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Direct relations between morphology and transport in Boolean models
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We study the relation of permeability and morphology for porous structures composed of randomly placed
overlapping circular or elliptical grains, so-called Boolean models. Microfluidic experiments and lattice
Boltzmann simulations allow us to evaluate a power-law relation between the Euler characteristic of the conducting
phase and its permeability. Moreover, this relation is so far only directly applicable to structures composed of
overlapping grains where the grain density is known a priori. We develop a generalization to arbitrary structures
modeled by Boolean models and characterized by Minkowski functionals. This generalization works well for
the permeability of the void phase in systems with overlapping grains, but systematic deviations are found if the
grain phase is transporting the fluid. In the latter case our analysis reveals a significant dependence on the spatial
discretization of the porous structure, in particular the occurrence of single isolated pixels. To link the results to
percolation theory we performed Monte Carlo simulations of the Euler characteristic of the open cluster, which
reveals different regimes of applicability for our permeability-morphology relations close to and far away from
the percolation threshold.
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I. INTRODUCTION

The flow of liquids through porous media is of considerable
importance in many scientific areas, such as groundwater
pollution, secondary oil recovery, or blood perfusion inside
the human body [1,2]. Although the literature on porous media
has been growing rapidly over the last decades, it is still not
fully understood how transport properties of liquids through
porous materials can be related to the microstructure even for
single-phase flow.

Analytical results exist for regular structures [3], and
rigorous bounds have been proposed for random media [4].
Yet, it is still an open question, in particular for many
random systems, which structural properties determine the
permeability, i.e., the ability of a material to conduct fluid
flow.

The permeability k of a porous medium, which is perhaps
the most fundamental flow property, relates the flow rate Q

and the applied pressure P , according to Darcy’s law

Q = −k A

η
∇P, (1)

where A is the cross-sectional area of the material and η the
viscosity of the fluid. In Eq. (1) one assumes a linear relation
between flow and pressure. This is strictly speaking only valid
for low Reynolds number flow (Re < 10) of viscous liquids,
where Darcy’s law can be derived from the Stokes equation.
However, the determination of k still requires the solution of
the flow problem on the microscale, which for many random
systems is a huge computationally expensive task.

For this reason preferably simple relations between geom-
etry and flow in porous media are typically used to predict
the permeability. One approach is based on a morphological
reconstruction of disordered structures with the help of

Boolean models, i.e., structures formed by randomly placed
and oriented grains with suitably chosen parameters, which
was introduced in Refs. [5,6]. It has been shown that if a
set of morphological quantifiers of the pore space, so-called
Minkowski functionals (MFs), between the original and a re-
constructed structure agrees, also the conductivity and elastic-
ity of both materials are similar. Therefore Boolean models are,
despite their simplicity, applicable to morphologically describe
properties of random porous media, even if the formation
process of the original structure might be more complicated.
Additionally, the question arises whether dynamic quantities,
such as the permeability, can be directly deduced from the MFs.
Such a relation has been proposed in Ref. [7], where k has been
related to one of the MFs, viz., the Euler characteristic of the
conducting cluster in Boolean models of overlapping circles
and ellipses. However, this relation requires prior knowledge
of the grain density, which might not be available for arbitrary
structures. Additionally, other quantities, such as the surface
area might influence k [8,9].

In this paper we discuss a generalization to arbitrary
microstructures and the range of validity close to and far away
from the percolation threshold, which is the highest porosity
below which there is no sample-spanning conducting phase. A
definition of the effective grain density based on reconstruction
schemes via Boolean models and Minkowski functionals,
allows us to apply the relation to both phases of Boolean mod-
els, i.e., void and grain percolation. However, deviations are
found, which we attribute to the occurrence or disappearance
of individual occupied lattice sites, which have a significant
effect on the topology and, thus, on the effective grain density,
without strongly affecting the fluid flow. We find that in the
low grain-density limit the Euler characteristic’s dependence
on the porosity is equivalent to the effective medium result
for the conductivity. Furthermore, numerical results enable us
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to the determine the range of validity close to the percolation
threshold and to link our results to percolation theory.

The paper is organized as follows. In Sec. II, we discuss
semiempirical relations between geometric and transport prop-
erties from the established literature. In Sec. III, we explain
our microfluidic experiments, which allow us to determine
flow properties of quasi-two-dimensional representations of
Boolean models. The details of our model structures are
explained in Sec. IV and the corresponding Minkowski
functionals are discussed in Sec. V. The numerical results of
the permeability and conductivity, in particular the validity
of the Katz-Thompson model, are addressed in Sec. VI.
In Sec. VII, we evaluate our experimental results for void
percolation and introduce a power-law relation between Euler
characteristic and permeability. We evaluate the possible
extension to arbitrary structures, by defining an effective grain
number and check its validity for grain percolation. Analytical
results for low grain density and computational results close to
the percolation threshold are presented in Secs. VIII and IX,
which allows us to establish the valid range of our assumption.
Finally a summary of the results is presented in Sec. X.

II. SEMIEMPIRICAL RELATIONS

Many semiempirical relations for pressure-driven single
phase flow based on the results for flow through regular
sphere packings have been proposed [2,10]. For random porous
media, Katz and Thompson proposed a relation between k and
the electrical conductivity σ of the fluid-saturated phase:

k = c lc
2 σ

σ0
, (2)

where c is a constant that depends on the local pore mor-
phology, σ0 is the bulk conductivity of the fluid and lc is a
critical pore diameter, equal to the size of the bottle neck of
the conducting phase, i.e., the diameter of the largest hard-
sphere which can freely penetrate the porous material [11].
Equation (2) can be derived by using ideas from percolation
theory to treat the conductance problem through a porous
structure as a percolation problem with a critical threshold
value for the conductance and assuming the same critical
exponents for the conductance and flow problem. Of course
this approach depends on the universality of critical exponents,
which might be different in two and three dimensions and
depend, for example, on the pore size distribution [12–14].
Yet, the validity of Eq. (2) has been shown for various types
of natural rock and random media [15–18].

As Eq. (2) relates conductivity and permeability, it is
typically called a cross-property relation to distinguish it
from a purely geometrical relation to transport properties. The
ratio of the bulk conductivity of the fluid σ0 to the effective
conductivity of the porous medium saturated with that fluid σ

is called formation factor

F = σ0

σ
. (3)

For many random porous media it is assumed that F is related
to the porosity φ, i.e., the volume fraction of the conducting

phase, by Archie’s law

σ

σ0
=

(
φ − φc

1 − φc

)μ

, (4)

where φc is the percolation threshold [19,20], i.e., the porosity
at which the type of porous material ceases to percolate and
μ is an exponent, which typically depends on the porosity
and morphology, but might be associated with the critical
conductivity exponent close to φc, where it is expected to
be universal and μ ≈ 1.3 in two dimensions [12,21–24].

Two issues limit the applicability of Eq. (4): (i) according
to percolation theory, Eq. (4) is only valid close to φc and (ii)
φc is a parameter, which explicitly depends on the formation
process of a structure and cannot be deduced from single finite
realizations of this process [25,26]. Astonishingly, even for
simple formation processes, such as percolation on a lattice or
continuum percolation of overlapping grains, φc is not known
analytically. To resolve these two issues, a relation independent
of φc is required to accurately predict σ and k of arbitrary
finite-sized porous media.

III. EXPERIMENTAL METHODS

We create micromodel structures for the experimental
determination of the permeability using the well-established
soft-lithography method [27,28]. The samples consist of three
separated rectangular channels of height h on the order
of 10 μm, which are connected to pressure reservoirs [see
Figs. 1(a) and 1(b)]. Each channel has a length on the order
of 10 mm and a width of 3.5 mm. A porous structure of
length Lstruct = 3.5 mm is placed in the center of the middle
channel. The two outer channels contain no porous structures,
except for a diluted array of supporting pillars of diameter
10 μm with typical spacing of 500 μm (φ > 0.999). A dilute
suspension of colloidal particles of diameter σ = 3μm is
injected into this microfluidic device as tracer particles. For
macroscopic experiments the permeability according to Eq. (1)
is typically determined by applying a fixed flow rate and
then measuring the pressure drop across the porous structure.
However, for soft-lithographic channels to prevent feedback
and leakage, only small flow rates must be applied, which
requires high-sensitivity motorized syringes. Additionally, an
accurate determination of the pressure drop between inlet
and outlet is required, which is difficult to achieve with
macroscopic pressure transducers.

For this reason we use particle tracking velocimetry [29–31]
to determine the average velocity of the injected colloidal
tracer particles as a function of the applied pressure �P in
each channel. Here, in contrast to the fixed flow-rate method,
the applied hydrostatic pressure can be tuned accurately by
varying the water level in the two reservoirs. The outer
channels act as references to calibrate the relationship between
particle velocity and fluid velocity. As shown in previous
experiments [32–34], the average particle speed within thin
rectangular channels typically deviates significantly from the
average fluid velocity, depending on the particle diameter, the
height of the channel and the particles’ gravitational height
[35,36]. However, the mean fluid velocity v̄ and mean particle
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FIG. 1. (Color online) Summary of experimental method: (a) A
microfluidic sample with a porous structure in the center of the
middle channel is created. A dilute suspension of colloidal particles is
injected into the device and an external hydrostatic pressure is applied
with the help of two reservoirs. The flow rate through the channel
is measured from the velocity of the colloidal tracers. Unpatterned
reference channels for calibration are added parallel to the structured
channel. To account for possible deviations in the channel height two
reference channels are used to cross check the results. (b) Equivalent
circuit diagram of hydraulic resistances Rhyd = �P

Q
= ηL

kA
. (c) Mean

particle velocity ū measured in the two reference and the middle
channel containing the porous structure as a function of the applied
pressure. The dashed lines are fits to the data points. The average
particle velocity ū is lower in the structured channel due to the
lower permeability of the porous part. The fluid velocity in the
structure channel is noticeably slower than in the reference channels.
Similar fluid velocities are found in the reference channels, however,
differences are caused by different length (�L ≈ 500 μm) and height
(�h ≈ 0.5 μm) of the reference channels and must be taken into
account. The error bars are smaller than the symbol sizes.

velocity ū in a channel are proportional [37], so that

v̄ = cd ū. (5)

The fluid flow problem in the reference channels, which
are assumed to be infinite parallel plates, can be solved
analytically for a given pressure drop �P . The permeability
k0 of the reference channels is equal to h2/12 [38]. Therefore,
the calibration factor cd can be obtained by calculating the
theoretical value for v̄ with Eq. (1) and measuring ū. Since
k0 ∝ h2, the calibration is very sensitive to the height of the
structure (and its spatial variations) [38]. We double check
the calibration for each sample with two reference channels
to account for differences between individual samples, which

can occur during the lithographic process. Figure 1(c) shows
an exemplary plot of ū vs. �P for the three channels of
one sample. As illustrated, the fluid velocity in the channel
containing the porous structure is considerably slower, while
in the reference channels it is similar [small differences are
caused by the different length (�L ≈ 500 μm) and slightly
different height of the channels (�h ≈ 0.5 μm), which result
from the production process].

By considering the middle channel as a series of hydraulic
resistances Rhyd = �P

Q
, as depicted in the equivalent circuit

diagram in Fig. 1(b), we can determine the permeability of the
central structure directly from the flow rate. If all flow rates
are known, the relative permeability (normalized to the k0 of
the reference channel) of a structure is given by

kstruct

k0
= Lstruct

Lref
Qref

Qstruct
− (Lin + Lout)

, (6)

where Lref is the total length of the reference channel and
Lin/out are the length of the inlet and outlet of the structure
channel [see Fig. 1(a)].

From Eq. (5) we have Qref/struct = cd × ūref/struct × A,
which allows us to directly determine the permeability from
a parallel measurement of ū in the reference and structure
channels. It is important to note, that crossover effects between
the different sections of the middle channel are neglected here,
i.e., the individual segments are assumed to be well connected.

IV. BOOLEAN MODELS

Boolean models are well established models for porous
materials from stochastic geometry [39–41]. There, porous
structures are composed of overlapping grains with random
position and orientation (i.e., points in a plane are chosen
randomly in a Poisson point process). At each point a grain
is placed and in the case of anisotropic grains orientations
are also chosen randomly from a uniform distribution. In
this article, we consider models of randomly overlapping
monodisperse circles (ROMCs) and randomly overlapping
monodisperse ellipses (ROMEs) with isotropic random orien-
tation. We also simulate systems of overlapping monodisperse
rectangles (ROMRs) with random orientation, which allows
us to minimize discretization errors, because such grains can
be, in contrast to spheres, directly represented by polygons of
arbitrary precision. Each structure is parametrized by the type,
aspect ratio and number N or number density ρ = N/L2 of
grains, where L is the linear system size. Examples of these
models are shown in Fig. 2 for grain percolation [Figs. 2(a)–
2(c)] and void percolation [Figs. 2(d)–2(e)]. The white phase
corresponds to the conducting phase. Exchanging the two
phases results in totally different pore space morphologies.

For the experimental and numerical determination of
conductivity and permeability, we create five realizations of
ROMC and ROME structures on a quadratic two-dimensional
(2D) lattice with linear size L = 4000 in pairs of equal open
porosity φo, i.e., the volume fraction of only the sample-
spanning part of the conducting phase. The circles have a
radius of r = 34 in units of lattice sites and the ellipses
have a long and short semiaxis of a = 96 and b = 12. In the
microfluidic samples this equals r � 30 μm and a � 84 μm.
The morphological properties of the resulting structures and
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a b c

d e f

FIG. 2. Boolean models of overlapping grains for (a) circles, (b)
ellipses, and (c) rectangles. A set of N points is selected randomly in
a plane (total area L2) (Poisson process). At each point a grain with
random orientation is placed. Each structure is characterized by its
point density N/L2. The white phase corresponds to the conducting
phase. (a)–(c) are structures, which we classify as void percolation,
whereas the structures (d)–(f) exhibit grain percolation.

their percolating phase (marked with an index o for open) are
summarized in Table I.

V. MINKOWSKI FUNCTIONALS

Minkowski functionals are morphological measures, cor-
responding to volume and surface integrals of geometric
sets, which are particularly useful for characterizing random
structures [39,42–47]. In two dimensions the Minkowski
functionals of a compact set A are given by

W0(A) =
∫

A

d2r, (7)

W1(A) = 1

2

∫
∂A

d r, (8)

W2(A) = 1

2

∫
∂A

1

R
d r, (9)

where R is the radius of curvature. From this definition, the
MF in the continuum can be identified with area V , perimeter
P , and Euler characteristic χ of a set: V = W0, P = 2W1, and
χ = W2/π , so that the values for a unit disk are Wi = π . On a
2D lattice the normalization of Wi is chosen differently, so that
the values for a unit pixel are Wi = 1, i.e., V = W0, P = 4W1,
and χ = W2. A schematic illustration of the MF is given in
Fig. 3.

The Euler characteristic is a topological constant, which in
two dimensions is equivalent to the number difference between
connected components and holes in a set. This quantity
is particularly useful for the characterization of percolating
structures, because for many random sets, χ becomes zero
close to the percolation threshold, i.e., the number of connected
components of both phases are approximately the same [42].

For Boolean models in the continuum the MFs of individual
grains (local MFs wi) and the mean MFs of realizations of the
model (global MFs Wi) with mean density ρ = 〈N〉/L2 are
related by

(a) (b)

1

4

2

3

51

2

(c)

FIG. 3. Schematic illustration of the Minkowski functionals:
(a) The area V of the conducting phase is shown in white, (b)
the perimeter P corresponds to the length of the black boundary,
and (c) the Euler characteristic χ is the number difference of the
connected components of each phase, which in the case shown would
be 2 − 5 = −3. The open Euler characteristic χo (similar to open
porosity φo and open perimeter So) does not count any inclusions,
i.e., χo = 1 − 5 = −4, as the inclusion in cluster No. 5 would be
neglected.

W0(ρ)/L2 = 1 − e−ρw0 , (10)

W1(ρ)/L2 = ρw1e
−ρw0 , (11)

W2(ρ)/L2 = ρ

(
w2 − (2w1)2

4
ρ

)
e−ρw0 . (12)

However, porous structures, in particular when obtained from
experimental data, are often represented as discretized binary
data sets on a lattice. For such data it is convenient to define the
MFs in a discrete system. For Boolean models on a lattice with
eight-point connectivity (horizontal, vertical, and diagonal
neighbors) the relations are

W0(ρ)/L2 = 1 − e−ρw0 , (13)

W1(ρ)/L2 = e−ρw0 (1 − e−ρw1 ), (14)

W2(ρ)/L2 = e−ρw0 (−1 + 2e−ρw1 − e−ρ(2w1+w2)). (15)

In both cases these equations are invertible. Such an inversion
has been used to determine Boolean models with grain
compositions with matching wi to reconstruct natural porous
media, such as Fontainebleau sandstone [5].

Numerically the Minkowski functionals can also be calcu-
lated for the percolating (open) phase. From this we obtain φo,
So, and χo.

VI. KATZ-THOMPSON MODEL

In the literature it is controversially discussed whether
permeability and conductivity have different or equal scaling
exponents [2]. In the Katz-Thompson model equal scaling
exponents are assumed, which gives a relationship between
conductivity and permeability based on arguments from
percolation theory. This equality is relevant in our case, since
many analytical results on the pore scale are only obtained for
the conductivity, but not the permeability of porous media.

The length scale that determines the permeability in
the Katz-Thompson model is identified as the critical pore
diameter [see Fig. 4(b)]. Due to the quasi-2D geometry of our
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FIG. 4. (Color online) Cross-property relation between perme-
ability k determined by LB simulations and conductivity σ obtained
from FEM simulations. The conductivity is normalized by the bulk
conductivity σ0. The permeability is normalized by the square of
the critical pore diameter lc and a constant c = 1/12, determined
from the limit lc → h and φ → 1, where the system equals the flow
problem between infinitely large parallel plates with spacing lc. Inset:
Determination of the critical pore diameter lc from parallel surfaces.

samples this critical diameter is given by

lc = min(Dc,h), (16)

where Dc is the actual 2D critical diameter. If this diameter
is greater than the height h of the structure, h confines the
flow and becomes the relevant length scale. For our structures
we determined lc directly from the images of the structures

computing the Euclidean distance transform (EDT). For each
point in the conducting phase of the sample the EDT assigns
the distance to the closest point on the surface. From this
lc can be easily identified [48,49] (see inset of Fig. 4). The
constant c = 1/12 is chosen to fit the dilute grain limit, where
c l2

c = h2/12.
In Fig. 4 the relative permeability is shown in depen-

dence of the conductivity, both determined numerically from
lattice-Boltzmann (LB) and finite-element (FEM) simulations,
respectively. The prediction of the Katz-Thompson model is
depicted as a dashed line. In particular for larger φ, the data
agrees very well with the Katz-Thompson model, with only
a slight deviation of the permeability towards lower values
than predicted. Additionally even for low permeabilities the
predictions deviate by less than a factor of two for all but one
structure.

For φ → 1, this agreement is not surprising, since the height
of the structure is much smaller than the distance between
the obstacles, which leads to an equivalence of the flow and
the conductance problem since the weight of the different
pathways is the same for flow and conductance. As the flow
profile is locally equivalent to flow confined between infinitely
large parallel plates the system can be thought of as a network
of hydraulic conductors with conductivity proportional to
h3. In both cases, a homogeneous current or flow is only
disturbed by isolated obstacles, which only locally influences
the (hydraulic) conductance of the porous structure, without
changing the hydraulic radius, which remains on the order of
the height h.

However, this is not the case close to the percolation
threshold φc. Katz and Thompson argue that σ and k follow
similar universal power laws close to the critical porosity with
an accurate choice of the critical pore diameter. According to
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FIG. 5. (Color online) Experimentally (closed symbols) and numerically (open symbols) determined permeability k of void (top) and
grain percolation (bottom) vs. different morphological properties: (a), (b) porosity φ, as expected k/c l2

c vanishes around φc and goes to 1 for
φ → 1; (c), (d) rescaled porosity, data points collapse with some deviations due to finite-size effects; (e), (f) open porosity, for void percolation
ROMC structures have higher permeabilities, for grain percolation ROME structures have higher permeability at equal φo; and (g), (h) Euler
characteristic: data collapses onto a single curve for void percolation, but for grain percolation deviations are found. The dashed lines in (g)
and (h) are fits to Eq. (17) with one free parameter α. Error bars are only shown if larger than symbol size.
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FIG. 6. (Color online) (a), (b) Current density magnitude from finite-element simulations of the Laplace equation (i.e., conductivity)
normalized to the total maximum current. (c), (d) Fluid velocity magnitude from lattice-Boltzmann simulations. For elliptical grains the overlap
leads to pronounced stagnant parts, while circular grains form more compact obstacles, as illustrated in (e), (f) respectively. Within such stagnant
parts a strong decrease of both the current and the flow velocity is observed. However the decrease of j appears to be faster, as observed in
Ref. [50].

some authors this is only true for two dimensions [12–14].
Otherwise, nonuniversal power-law exponents have to be
considered. To obtain further insight into this problem we
show the current density and the flow velocity magnitude for
representative ROMC and ROME structures in Fig. 6. Even
though the fields share some morphological features, such as
the principal flow paths, the decay of the current magnitude
into dead ends appears to be faster than that of the fluid velocity.
This feature is also observed when considering the distribu-
tion of currents or flow velocity respectively. As shown in
Fig. 7 the current distribution decays faster for both structures.
However, the distributions appear to be qualitatively similar,

ROMC

ROME
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10−1

100

v/vmax | j/jmax
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(v

)
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)

FIG. 7. (Color online) Comparison of velocity magnitude distri-
bution p(v) (solid) and current magnitude distribution p(j ) (dashed)
in ROMC (black) and ROME (red) structures shown in Fig. 6. Both
distributions, i.e., p(v) and p(j ), follow similar trends, however, the
velocity decays with a significantly faster amplitude.

which could explain the surprisingly accurate prediction of the
Katz-Thompson conjecture.

VII. TRANSPORT AND MORPHOLOGY

Transport in Boolean models is either described by per-
colation theory or by effective medium approximations [22].
In percolation theory one assumes that close to φc transport
properties are described by power laws and far away from
φc effective medium theories are applied. In both cases the
data agrees qualitatively with this assumption. In Fig. 5 both
the experimentally (closed symbols) and numerically obtained
values (open symbols) for the permeabilities k are plotted
versus several quantities for void and grain percolation. As
shown in Fig. 5(a) and Fig. 5(b) the permeabilities vanish
close to φc and approach the value of an unpatterned channel
for φ → 1. Due to the finite size of the samples the measured
permeabilities scatter more and more as the percolation
threshold is approached. Due to the finite system size some
structures have porosities below φc and are still conductive
(technically for these models φc is only well defined for infinite
systems). This becomes particularly clear when k is plotted
vs. the rescaled porosity [see Figs. 5(c), 5(d)], as motivated
by Archie’s law. The measured permeabilities collapse onto
a single curve within the experimental accuracy. However,
in the case of negative rescaled porosities, Eq. (4) obviously
cannot be applied. In dependence of the open porosity for void
percolation, ROMC structures have a higher permeability than
ROME structures for equal φo [see Fig. 5(e)]. In the case of
grain percolation this situation is reversed [see Fig. 5(f)]. This
fact can be explained from the morphology of the velocity
fields as shown below.

Compared to circles the ellipses form more elongated
interconnected obstacles with a significant amount of stagnant
parts between grains. This reduces the permeability signif-
icantly. In the case of grain percolation the ellipses form
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more direct pathways for the flow, which explains the higher
permeability compared to ROMC structures. The experimental
and numerical results support that

k = clc
2

(
1 − χo

N

)α

(17)

for the void percolation models [7] where α is a free parameter.
Equation (17) can be justified from the velocity magnitude
distributions inside the porous structures shown in Fig. 6.
When comparing ROMC and ROME structures it becomes
clear that circular grains form more compact obstacles at
equal φo compared to elliptical grains [compare Figs. 6(e) and
Fig. 6(f)], because the probability to overlap and form more
tortuous pathways as well as dead ends where no flow occurs is
larger for elongated ellipses at equal grain densities. This fact
is captured by the factor (1 − χo)/N , which can be interpreted
as the number density of obstacles formed by joined grains.
All data points for void percolation are well described by a fit
to Eq. (17) with αv = 1.27 [see Fig. 5(g)], which is close to
the critical exponent μ = 1.3 in two dimensions for Archie’s
law.

One particular shortcoming of Eq. (17) is the explicit
dependence on the grain number N , which might be unknown
or ill-defined for many porous materials, where the formation
process is unknown. Also, in the case of grain percolation
the use of N in the denominator of Eq. (17) gives even the
wrong limit k = 0 for N → ∞. Therefore we replace N

by an effective grain number N̂ , which is derived from the
morphological correlations of the Minkowski functionals of
Boolean models [Eqs. (10)–(12)]. In the continuum one obtains

N̂ = P 2

4πAφ
− χ

φ
(18)

and from (13)–(15) on the 2D lattice

N̂ = −L2 ln

[
χ

L2φ

(
1 − S

4L2φ

)−2
]

−
(

1 − S

4L2φ

)−2

+ 2

(
1 − S

4L2φ

)−1

. (19)

In the case of void percolation N̂ is, as expected, typically
close to the actual value of N (see Table I). In this case N̂

can either be calculated from vectorized images (the binary
images of the structures are vectorized using a marching
squares algorithm) using Eq. (18) or directly from the raster
images using Eq. (19). As shown in Table I, similar values
are obtained, with slightly better agreement of N̂ and N for
the lattice equation. For grain percolation the role of both
phases is inverted and N̂ does obviously not correspond to
N , but instead is used to define an effective grain number. As
shown in Fig. 5(h) the prediction of the permeability, i.e.,
the black dashed line, which we got for void percolation,
is quite accurate for ROME structures at high porosities but
significantly overestimates k for ROMC structures. The reason
for this deviation might be the occurrence of many very small
isolated obstacles (see Fig. 8) with a size of a few pixels, which
significantly influence N̂ without strongly influencing k. Such
isolated obstacles are found more frequently for ROME than
for ROMC structures. Looking again at Fig. 5(h), the data
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FIG. 8. (Color online) Distribution for obstacle sizes p(X) for
(a) void percolation and (b) grain percolation. Open bars correspond
to ROME and filled bars correspond to ROMC structures. The
histograms for grain percolation show a large number of very small
obstacles.

points follow a similar trend as in Fig. 5(g). However, the
scattering is significantly stronger. A fit of Eq. (17) to the
measured data, which is shown as a green dashed line, yields
an exponent αg = 2.05. The quantitative deviation from αv

could indicate that the motivation, which gave rise to Eq. (17),
is obviously not directly applicable in the case of N̂ for
arbitrary structures. The factor (1 − χo)/N was interpreted as
the number density of obstacles, which are formed by joined
individual grains. This interpretation is not that straightforward
for grain percolation, since the obstacles are formed by what
is left after removing a number N of circular or elliptical
areas. However, even in this case the equation does not fail
qualitatively, so that we expect a reasonable prediction of k for
any structures composed of overlapping grains.

VIII. LOW GRAIN DENSITY

The success of the relation [Eq. (17)] between permeability
and Euler characteristic of Boolean models raises the question
whether certain results can be obtained analytically or at least
semiempirically. In the regime of low grain density analytical
results are available for the conductivity σ [51]. In this regime,
i.e., for φ → 1 the Euler characteristic of the conducting phase
becomes χo → χ as the grain density is so low that individual
grains do not overlap. Consequently we can expand Eq. (10)–
(12) and obtain

− χ

N
= 1 −

(
1 +

[
4aE

(
1 − b2

a2

)]2

4π2ab

)
(1 − φ) + O(φ2), (20)

where a and b are the long and short semiaxis of the ellipse
and E is the elliptical integral of the second kind. Here we
approximate the circumference of the ellipse 4aE(1 − b2

a2 ) ≈
π

√
2(a2 + b2) and obtain

− χ

N
≈ 1 − (a + b)2

2ab
(1 − φ). (21)

This result is indeed equivalent to the exact result for σ of
a conductive sheet with a small number of circular obstacles
(i.e., the dilute limit) in two dimensions [51] and thus

σ

σ0
≈ − χ

N
. (22)

For large obstacle densities however, no analytical results are
available. In the region close to φc, where Boolean models
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fall into the universality class of 2D lattice percolation, it is
assumed that the conductivity is described by power laws,
as previously stated [22]. However, whether the same is true
for χo is not obvious. In the following we present a numerical
analysis of the dependence of χo close to φc, in the intermediate
range and far away from φc for Boolean models and lattice
percolation, in dependence of grain shape and system size,
to evaluate the possible universal behavior of χo and link the
results to percolation theory.

IX. CRITICAL BEHAVIOR

Close to φc transport properties can change dramatically,
due to the fractal behavior of the percolating cluster. Results
can then depend dramatically on the system size. In percolation
theory a universal critical exponent is assumed for the
conductivity. Because of the relation between φc and χo in
Eq. (17), the question arises whether χo also shows a critical
behavior close to φc. To analyze the dependence of χo on the
system size and φ close to φc we generate two different types of
structures that minimize discretization errors: site percolation
on a lattice and ROMR structures in the continuum.

The percolation probability of site percolation systems
close to φc is described by a universal exponent β = 5/36,
which is known analytically in two dimensions from conformal
field theory (we use the standard notation for critical exponents
as common in the literature, e.g., Ref. [26]). Boolean models
of randomly overlapping grains fall into the same universality
class, so the critical exponents are equal. However, the
percolation threshold is nonuniversal and depends on the
details of the grains.

In the case of the Euler characteristic the problem is
less well understood. Although for many random fields the
Euler characteristic can be determined analytically, this is

not the case for the Euler characteristic of the open phase,
i.e., the percolating cluster. For fractals, the scaling of area,
perimeter and Euler characteristic behave differently. While
the area scales with one critical exponent, such as in the
case of the percolation probability, the perimeter has one
additional, and the Euler characteristic has two additional
scaling exponents, which are not independent [52,53]. The
amplitudes of the scaling relations are in general not known
analytically. Therefore, we analyze the scaling behavior of the
Euler characteristic numerically.

First, we calculate (1 − χo)/N for ROMR structures in
dependence of the rescaled porosity. Calculations are per-
formed for system sizes L = 10a, 20a, 50a, 100a where a

is the length of the long side of the rectangles. The simulations
are repeated for different aspect ratios 1 : 1, 1 : 2, 1 : 4 and
1 : 10. An ensemble of 2500 samples for the smallest and
six samples for the largest system size was simulated, which,
except for the largest system size, results in a negligible error
of the mean for all data points. As shown in the resulting
curves in Figs. 9(a)–9(d), we observe for all systems two
distinct regimes with significantly different φ dependence.
First, a critical regime close to φc and second, an effective
medium regime where the data points collapse for different
aspect ratios, but a significantly different slope of the curve
compared to the critical regime is observed. No qualitative
change in this behavior is observed for different system sizes.
However, due to the rather limited system size of the ROMR
structures, it is not obvious whether these two regimes persist
for infinite system size.

Therefore, we also simulate site percolation on a 2D square
lattice, for which a linear system size of L = 214 lattice sites
can be achieved with an ensemble of 26 realizations and up
to 216 for the smallest system size L = 25. Here, N must be
replaced by (1 − p)L2, which, p being the probability that
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FIG. 9. (Color online) Behavior of the Euler characteristic of the percolating cluster χo for (a)–(d) void percolation of different ROMR
systems (aspect ratios 1 : 1, 1 : 2, 1 : 4, 1 : 10) as a function of the porosity φ and (e) site percolation on a 2D lattice function of the occupation
probability p. For the ROMR structures system sizes of L = 10a, 20a, 50a, and 100a have been simulated. For site percolation L = 22, . . . ,214.
(f) Finite-size scaling analysis of χo for site percolation at the percolation threshold for difference linear system size L. (g) Finite-size scaling
of χo in dependence of the linear system size L for ROMR structures.
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a site is conducting, corresponds to the volume occupied by
obstacles. In this system, as shown in Fig. 9(e), we find exactly
the same behavior as for ROMR structures, for all system sizes.
This further supports our assumption that the occurrence of
two scaling regimes persists for other grain shapes and larger
system sizes.

However, a direct determination of the scaling exponent
from finite-size system simulations is not feasible [26]. Instead,
an established method to extract critical exponents numerically
is used from finite-size scaling [25,26]. Here, we only give a
brief description of the method: If we combine Eq. (4) and
Eq. (17), we get (1 − χo)/N ∝ (φ − φc)β , where β = μ/α.
Because the correlation length ξ diverges at φc according
to a power law, we can use that ξ ∝ (φ − φc)−ν to obtain
(1 − χo)/N ∝ ξ−β/ν . Since ξ is infinite at φ = φc, L becomes
the confining length scale of the system and we obtain (1 −
χo)/N ∝ L−β/ν . This assumption is now tested numerically.
Here, our results might differ for site percolation [Fig. 9(e)] and
ROMR structures [Fig. 9(f)]. For site percolation we clearly
observe a power law with an exponent of −β/ν = −5/48
in perfect agreement with percolation theory. This suggests
that β = 5/36 indeed describes the scaling of the open Euler
characteristic. However, for ROMR structures the slope of the
curve is significantly different for small L and only at large L

becomes consistent with a scaling of L−β/ν (see dashed line).
Apparently the ROMR system is more sensitive to finite-size
effects. However, larger L are computationally too expensive,
so that L < 256 for square grains and worse for larger aspect
ratios, since the amount of grains at a fixed φ diverges with
the aspect ratio.

Nevertheless, our numerical results support the following
interpretation: When we connect the scaling of the open Euler
characteristic to the experimental observation the critical ex-
ponent seems to be irrelevant with respect to our experimental
system sizes. In the critical regime from Eq. (4) percolation
theory would yield

k ∝
(

1 − χo

N

)μ/β

, (23)

which we obviously do not observe in the experiment. Instead
our interpretation is that the power law from Eq. (17) is
related to the effective regime. Since in this regime the open
Euler characteristic collapses, we argue that the same should
be true for conductivity and permeability, however with a
significantly different exponent (compared to β) with a value
close to 1. A more detailed analysis of this problem, however,
requires either new simulations or experimental studies of
conductivity or permeability of structures with much larger
system size. Consequently, a significant improvement of the
computational and/or experimental effort is required. So far,
only 20 structures could be measured and simulated. For
a higher number of samples a reliable automation of the

experiment would be required. For large structures close to
φc the resolution of the experiment must be improved by at
least one order of magnitude. The same is true for the compu-
tational time required to solve the conductivity or permeability
problem.

X. SUMMARY

We have analyzed the permeability and conductivity of
porous micromodels composed of randomly overlapping
grains (Boolean models). We have analyzed void and grain
percolation for overlapping circles and ellipses (i.e., structures
where the void is conductive and structures where the grains
are conductive). In all cases the relation between permeability
and conductivity is well predicted by the Katz-Thompson
model. In the case of void percolation the permeability can be
deduced from the Euler characteristic of the percolating cluster
normalized to the total number of grains, which required a
priori knowledge of the grain density. For grain percolation
a similar approach is studied based on the definition of an
effective grain number N̂ , which is calculated from the global
Minkowski functionals of the structures. This approach works
qualitatively for ROME structures, but overestimates k for
ROMC structures, due to the sensitivity of N̂ on the occurrence
of isolated pixels, which otherwise do not strongly affect k.
For void percolation in the low grain-density limit it can
be analytically shown that the formation factor is given by
the Euler characteristic. The critical behavior of the Euler
characteristic of the percolation cluster χo for φ → φc is
analyzed numerically to link our results to percolation theory.
For the 2D square lattice, we find that χo scales with the critical
exponent β only very close to φc. Further away from φc, an
effective regime is found for both square lattice and Boolean
models where the values of χo overlap for different systems,
i.e., different grain shapes and system sizes, justifying the
applicability of our model to many different types of structures.

A remaining question is the applicability to fully three-
dimensional (3D) porous media. In principle, 3D models are
accessible experimentally, e.g., via 3D printing, and have also
been studied numerically [54]. Also MFs are well understood
in the 3D case, e.g., the Euler characteristic also vanishes close
to φc. Therefore, it is reasonable to assume that Eq. (17) could
hold in three dimensions, even though there is no intuitive
interpretation similar to the 2D case. It must be expected
however, that measurements and simulations are significantly
more challenging and computationally more expensive.
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[47] G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, F. M. Schaller, B.
Breidenbach, D. Hug, and K. Mecke, New J. Phys. 15, 083028
(2013).

[48] M. Hilpert and C. T. Miller, Adv. Water Resour. 24, 243 (2001).
[49] W. Mickel, S. Münster, L. M. Jawerth, D. A. Vader, D. A. Weitz,

A. P. Sheppard, K. Mecke, B. Fabry, and G. Schröder-Turk,
Biophys. J. 95, 6072 (2008).

[50] J. S. Andrade, Jr., M. P. Almeida, J. Mendes Filho, S. Havlin, B.
Suki, and H. E. Stanley, Phys. Rev. Lett. 79, 3901 (1997).

[51] W. Xia and M. F. Thorpe, Phys. Rev. A 38, 2650 (1988).
[52] K. R. Mecke, in Statistical Physics and Spatial Statistics

(Springer, Berlin, 2000), pp. 111–184.
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