time history of the grain charge is
shown in Figs. 6(a) and 6(b) associated with solid- and dashed-
line PDFs, respectively, in Fig. 5. An obvious metastability is
observed for these two cases.

IV. SUMMARY AND CONCLUSIONS

A master equation was formulated to include the effect
of secondary electron emission in addition to collisional
attachment of ions and electrons on the intrinsic charge
fluctuations of a grain. Grain charging in both Maxwellian and
non-Maxwellian plasmas was considered. In both plasmas, the
fluctuations could be bistable, as the system could have two
stable macrostates. In the absence of the SEE mechanism,
the bistabillity is not possible as the system always has a
single macrostate. It was shown that if the system is bistable,
the grain charge can be metastable. That is a situation where the
fluctuations are characterized by two distinct time scales—one
associated with fluctuations around two stable charges and the
other associated with the spontaneous switches between them.
A switch from the negative stable charge to the positive one
is attributed to a sequence of incidents almost all of which
increase the grain charge by one or two elementary charges.
On the other hand, the switch from the positive stable charge to
the negative one is attributed to a sequence of incidents most
of which are the attachments of a primary electron without
resulting in the emission of a secondary electron.
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[18] M. Horányi, B. Walch, S. Robertson, and D. Alexander,

J. Geophys. Res. 103, 8575 (1998).
[19] S. T. Lai, J. Geophys. Res. 96, 19269 (1991).
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