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Inverse energy cascade in nonlocal helical shell models of turbulence
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1Dip. di Fisica and INFN, Università “Tor Vergata,” Via della Ricerca Scientifica 1, I-00133 Roma, Italy
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Following the exact decomposition in eigenstates of helicity for the Navier-Stokes equations in Fourier space
[F. Waleffe, Phys. Fluids A 4, 350 (1992)], we introduce a modified version of helical shell models for turbulence
with nonlocal triadic interactions. By using both an analytical argument and numerical simulation, we show
that there exists a class of models, with a specific helical structure, that exhibits a statistically stable inverse
energy cascade, in close analogy with that predicted for the Navier-Stokes equations restricted to the same helical
interactions. We further support the idea that turbulent energy transfer is the result of a strong entanglement
among triads possessing different transfer properties.
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I. INTRODUCTION

Understanding and controlling the statistical and dynamical
properties of turbulent flows is still an open problem in
many fundamental and applied fields. From a theoretical
point of view, the main difficulties stem from the highly
nonlinear nature of the dynamics in the fully developed regime.
Moreover, the presence of a large separation between the
injection and dissipative scales and the empirical observation
of non-Gaussian statistics of the velocity field make the system
hard to approach with analytical perturbative techniques or
brute force direct numerical simulations [1,2]. The physics of
turbulent flow is very rich. It might depend on the embedding
dimensionality, leading to a direct transfer of energy from
large to small scales in three dimensions (forward cascade) or
to an inverse transfer in two dimensions (backward cascade).
Moreover, in the direct regime, turbulent flow develops anoma-
lous scaling laws, where different moments of the velocity
fluctuations possess a power-law behavior as a function of the
separation scale, characterized by a set of anomalous scaling
exponents.

For these reasons, many different techniques and ap-
proximations have been developed in order to try to better
understand the turbulent phenomenology. One such approach
is represented by shell models [3–11].

Shell models of turbulence are simplified models that mimic
the Navier-Stokes (NS) equations in wave-number space. They
are based on a strong reduction in the number of degrees of
freedom, keeping only a few representative variables (typically
one or two real variables) for the whole original set of wave
numbers belonging to each shell. To have scaling invariance
embedded in the system, the shell variables are defined on a
set of wave numbers equally spaced on a logarithmic scale,
kn ∼ λnk0, where λ = 2 conventionally. In this way, a large
separation of scales is achieved with relatively few variables.
Furthermore, inspired by the Kolmogorov phenomenology
for direct energy transfer, these models consider only local
interactions in Fourier space, connecting dynamical evolution
between three neighboring modes kn, kn+1, and kn+2. Last
but not least, the models are built in such a way that they
have the same inviscid invariants of the original Navier-Stokes
equations: energy and helicity for models of three-dimensional
(3D) turbulence or energy and enstrophy for the 2D case.

Despite the huge simplifications, shell models share many
properties with the original Navier-Stokes turbulence, includ-
ing the development of anomalous scaling laws with values
of scaling exponents very close to the ones measured in 3D
turbulence [7–9,12]. Many generalizations to models for mag-
netohydrodynamics [13], rotating fluids [14–16], convection
[17–21], and passive scalars [22–24] have also been studied.

Notwithstanding their success, shell models prove to be
problematic when inverse energy cascade becomes the domi-
nant phenomenon to be studied. In fact, in all known models
for 2D turbulent flows that conserve energy and enstrophy, the
inverse energy flux is overwhelmed by equilibrium fluctuations
[25,26]. Similarly, also considering shell models of 3D Navier-
Stokes equations restricted to having only sign-definite helicity
[27], the inverse energy cascade is subleading with respect
to equilibrium fluctuations [26]. Indeed, an inverse energy
cascade in shell models has been observed only by adding extra
terms in the equations of motion, representing mechanisms
such as rotation or stratification [16,21], or considering the
dynamics in a range of parameters where the conserved
quantities have different physical dimensions with respect to
those of the Navier-Stokes equations [26]. The main goal of
this paper is to present a shell model that has energy and
helicity as inviscid invariants, and that shows an inverse energy
cascade without relying on any additional external mechanism
beside the ones already present in the NS nonlinear term.

To better understand the interplay between helicity and
energy, shell mmodels for 3D turbulence have been proposed
in [28] using a close connection with the helical structure of
the original Navier-Stokes equations. The idea was to apply
the decomposition in helical eigenstates of the Navier-Stokes
equations in order to distinguish triadic nonlinear interaction
on the basis of their helical content [29]. It was indeed argued
in [29] that depending on the relative sign of helicity carried
by the three interacting modes, energy tends to be transferred
forward or backward in 3D turbulent flow. Recently, further
support for this statement was given in [27] by performing
direct numerical simulations of 3D turbulence under the
constraint of having only sign-definite helical modes and
showing that in this case the flow inverts the energy transfer
direction by pumping energy to larger and larger scales.
As a result, clear evidence that inverse and direct energy
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transfer mechanisms might coexist in 3D turbulence was given,
making it even more interesting to understand under which
circumstances the former prevails over the latter, or vice versa.

In this paper, we expand the work done in [28], trying
to understand if the inclusion of helical variables in shell
models might shed some light on the complexity of the
energy transfer mechanism. In particular, we show that the
aspect ratio of the triads is a key point. To achieve an
inverse energy transfer mechanism, we relaxed the constraint
of first-neighbor interactions between wave numbers. Indeed,
we show, with both theoretical and numerical tools, that this
simple modification can have dramatic consequences on the
energy-cascade mechanism, turning a model that exhibits
direct energy cascade into a model that exhibits an inverse
energy cascade. It is remarkable that the argument suggesting
the importance of elongated triads is taken in full similarity
with the original case of 3D Navier-Stokes equations as
developed originally in [29]: another case of a close overlap
between the physics of turbulence and the dynamics of
shell-models.

The paper is organized as follows. In Sec. II, the helical
decomposition is briefly reviewed and a modified SABRA
model with more elongated triads is defined. In Sec. III,
predictions for the direction of the energy cascade and scaling
laws are made on the basis of the stability analysis of a
single interacting triad. In Sec. IV, results of numerical
simulations are shown and compared with the predictions
from the previous section. Finally, the two appendixes contain
details and calculations. Appendix A contains the definition
of a more general helical shell model with triads of any shape.
Appendix B contains detailed calculations for the stability
analysis of a single interacting triad.

II. HELICAL DECOMPOSITION FOR SHELL
MODELS OF TURBULENCE

A. The original SABRA model

The original SABRA shell model [8] was inspired by the
Navier-Stokes equations in Fourier space, and, although it
cannot be formally derived from them, it has a phenomenology
very similar to that of 3D homogeneous and isotropic turbulent
flows. The model describes the evolution of a single complex
variable un, representing all the modes in a shell of wave
numbers |k| ∈ [kn,kn+1]. The equations of motion take the
form [8]

u̇n = i(akn+1un+2u
∗
n+1 + bknun+1u

∗
n−1 + ckn−1un−1un−2)

− νkβ
n un + fn + νlk

−4
n un, (1)

where kn = k0λ
n, λ is an arbitrary scale parameter larger

than unity (here λ = 2), νk
β
n is a dissipative (β = 2) or

hyperdissipative (β > 2) term, fn is an external forcing term,
and νlk

−4
n is a large-scale damping term introduced for those

models that develop an inverse energy transfer in order to
get a stationary statistics. The model is defined on a given
number of shells, n = 0,1, . . . ,N , and the boundary conditions
u−1 = u−2 = uN+1 = uN+2 = 0 are imposed.

The model has two quadratic inviscid invariants that depend
on the values of the a,b,c parameters. The first one is always
chosen to be the energy, E = ∑N

n=0 |un|2, while the second

can be defined to be unsigned to mimic helicity in 3D Navier-
Stokes equations, H = ∑N

n=0(−)nkn|un|2, or positive definite
as enstrophy for 2D NS, � = ∑N

n=0 k2
n|un|2. A significant

drawback of the above model in the 3D regime is the imbalance
between successive shell variables: the ones with an odd shell
index carry only negative helical modes, while the ones with
even n carry positive helicity [30–32].

B. The helical SABRA model

To overcome the previous limitation, a new class of shell
models with a more realistic helicity structure was proposed
in [28]. The first step was to follow the exact decomposition of
the Navier-Stokes velocity field, in Fourier space, into positive
and negative polarized helical waves [29]:

u(x) =
∑

k

(u+
k h+

k + u−
k h−

k )eik·x, (2)

where k,h+
k ,h−

k form an orthogonal basis, and the two hs
k (with

s = ±) are eigenvectors of the curl operator:

ik × hs
k = skhs

k. (3)

A possible way to construct them is to use the decomposition:

hs
k = νk × κ + isνk, (4)

where k = kκ , νk = (z × κ)/||z × κ ||, and z is an arbitrary
vector. The two fields u+

k and u−
k are merely the projections

on the h+
k and h−

k directions of the Fourier coefficients
of the velocity field, and they carry, respectively, positive
and negative helicity. It was realized that by plugging this
decomposition into the nonlinear term of the Navier-Stokes
equations, one can distinguish eight possible nonlinear triadic
interactions depending on the signs of the corresponding
helical projections [29]. Four out of eight interactions are
independent, because the interactions with reversed helicities
are identical; they are summarized in Fig. 1. It is possible to
apply the same decomposition verbatim to construct different
classes of helical shell models with a more accurate helical
structure than the original model (1). This first step was done
in [28] introducing two complex variables u+

n and u−
n for every

wave number, each one of them carrying positive or negative
helicity and leading to the four independent classes of the local
helical shell model. All of them have the form

u̇+
n = i

(
akn+1u

s1
n+2u

s2∗
n+1 + bknu

s3
n+1u

s4∗
n−1 + ckn−1u

s5
n−1u

s6
n−2

)
− νkβ

n u+
n + f +

n − νlk
−4
n u+

n , (5)

u̇−
n = i

(
akn+1u

−s1
n+2u

−s2∗
n+1 + bknu

−s3
n+1u

−s4∗
n−1 + ckn−1u

−s5
n−1u

−s6
n−2

)
− νkβ

n u−
n + f −

n − νlk
−4
n u−

n , (6)

where the helical indices si = ± are reported in Table I and
the coefficients a,b,c can be found in Table II. Each one
of these models evolves according to only one of the four
independent helical interactions depicted in Fig. 1, where a
triad (kn−1,kn,kn+1) is represented by (k,p,q).

It is important to stress that, exactly as in the original Navier-
Stokes equations, the four classes of interactions conserve
energy and helicity separately if the coefficients a,b,c are
chosen appropriately, i.e., they can be considered as four
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FIG. 1. Representation of the four independent classes of helical
interaction between an ordered triad of wave numbers k < p < q,
in both Navier-Stokes and helical shell models. The ± superscripts
represent the helical mode, which is participating in the interaction.
Each class has two possible interactions, which are equivalent due
to the parity symmetry k+ → k−,p+ → p−,q+ → q−; only one is
shown here. The arrows represent the energy transfers, as a result
of the instability assumption (see Sec. III and Appendix B). The
dashed arrows represent weaker transfers with respect to the full
lines. For models 1 and 3, energy flows out of the smallest wave
number. In particular, in model 1, the smallest wave number transfers
the same amount of energy to the other two, while model 3 exhibits a
more localized energy transfer; in model 2, the middle wave number
transfers more energy to the largest wave number and less to the
smallest; and in model 4, the middle wave number transfers more
energy to the smallest wave number and less to the largest.

submodels of the whole problem. The added value with respect
to the previous SABRA structure is that now energy and
helicity have the very same structure as for the NS equations
[29] without the asymmetry among odd and even shells:

E =
N∑

n=0

(|u+
n |2 + |u−

n |2), (7)

H =
N∑

n=0

kn(|u+
n |2 − |u−

n |2). (8)

As we shall see later, none of these four models is indeed
able to show an inverse energy cascade. Even the shell model
SM4, which is the equivalent of the Navier-Stokes restriction
to sign-definite helical interactions [27], fails to develop an
inverse energy transfer because of the presence of strong
fluctuations due to the quasiequilibrium solution [26]. It is not
surprising that the equilibrium solution might have a different

TABLE I. Helicity indices of Eqs. (5) and (6) and Eqs. (9) and
(10) for the four models.

Model s1 s2 s3 s4 s5 s6

SM1 + − − − − +
SM2-SM2E − − + − + −
SM3 − + − + − −
SM4 + + + + + +

TABLE II. Coefficients of Eqs. (5) and (6) for the four helical shell
models with first-neighbor interaction, plus the elongated version
SM2E of model SM2 in Eqs. (9) and (10). These coefficients ensure
energy and helicity conservation. Conventionally, and without loss of
generality, we always choose a = 1.

Model b c

SM1 −1/2 1/2
SM2 −5/2 −3/2
SM2E −9/4 −5/4
SM3 −5/6 1/6
SM4 −3/2 −1/2

influence on the shell model with respect to the Navier-Stokes
equations, because of the strong difference in the scaling of the
number of degrees of freedom as a function of the embedding
physical dimension. A priori there is no reason why a very
simplified structure such as the one given by shell models
should replicate exactly the behavior of the Navier-Stokes
equations restricted on the same helicity interactions class.
In particular, one of the strongest limitations is given by the
restriction to very local interactions among Fourier variables
assumed by the structure (5).

In [29] it was shown, on the basis of an “instability
assumption,” that triads where the two highest wave numbers
have the same helical sign, such as those in model SM2
(see Fig. 1), might lead to an inverse cascade. It was also
explained that the key factor for the NS case is the triad
geometry. Calling v = k/p the ratio between the smallest and
middle wave number, it was argued in [29], on the basis of
a phenomenological scaling argument, that if v < 0.278, the
triad should contribute to an inverse flux of energy, from small
to large scales. In fact, empirical observation made on direct
numerical simulations of the shell model SM2 (where v = 0.5)
showed that energy flows toward small scales. We are therefore
interested in extending the range of interactions, exploring
smaller values of the ratio v, in order to meet the “elongation”
requirement argued in [29].

C. The elongated helical SABRA model

We introduce here a shell model, which we will call SM2E,
in which the triads are more elongated in the sense that
the middle wave number kn in a triad will interact with the
first larger neighbor kn+1 and the second smaller neighbor
kn−2. In this way, we have the equivalent of the parameter
v = kn−2/kn = λ−2 = 0.25 instead of v = 0.5 as for the local
version. The model equations take the form

u̇+
n = i

(
akn+2u

s1
n+3u

s2∗
n+2 + bknu

s3
n+1u

s4∗
n−2 + ckn−1u

s5
n−1u

s6
n−3

)
− νkβ

n u+
n + f +

n − νlk
−4
n u+

n , (9)

u̇−
n = i

(
akn+2u

−s1
n+3u

−s2∗
n+2 + bknu

−s3
n+1u

−s4∗
n−2 + ckn−1u

−s5
n−1u

−s6
n−3

)
− νkβ

n u−
n + f −

n − νlk
−4
n u−

n , (10)

where the helical indices si fall in the same helical class of
the SM2 model (see Table I). The real constants a,b,c are
determined by imposing that the triadic interaction conserves
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energy (7) and helicity (8). The values of the resulting
coefficients for the SM2E model are given in Table II. In
Appendix A, we give the equations for an even more general
shell model, allowing for interacting triads of any shape.

In the next section, we extend the “instability assumption”
developed in [29] to predict the transfer properties of helical
shell models, and we show that, indeed, the elongated version
SM2E of the model SM2 should lead to an inverse energy
transfer in agreement with the predictions for the set of
triads with a similar geometrical factor in the Navier-Stokes
equations.

III. ENERGY TRANSFERS IN HELICAL SHELL MODELS

In this section, we will first study the stability of steady
states of only one triad of wave numbers. We will then extend
the results of this analysis to a shell model with any number N

of shells, in the framework of the instability assumption [29].
The instability assumption states two things: (i) the global
statistical behavior of a shell model can be inferred directly
from the single-triad dynamics; (ii) in a single-triad system,
the energy flows from the most unstable wave number to
the other two. Here the adjective “unstable” is intended to
be used in the framework of the linear stability analysis of
the equations for u±

n . In fact, proceeding as in [29] and [28],
we studied the linear stability of a single-triad helical shell
model, both in its first-neighbor and elongated variants. This
analysis (see Appendix B) confirms that there is one unstable
wave number that transfers energy to the other two. For models
SM1 and SM3 the unstable wave number is the smallest one,
while for models SM2, SM2E, and SM4 the unstable wave
number is the middle one (this property depends only on the
helical class of the model, not on the triad shape). These results,
already discussed in [28], are the same as those obtained for the
Navier-Stokes equations, and they are summarized in Fig. 1.

A. Energy transfers

Let us now examine how one can exploit the stability
analysis for a single triad to predict the sign of the energy
transfer in a fully coupled shell model. For the balance of
energy at shell kn, we have

Ėn = d

dt
(|u+

n |2 + |u−
n |2) = (

δE
n+m + bδE

n − cδE
n−1

)

− 2νkβ
n En + 2 Re(f +u+∗

n + f −u−∗
n ) − 2νlk

−4
n En,

(11)

where

δE
n = −2knIm

[(
u

s3
n+1u

+∗
n u

s4∗
n−m

) + (
u

−s3
n+1u

−∗
n u

−s4∗
n−m

)]
, (12)

and m = 1 for the first-neighbor models SM1–SM4, or m = 2
for model SM2E. The total energy flux across a shell n is given
by the balance equation

n∑
j=0

Ėj = �E
n − εout

n + εin
n − αout

n , (13)

where the nonlinear contribution is given by �E
n =∑n

j=0(δE
j+m + bδE

j − cδE
j−1), and with εout

n = 2ν
∑n

j=0 k
β

j Ej

and αout
n = 2νl

∑n
j=0 k−4

j Ej we denote the dissipative contri-
butions at small and large scales, respectively, while with εin

n =
2
∑n

j=0 Re(f +u+∗
j + f −u−∗

j ) we denote the external input
from the forcing. Using the constraint of energy conservation
c = 1 + b (see Appendix A), one finds that the nonlinear
contribution to the flux can be further simplified for models
SM1–SM4 to

�E
n = (1 + b)δE

n + δE
n+1, (14)

while for model SM2E,

�E
n = (1 + b)δE

n + δE
n+1 + δE

n+2. (15)

The fact that the energy is conserved by the nonlinear terms
implies that the nonlinear flux must vanish if calculated over
all shells, �E

N = 0. In the presence of a stationary statistics, an
average of the left-hand side of (13) must vanish too. For the
case of a direct energy cascade (αout

N ∼ 0), the global energy
balance imposes the equality of the time-averaged values
〈εout

N 〉 = 〈εin
N 〉, while for the inverse energy cascade (εout

N ∼ 0)
we must have 〈αout

N 〉 = 〈εin
N 〉. In the presence of a direct cascade

and in the inertial range of scales, i.e., for wave numbers kn

much larger than the forcing scales, kf , and much smaller than
the viscous scale, kη, we must also have εout

n = αout
n ∼ 0 and

〈εin
n 〉 = const. As a consequence, the existence of a constant

direct energy cascade implies that 〈δE
n 〉 must be asymptotically

constant (independent of n), such that also the flux will be
constant and given by〈

�E
n

〉 = f (b)
〈
δE
n

〉 = −〈
εin
n

〉 = const, (16)

where f (b) = (2 + b) for models SM1–SM4 and f (b) = (3 +
b) for model SM2E. Similarly, in the presence of an inverse
energy cascade regime, for wave numbers kn smaller than kf

we must have〈
�E

n

〉 = f (b)
〈
δE
n

〉 = 〈
αout

n

〉 = const. (17)

In our notation, a negative flux means that energy is flowing
from large to small scales and vice versa. The sign of f (b) is
known once a model is chosen, while for finding the sign of
〈δE

n 〉 we make use of the instability assumption as follows.
Given a one-triad model, considering only shells

kn−m,kn,kn+1, with zero energy injection and dissipation,
Eq. (11), after averaging and under the hypothesis of constant
flux, will take the form

〈Ėn−m〉 = 〈δE
n

〉
,

〈Ėn〉 = b
〈
δE
n

〉
,

〈Ėn+1〉 = −c
〈
δE
n

〉
. (18)

We can make several considerations based on Eq. (18). First,
the ratio between the energies flowing toward the two stable
wave numbers is simply given by the b and c coefficients
of the model. Second, exploiting the instability assumption
(Fig. 1), we can predict which wave number should have
positive or negative energy variation (the unstable will have a
negative energy derivative and vice versa); since b and c are
known (Table II), the sign of 〈δE

n 〉 can be readily calculated.
For instance, for model SM1, the mode with the smallest
wave number is unstable, providing 〈Ėn−1〉 < 0, 〈Ėn〉 > 0
and 〈Ėn+1〉 > 0; the values b = −1/2 < 0 and c = 1/2 > 0
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TABLE III. Predictions for the energy flux, based on the instabil-
ity assumption and Eqs. (13), (16), and (17). A negative energy flux
means that energy is cascading toward small scales and vice versa.
sgn[x] is the sign function.

Model sgn[〈δE
n 〉] sgn[f (b)] Energy flux prediction

SM1 − + Forward
SM2 + − Forward
SM2E + + Backward
SM3 − + Forward
SM4 + + Backward

in Eq. (18) yield 〈δE
n 〉 < 0. Similarly, for model SM3 we have

〈δE
n 〉 < 0, while for models SM2 and SM4 〈δE

n 〉 > 0. These
results do not depend on the triad shape, but only on the helical
class of the interaction, so also for model SM2E 〈δE

n 〉 > 0.
From these calculations and Eq. (16) we derive the predictions
for the direction of the energy flux given in Table III.

In this formalism, the information regarding the shape of
the triad, i.e., the degree of nonlocality, is entirely contained in
the f (b) prefactor. To have a positive energy flux in Eq. (17),
corresponding to an inverse energy cascade, the signs of the
factors 〈δE

n 〉 and f (b) must be the same. We see that the above
argument predicts that model SM4 will have a positive energy
flux and would be the first candidate for a shell model that
displays inverse energy cascade. As shown in [26], it turns
out that the fluctuations of the energy flux are so strong that
such a system shows quasiequilibrium rather than an inverse
cascade of energy. However, also switching from model SM2
to SM2E, the energy flux should reverse its sign, due to the sign
change in the factor f (b), as predicted also for the NS case.
This provides a good candidate for a model with the same
invariants as 3D Navier-Stokes equations exhibiting inverse
energy cascade.

IV. NUMERICAL SIMULATIONS

To test the predictions made in Sec. III, and especially to
see if the transition from the local shell model SM2 to the
elongated shell model SM2E actually shows a reversal in the
direction of the energy cascade, we have performed several
numerical integrations of Eqs. (5) and (6) and Eqs. (9) and (10).
The energy is injected through a stochastic Gaussian forcing,
δ-correlated in time, with zero mean and O(1) standard
deviation on two shells, both on the positive (u+

n ) and negative
(u−

n ) helicity-carrying velocities, with different amplitudes,
in order to inject helicity as well. We performed several
simulations, with energy injected at large, medium, or small
scales, and for some of these cases we used hyperviscosity
(∼k4 dissipative term) in order to have a cleaner inertial range
without increasing too much the number of shells. We wanted
to verify that this hyperviscosity does not have any important
effect on the scaling laws of the observables. Also, a large-scale
energy dissipation of the form ∼k−4 was introduced in order to
avoid large-scale energy accumulation where necessary. The
parameters used for the simulations can be found in Table IV.

The time integration has been carried out using an explicit
second-order Adams-Basforth scheme with exact integration

TABLE IV. Parameters used for the simulations. Several simula-
tions were performed with energy injected at different shell numbers
knf

. |f +
n | and |f +

n | represent the intensity (standard deviation) of the
Gaussian forcing on the positive and negative helicity-carrying shells,
respectively. Large-scale dissipation: νlk

−4
n . Small-scale dissipation:

sets I and II use a standard νk2
n viscosity, while sets III and IV use a

νk4
n hyperviscosity. For all runs, λ = 2 and k0 = 1.

N �t ν νl nf |f +
n | |f −

n |
Run I 36 5 × 10−9 1.0 × 10−12 1 4,5 1 0.5
Run II 36 1 × 10−8 1.0 × 10−12 1 4,5 1 0.5
Run III 31 5 × 10−9 2.5 × 10−28 1 14,15 1 0.5
Run IV 31 1 × 10−8 2.5 × 10−28 1 22,23 1 0.5

of the viscous terms:

un(t + �t) = un(t)e−γn�t + �t

[
3

2
e−γn�tNLTn(t)

− 1

2
e−2γn�tNLTn(t − �t)

]
, (19)

where γn and NLTn are, respectively, the viscous and the
nonlinear terms on the right-hand side of Eqs. (5) and (6)
or Eqs. (9) and (10). The stochastic forcing is integrated
separately with a forward Euler scheme.

The equations were evolved for several hundreds of
large-scale eddy turnover times, Te, and time averages were
first calculated on runs lasting T ∼ 10Te and then averaged
again over all the stationary runs. Stationarity is checked by
monitoring the total energy evolution. Figures 2 and 3 show
the energy spectra for the local SM2 and elongated SM2E
models, for both large-scale and small-scale energy injection
cases. Figure 4 shows the corresponding energy flux for the
case when the forcing mechanism is acting at an intermediate
scale, such as to resolve simultaneously the forward and
backward transfers. We briefly remind the reader that in terms
of shell-model variables, a forward/backward energy cascade
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FIG. 2. Energy spectra En for the two variants of model 2, forced
at large scales (gray-shaded region). Curves are shifted vertically for
clarity. Parameters used for this simulation are in Table IV (runs I and
II).
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FIG. 3. Energy spectra En for the two variants of model 2, forced
at small scales (gray-shaded region). Curves are shifted vertically for
clarity. Parameters used for this simulation are in Table IV (run IV).

gives the scaling En ∼ |ε|2/3k−2/3, while a dynamics close to
energy equipartition should give En ∼ const.

From Figs. 2 and 4 we clearly see that model SM2 has a
forward energy transfer and no backward transfer. On the other
hand, Figs. 3 and 4 show that model SM2E has the opposite
behavior: a clear backward energy transfer and zero forward
flux. Let us further notice that in the regime where the energy
flux is absent, both models do not develop a solution close
to energy equipartition. Indeed, in these ranges the dynamics
can be dominated by a homogeneous solution of the energy
balance equation (11) in the stationary regime. In fact, by
substituting the definitions (14) or (15) inside the stationary
balance equation for the flux, 〈�E

n 〉 = ε, where the sign of
ε depends on whether we have a forward or a backward
cascade, we obtain the following for the two models SM2 and
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FIG. 4. Energy flux 〈�E
n 〉 for the two variants of model 2, forced at

medium scales (gray-shaded region). We recall that, with our notation,
a positive energy flux corresponds to an inverse cascade of energy,
and vice versa. Parameters used for this simulation are in Table IV
(run III).

SM2E:

(1 + b)
〈
δE
n

〉 + 〈
δE
n+1

〉 = ε (SM2), (20)

(1 + b)
〈
δE
n

〉 + 〈
δE
n+1

〉 + 〈
δE
n+2

〉 = ε (SM2E). (21)

The solution of these difference equations is generally
a sum of the solution of the corresponding homogeneous
equation (zero-flux solution, or zero mode) and a particular
solution, for instance 〈δE

n 〉 = const, that represents the constant
flux solution [33]. If the homogeneous solution has a steeper
scaling than the constant-flux solutions, it is subdominant in
the dynamics. On the other hand, when the constant energy
flux solution is absent, the homogeneous zero mode may
become dominant. This explains the slope of the energy
spectrum for the SM2 model in the range k < kf , where a
direct calculation shows that the dynamics is dominated by a
zero-mode solution of (20), 〈δE

n+1〉/〈δE
n 〉 = −(1 + b) = λ0.585,

leading to the scaling law |un|2 ∼ (〈δE
n 〉/kn)2/3 ∼ k0.277

n ; see
Fig. 3. The same may also happen with the SM2E model in the
range k > kf , where the scaling imposed by the zero mode,
|un|2 ∼ k−0.92

n , is very close to that observed in Fig. 2.
For completeness, we must say that there are situations in

which the scaling dictated by the zero mode of the energy flux
is the same as the scaling given by the constant helicity flux
solution. Also, the zero mode of the helicity flux may dictate
the same scaling as that given by the constant energy flux
solution. This happens for models SM1 and SM4.

Another interesting question is about intermittency. It is
generally believed that inverse cascades do not show any
anomalous scaling, i.e., they are not intermittent, while forward
cascades do. One way of quantifying intermittency is by
looking at the flatness, the ratio between the fourth-order
moment and the squared second-order moment, as a function
of the reference scale. Figure 5 shows the flatness of the total
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FIG. 5. Flatness Fn for models SM1, SM2, and SM2E, forced at
medium scales (gray-shaded region). Model SM1 is intermittent in
the n > nf range. Models SM2 and SM2E show a very weak level of
intermittency for n > nf . Parameters used for this simulation are in
Table IV (run III).
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shell energy defined as

Fn = S4(kn)

[S2(kn)]2
(22)

for models SM1, SM2, and SM2E, where the structure
functions Sq(kn) are defined in terms of the energy flux (14)
and (15):

Sq(kn) = 〈(
k−1
n

∣∣�E
n

∣∣) q

3
〉
. (23)

The larger the values of the flatness, the more non-Gaussian
is the PDF. As one can see, model SM1 develops a clear
anomalous scaling in the forward regime (for kn > kf ) and no
intermittency for k < kf , where it is known to be dominated by
equilibrium statistics (no backward energy transfer). Note that
model SM1 can be shown to be equivalent to the original
SABRA model, which is known to have an intermittent
dynamics in the n > nf range. Models SM2 and SM2E
have very little visible deviations in the forward regimes
and no intermittency at all in the backward regime, in
agreement with the observation that inverse cascades do not
develop anomalous scaling [34,35]. These results are generally
interpreted in term of the hierarchy of time scales in the
system: a forward energy cascade with spectrum En ∼ k

−2/3
n

implies that the typical eddy turnover time at shell n goes like
τn ∼ 1/(knun) ∼ k

−2/3
n , i.e., energy is transferred to faster and

faster modes, preventing small scales to equilibrate around
the mean properties of the large ones. On the other hand,
an inverse energy cascade with the same slope is dominated
by exactly the opposite dynamics, i.e., fast scales transfer
fluctuations to slower ones allowing for self-averaging. It is not
clear if this phenomenology is at the root also of shell-models
dynamics, where energy is known to be transferred also via
quasi-instantonic solutions traveling coherently among a huge
set of shell variables [36–40]. This argument is the aim of a
work in progress, and it will be reported elsewhere.

Finally, for models having helical interaction SM2, in order
to check that the reversal in the energy flux is robust when the
ratio of the smallest to the middle wave number is v < 0.278
[29], we simulated numerically another model, with first-
neighbor and third-neighbor interactions (kn−3,kn,kn+1) (see
Appendix A). For this model, v = 0.125, and the results for
the energy spectrum, the energy fluxes, and the intermittency
are qualitatively the same as for the model SM2E (not shown).

V. CONCLUSIONS

We have generalized a previously proposed class of helical
shell models to include also nonlocal triadic interactions
among Fourier modes. Using arguments similar to those
developed for the Navier-Stokes equations [29], we have
shown that a suitable subset of helical triadic interactions
may change the energy transfer direction depending on the
relative geometry of the three interacting modes, leading to
direct or inverse cascades. We also show that the inverse
cascade is not intermittent and that the scaling properties in
the range of shells where the energy does not flow might
be dominated by a zero-mode solution of the energy balance
equations. This work paves the way to studying the coupling
between different models with different helical interactions

and triad shapes in order to understand and mimic those
transitions from direct to inverse cascades observed in real
flows upon changing the degree of rotation, aspect ratio, or
large scale shear [41,42]. Coupling models with different
transfer properties makes it more challenging to disentangle
the effects of the dynamics coming from each single model.
Schemes such as mode-to-mode energy transfer [43,44] can be
efficiently combined with our formalism to address this issue.
Another interesting direction for future work is to understand
the influence of high helicity content on the dynamics of direct
and inverse triadic interactions, or, in general, the dynamics of
the helicity in the inverse cascade model, as was done in [32]
for the direct cascade model SM3.
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APPENDIX A: EQUATIONS AND COEFFICIENTS FOR A
HELICAL SABRA SHELL MODEL WITH GENERIC

WAVE-NUMBER TRIADS

In this Appendix, we present the equations for a SABRA
shell model with a generic triad shape. For the sake of
simplicity, we omit the forcing and the dissipative terms. The
equations are

d

dt
u+

n = i
(
akn+mu

s1
n+m+lu

s2∗
n+m + bknu

s3
n+lu

s4∗
n−m

+ ckn−lu
s5
n−lu

s6
n−m−l

)
,

(A1)
d

dt
u−

n = i
(
akn+mu

−s1
n+m+lu

−s2∗
n+m + bknu

−s3
n+lu

−s4∗
n−m

+ ckn−lu
−s5
n−lu

−s6
n−m−l

)
.

Here a,b,c are real coefficients, the helical indices si = ±
are reported in Table I, and the triad shape (kn−m,kn,kn+l) is
described by the pair of indices m and l. The coefficient a can
always be set equal to 1 just by rescaling the other coefficients
and time. The coefficients b and c are fixed by imposing the
conservation of the quadratic inviscid invariants as follows.

It can be shown that Eq. (A1) admit only four quadratic
inviscid invariants. Only two out of the four can be simul-
taneously conserved, due to the fact that there are only two
free parameters (b and c). The four possible invariants are as
follows:

(i) W I ≡ ∑
n kαI

n (|u+|2 + |u−|2), which for αI = 0 corre-
sponds to the total energy.

(ii) W II ≡ ∑
n kαII

n (|u+|2 − |u−|2), which is not sign-
definite and for αII = 1 corresponds to the total helicity.

(iii) W III ≡ ∑
n(−1)nkαIII

n (|u+|2 + |u−|2).
(iv) W IV ≡ ∑

n(−1)nkαIV
n (|u+|2 − |u−|2).

Only W I and W II have the same physical meaning as the
invariants of the NS equations, while for W III and W IV there
is no such analogy.
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TABLE V. General expression for the coefficients of Eq. (A1)
conserving generic invariants W I and W II. Without loss of generality,
a = 1. For models that conserve energy and helicity, one should set
αI = 0 and αII = 1.

Model b c

1 λαI (m+l)[1−λ(m+l)(αII−αI)]
λm(αI+αII )(λlαII +λlαI )

− λmαI [−1−λm(αII−αI)]
λm(αI+αII)(λlαII +λlαI )

2 λαI (m+l)[−1−λ(m+l)(αII−αI)]
λm(αI+αII )(λlαII −λlαI )

λmαI [−1−λm(αII−αI)]
λm(αI+αII )(λlαII −λlαI )

3 λαI (m+l)[−1−λ(m+l)(αII−αI)]
λm(αI+αII )(λlαII +λlαI )

λmαI [−1+λm(αII−αI)]
λm(αI+αII )(λlαII +λlαI )

4 λαI (m+l)[−1+λ(m+l)(αII−αI)]
λm(αI+αII )(−λlαII +λlαI )

λmαI [−1+λm(αII−αI)]
λm(αI+αII )(−λlαII +λlαI )

The triad-by-triad conservation of a W I-type invariant
implies

0 = d

dt

∑
n

kα
n (|u+

n |2 + |u−
n |2)

=
∑

n

kα
n (u̇+

n u+∗
n + u̇−

n u−∗
n + c.c.), (A2)

where all the terms on the right-hand side must formally cancel
for each triad after substituting Eq. (A1). For all four classes
of helical interaction, the resulting conservation equation is

a + λαImb − λαI(m+l)c = 0. (A3)

The conservation of a W II-type invariant yields, respec-
tively,

a − λαIImb − λαII(m+l)c = 0 (SM1), (A4)

a − λαIImb + λαII(m+l)c = 0 (SM2), (A5)

a + λαIImb + λαII(m+l)c = 0 (SM3), (A6)

a + λαIImb − λαII(m+l)c = 0 (SM4). (A7)

As mentioned before, we can always choose a = 1. Solving
Eqs. (A3) and (A4)–(A7) for each model, we get the generic
expressions for the b and c coefficients, which are reported in
Table V.

APPENDIX B: INSTABILITY ASSUMPTION

For completeness, we repeat here the calculations done in
[28] for the linear stability analysis of a triad of interacting

wave numbers. Let us consider a system made of three con-
secutive wave numbers k1, k2 = λk1, and k3 = λ2k1 (λ > 1),
and, for instance, model SM1. The equations of motion (5)
and (6) for such a system reduce to

u̇+
1 = ik2au+

3 u−∗
2 ,

u̇−
2 = ik2bu+

3 u+∗
1 ,

u̇+
3 = ik2cu

−
2 u+

1 . (B1)

This system has three equilibrium states, of the
form (u+

1 ,u−
2 ,u+

3 ) ∈ {(A,0,0); (0,A,0); (0,0,A)}, where A ∈
C. Linearization of the system around a generic state (us

n →
us

n + �s
n, with �s

n 	 1) gives

�̇+
1 = ik2a(�−∗

2 u+
3 + �+

3 u−∗
2 ),

�̇−
2 = ik2b(�+∗

1 u+
3 + �+

3 u+∗
1 ),

�̇+
3 = ik2c(�+

1 u−
2 + �−

2 u+
1 ). (B2)

The eigenvalues relative to the first state (A,0,0) are

λ1 = 0 , λ2,3 = ±k2|A|√−bc = ±k2|A|/2, (B3)

where we substituted −bc = 1/4 (see Table II), hence the
equilibrium state is unstable because one of the perturbations
grows exponentially in time as �i ∼ exp(k2|A|t/2).

Similarly, the eigenvalues relative to the second state
(0,A,0) are

λ1 = 0 , λ2,3 = ±k2|A|√−ac = ±ik2|A|/
√

2, (B4)

so all the perturbations �i are bounded in time. The same can
be said for the third state (0,0,A), for which the eigenvalues
are

λ1 = 0 , λ2,3 = ±k2|A|
√

ab = ±ik2|A|/
√

2. (B5)

According to the terminology of [29], a wave-number k1

represented by the unstable equilibrium state (A,0,0), where
the energy is flowing toward the other modes k2 and k3, is
called unstable. Similarly, wave numbers k2 and k3 are stable
with respect to small perturbations, as suggested by (B4) and
(B5). So we see that for model SM1, the unstable wave number
is the smallest one. Furthermore, the stability depends only on
the sign of the coefficients a,b,c, which again depends only
on the type of helical interaction chosen, while the triad shape
does not play any role. In fact, repeating the same calculations
with a different triad shape gives exactly the same stability
results.

Analogous equations can be written for the other models,
and it is found that for model SM3 the unstable wave number
is the smallest one, while for models SM2, SM2E, and SM4
the unstable wave number is the middle one, as summarized
in Fig. 1.
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