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Drag of buoyant vortex rings
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Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015)], a perturbation
analysis is performed to modify Turner’s radius by taking into account the viscous effect. The modified radius
includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation
correction describing the influence of viscosity. The zeroth-order solution is explicit Turner’s radius; the first-order
perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the
photographically measured radius into the modified equation yields the time history of the drag coefficient of
the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate
the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be

applied at other Bond numbers.
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I. INTRODUCTION

Vortex rings are categorized into buoyant and nonbuoyant
groups depending on whether they contain a fluid lighter than
the surrounding fluid. Drag of nonbuoyant vortex rings has
been extensively studied by Gan et al. [1]; however, there is
a dearth of published research concerning the drag of buoyant
vortex rings—although their other overall properties (e.g.,
circulation, radius, rise velocity, stability, lifetime, etc.) have
been widely investigated [2—5]. One of the earliest analytical
theories about buoyant vortex rings, also called vortex ring
bubbles or toroidal bubbles, was developed by Turner [2],
predicting that a rising buoyant vortex ring expands radially as

Ry = ( R? Fry'"” 1
r= O+E , (D

where Ry, namely Turner’s radius, is the radius of the toroid at
time ¢, Ry is the initial radius of the toroid, I" is the circulation,
and F'is defined as g Q2(p-p")/ p in which €2 is the volume of the
toroid, p is density of water, and p’ is density of air. Equation
(1) was devised under two fundamental assumptions:

(i) As sketched in Fig. 1, a region of rotational flow rising
along with the vortex ring was postulated. Turner [2] assumed
that no vorticity diffuses across the boundary of this region B;
that is, no vorticity is lost to a wake.

(i) Vorticity generated on the surface of the vortex ring was
assumed to be confined within a region which never extends to
the symmetry axis (O O’ in Fig. 1). In other words, no vorticity
is canceled due to diffusion across the axis of symmetry.

These assumptions also underlie some later theoretical and
numerical analyses, such as those of Walters and Davidson [4]
and Pedley [5]. In view of Turner’s assumptions, circulation
of buoyant vortex rings remains constant since vorticity is
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constant and the viscous effect is negligible since there is no
momentum loss in a viscous wake. In other words, buoyancy
is assumed to be the only effective force on the buoyant vortex
rings. In a recent study [6], we proposed a drag-based model to
take into account the effect of a viscous force in addition to the
effect of a buoyancy force on the radial expansion of buoyant
vortex rings. The idea was inspired by the model proposed
by Sullivan et al. [7] for nonbuoyant vortex rings (also see
Hershberger et al. [8]). Our model was developed on the basis
of a force balance equation according to which the impulse of
a buoyant vortex ring increases under the action of buoyancy
while the drag force causes the impulse to decrease as given
by

dpP ’

— = Fp —2wpaRC,V~, 2)

dt
where Fjp is the buoyancy force, Cy is the drag coefficient, V
is the rise velocity, a is the radius of the core, and R is the
radius of the toroid. Consider the following classical equations,
respectively, for the impulse P and rise velocity V of vortex
rings

P = pI'nR? 3)

ve D8R 4
e n(5) 7] @

where parameter 8 depends on the core models; for viscous
coresitis 0.558 while for solid rotating cores it is 0.25. It should
be mentioned that the velocity of translation of the vortex ring,
V, in the simple form of Eq. (4) is obtained by connecting
Lamb’s equations for the impulse P and kinetic energy E
through Hamilton’s equation (V = 9dE /9 P) assuming that
core of the vortex ring is circular and w/r is uniform inside
it, where w is azimuthal vorticity [9]. Expressions obtained
for the impulse, kinetic energy, and translation velocity of the
vortex ring contain an error term in the order of 0(a*/R?);
hence, the condition a/R < 1 is essential. See Pedley [5] and
Sullivan et al. [7] for more details on derivation of Eq. (4).
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FIG. 1. Schematic sketch of a cross section through center of a
vortex ring; B is the boundary of the bulk fluid carried along with the
vortex ring; within this region flow is rotational whereas the ambient
flow is irrotational. The shape of the boundary B depends on the ratio
R/a where R and a respectively represent the ring and core radii; at
R/a < 14, it looks like an oblate spheroid, as R/a increases points u
and [ approach each other and eventually meet at R/a = 86 forming
a toroidal region.

Combining Eq. (2) with Egs. (3) and (4) yields the following
nonlinear nonhomogeneous differential equation

dR __ [ImCRVR) -1 G
I = —C1 RZ\/]_Q + ? (Sa)
R(0) = Ro, (5b)

where C) = 6I'Cy/48v75, C, =461 and C;=
Fg /2. Equation (5b) is the initial condition for Eq. (5a).
All parameters appearing in Eq. (5) including those with
dimensions of length, time, velocity, circulation, and force
are normalized using ro, (ro/g)"?, (gro)'/?, (grg)'/?, and
pgrg respectively, where p is the density of water, g is the
gravitational acceleration, and ry is equal to the radius of a
perfect sphere enclosing the same volume of air as the initial
toroidal bubble. In our recent study [6], basic scaling was used
as a preliminary analysis to qualify the solution of Eq. (5a) by
estimating the order of magnitude of each term. In the present
letter, we propose a semianalytical solution to this equation
using a perturbation technique. This solution introduces a
first-order perturbation modification to Turner’s radius. It is
noteworthy to mention that the modifying term includes the
unknown drag coefficient. Substituting the experimentally
measured radius into the proposed equation yields the drag
coefficient of the associated buoyant vortex ring.

II. MODEL

Considering coefficient C; in Eq. (5a) as the perturbation
parameter, i.e., € = Cy, radius R can be represented by the
following expansion in the first-order approximation

R =N+ eR; + O(e?), (6)
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where N is the zeroth-order solution and € is the first-order
perturbation correction. Substituting Eq. (6) into Egs. (5a) and
(5b), expanding the resulting equations in a power series of €
through Taylor series, and equating to zero the terms of zeroth-
and first-order in € yields two sets of simpler equations as

ddy Cs
—2 =2 (7a)
dr NRo
NRo(0) = Ro (7b)
and
dfﬁl C3 [ll‘l(sz()«/ ER()) — 025]2
. _29{1 = ) ~ ) (83)
dr o2 RoZv/To
%,(0) = 0. (8b)

Note that all terms including second- and higher-order in €
are neglected. Equations (7b) and (8b) are initial conditions
for Eqs. (7a) and (8a) respectively. Solving Eq. (7a), the
zeroth-order solution is Ny = (I; + 2C3t)1/ 2, By substituting
C; = Fp/2nT" and implementing the initial condition given
by Eq. (7b), we obtain

Ry = (Rg + i) . )

Equation (9) is Turner’s radius; i.e., iy = Ry. Substituting
Eq. (9) into Eq. (8a), and solving Eq. (8a) using the initial
condition given by Eq. (8b) gives
1907 ¢
N =————. (10)
250 Ry

It should be indicated that the term [In(C>dg/o) — 0.251°
was simply curve fitted with [7.755%75]. The goodness
of the curve fitting was evaluated through coefficient of
determination defined as 1-SS;cs/S Sior, Where SS.es and SSio
are the sum of squares of residuals and the total sum of squares
respectively. A fairly good value of 0.9947 was obtained for
the coefficient of determination in the range of 1 < R < 5,
i.e., the fit explains 99.47% of the total variation in the data
about the average. The value of the coefficient of determination
decreases as radius R grows beyond 5, i.e., radius of vortex
ring exceeds five times ry, which is unlikely since the vortex
ring is expected to break down into small spherical-cap bubbles
before reaching that point (see Cheng et al. [10]). It is worth
noting that without the proposed curve fitting we cannot find
any general solution for Eq. (8). Solving Eq. (9) for ¢ and
substituting into Eq. (10) yields

1551 1 Ro\’
RNy =——— Re|1—(=2) |, (11
200 2C; Ry

2
Ro

R, = —A[l _ (—) :|RT, (12)
Rt

where A = al'>Cy/Fp in which o = 0.0711 is a constant
and Cy4, as yet unknown, stands for the drag coefficient.
Substituting Egs. (9) and (12) into Eq. (6), we obtain

()]
R=Rr—A|ll—|— Rr. (13)
Rt

therefore,
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FIG. 2. Time history of the ratio of the viscous term to the buoyant
term; A = aI'>C,;/Fg and A’ = RynT"/Fg. The effect of the viscous
term increases with time.

Accordingly, the radius of the buoyant vortex ring R includes
two terms; the first term, Ry, represents the effect of the
buoyancy and the second term, A[l — (;—"1)2]Rr, describes
the effect of the viscosity. Eq. (13) indicates that the Turner’s
radius overestimates the actual radius of buoyant vortex rings
since it does not take into account the viscous dissipation.
In fact, the viscous force causes the rate of expansion to
decrease, since it acts downward in the opposite direction of
the buoyant force. It is noteworthy to mention that it is not
possible to plot Eq. (13) since it depends on the unknown drag
coefficient—where this coefficient must be produced using
Eq. (13) itself by way of the measured radius. To enable a
closer comparison of the effect of viscosity with the effect of
buoyancy we define parameter 1 as the ratio of the viscous
term to the buoyant term as

n:Al—(ﬁ2 (14)
Rr/) |

Figure 2 illustrates the variation of n with respect to time.
As is observed, the ratio of the viscous term to the buoyancy
term increases asymptotically to A = «I'>C,/ Fp as the vortex
ring rises, i.e., viscous force becomes more considerable with
time. This can be attributed to the diffusion of the vorticity
generated on the vortex ring surface through the rotational
area, and probably, over its boundary B sweeping off into the
initially irrotational region (see Fig. 1). In Fig. 2, the value of A
is still unknown, since the drag coefficient C; of the vortex ring
cannot be calculated through pure analytical analysis. Solving
Eq. (13) for A, we obtain

1— &
AZTQ)Z' (15)

Ry

To determine the value of A we need to conduct experiments
and measure the radius of the vortex ring. Plugging the
measured radius R into Eq. (15) yields A; consequently, the
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FIG. 3. (Color online) Apparatus: (1) pressure regulator, (2)
solenoid valve, (3) PLC, (4) cap, (5) spring, (6) small opening on
a membrane, (7) vortex ring.

drag coefficient C,; can be deduced since A = oI'>Cy/ F3, and
so Cy = AFg/al.

III. EXPERIMENT

The experiment reported in this study was conducted in a
water-filled Plexiglass tank that was 0.8 m long, 0.8 m wide,
and 2.4 m high. The experimental setup is sketched in Fig. 3.
As illustrated in this figure, compressed air passes through a
pressure regulator (1) to a solenoid valve (2). The solenoid
valve is controlled by a programmable logic controller (PLC)
(3). Over a short period of time §¢, the PLC opens the solenoid
valve and air flow pushes the cap (4) against the force of
the spring (5). Once the cap is lifted, pressurized air bursts
out through the small opening on the flexible membrane (6)
and produces an air-core vortex ring (7) inside the water.
Similar to Hershberger et al. [8], all the experimental data
were obtained photographically. Three cameras with speed of
60 f.p.s. at a resolution of 1080P were configured above and
on two orthogonal sides of the tank to record the generation
and the motion of the vortex ring bubble. The videos were then
analyzed frame by frame using the MATLAB image processing
tool bar to deduce the time history of the elevation and
dimensions of the vortex ring bubble. The rise velocity V
was obtained as the first derivative of measured elevation.
Substituting the rise velocity and the dimensions of the vortex
ring bubble into Eq. (4) yields circulation as

SR -
r= 47rRV[1n (7> _ ,8} . (16)

It is worth mentioning that in the paper of Turner [2], which
was the forerunner of the present work, dyed buoyant fluid was
injected into a tank of water. The density difference was small,
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and the viscosity difference negligible. In strong contrast, for
the experiments described in the present paper, a pulse of air
is impulsively injected into water, forming an air-core vortex
ring. This has a large density and viscosity difference from
water, and there is also surface tension across the interface.
Each of these has a substantial influence on the behavior of
the air-core vortex and together they produce the drag, which
is the subject of this paper.

IV. RESULTS AND DISCUSSION

The vortex ring is characterized by the reciprocal of
dimensionless surface tension, the Bond number, given as
Bo = pgro?/T, where T is the water-air surface tension.
Using the experimental setup described in Fig. 3, the Bond
number of the vortex ring can be controlled by the inlet
pressure of the air flow, the duration of release through the
solenoid valve, the diameter of the opening and the height
of water over the vortex ring generator. The vortex ring
bubble studied herein was generated at a supplied pressure
of 20 psi (almost 138 kPa) over a duration of 0.1 s while the
diameter of the opening was 0.08 m and the height of water
over the membrane was set to be 1.5 m, leading to a Bond
number of 85 £ 5. It should be mentioned that the air-water
surface tension was assumed to be T = 72.8 x 10N ¢cm™!
since water temperature was approximately 20 °C during the
experiment. The given precision uncertainty was obtained
from the standard deviation of ten individual measurements
at a 95% confidence level.

Figure 4 attempts to illustrate the formation and transla-
tion of the buoyant vortex ring corresponding to Bo = 85.
Figure 4(a) represents the approximate moment that the
pressurized air burst out through the small opening on the
flexible membrane (green surface); Fig. 4(b) corresponds to the
moment at which the vortex ring was formed; and Fig. 4(h)
depicts the vortex ring at the moment that the free surface
started to bow; beyond this moment the vortex ring would be
affected by the free surface (free surface is not shown in the
figure).

As is clearly observed in Fig. 4, the buoyant vortex
ring expands radially as it rises. The time history of the
radius of this vortex ring bubble is plotted in Fig. 5. To
ensure the negligibility of the free surface tension, the radius
was not measured beyond ¢ = 50. Although the experiment
was carefully controlled to minimize the uncertainties, the
repeatability was assessed by estimating the precision of
individual measurements. Error bars shown in Fig. 5 represent
precision of ten individual measurements at a 95% confidence
level. Figure 5 compares the experimentally observed radius
with that predicted by the Turner’s equation [Eq. (1)]. As is
observed, the radius calculated through the Turner’s equation
R is greater than that obtained experimentally R, and the
disparity increases as the vortex ring bubble rises. This
overestimation was already predicted by Eq. (13). According
to Eq. (13), the actual radius of a buoyant vortex ring R equals
to Turner’s radius Ry minus the quantity A[l — (%)2]R7.
Accordingly, the difference between the Turner’s radius and
the one measured experimentally, i.e., A[l — (%)2]RT, is
directly related to the viscous effect, since A = al?Cy/Fp
and C, represents the effect of viscosity. As time goes by,
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FIG. 4. (Color online) Formation and translation of the vortex
ring bubble corresponding to Bo = 85. Values are dimensionless.

the vorticity produced on the surface of the vortex ring
diffuses through the ambient flow; consequently, the effect of
viscosity becomes more noticeable (Fyiscous = VV X w), and
the measured values diverge from the radii reported by Turner.
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FIG. 5. (Color online) Radius of a buoyant vortex ring at Bo =
85; values are dimensionless. Solid line shows Turner’s radius
[Eq. (1)] and circles represent measured values.

The time history of the circulation associated with the
vortex ring described in Fig. 5 is illustrated in Fig. 6. The
data presented in this figure is calculated using Eq. (16)
assuming a solid rotating core (i.e., § = 0.25). It can be
seen that circulation is approximately constant with respect
to time with an average value of 6.54—which is consistent
with experiments conducted by Walters and Davidson [4].
Here it is noteworthy to mention again that the circulation
and all other parameters have been made dimensionless using
terms explained below Eq. (5). Substituting the Turner’s
and measured radii reported in Fig. 5 into Eq. (15) yields

10 _‘ TTT T TTTT TTrTrT TTTT TTTrT TTTrT TTrT TTT [_
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FIG. 6. Circulation of a buoyant vortex ring at Bo = 85; values
are dimensionless. Dashed line shows the average circulation of
approximately 6.54.
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FIG. 7. (Color online) Drag coefficient of a buoyant vortex ring
at Bo = 85; values are dimensionless. Dashed line shows the average
drag coefficient of approximately 0.31.

A = al'>Cy/Fp, then, using circulation given in Fig. 6 the
drag coefficient of the buoyant vortex ring was deduced as
shown in Fig. 7. We observe that the time history of the drag
coefficient is approximately constant with a relative standard
deviation of 12% and an average value of C; = 0.31.

V. CONCLUSION

In the present paper, a semianalytical method was proposed
to compare the effect of viscosity with the effect of buoyancy
on the radial expansion of buoyant vortex rings. Applying the
proposed method along with the flow visualization enables
us to deduce the drag coefficient of buoyant vortex rings.
To demonstrate the proposed hybrid technique, the drag
coefficient of a vortex ring bubble at a Bond number of approx-
imately 85 was calculated. First, the vortex ring bubble was
experimentally visualized and the ring radius was measured by
photography. Second, the circulation of the vortex ring bubble
was calculated through Eq. (16). Substituting the measured
radius into Eq. (15), we obtained A. Following this, the drag
coefficient was deduced using C; = AFp/al'>. The same
procedure can be applied to determine the drag coefficient of
vortex ring bubbles generated through other mechanisms—for
instance, using a vortex gun or a balloon bursting underwater—
at other Bond numbers and fluid viscosities.
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