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Kinetic undercooling in Hele-Shaw flows
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A central topic in Hele-Shaw flow research is the inclusion of physical effects on the interface between fluids.
In this context, the addition of surface tension restrains the emergence of high interfacial curvatures, while
consideration of kinetic undercooling effects inhibits the occurrence of high interfacial velocities. By connecting
kinetic undercooling to the action of the dynamic contact angle, we show in a quantitative manner that the kinetic
undercooling contribution varies as a linear function of the normal velocity at the interface. A perturbative weakly
nonlinear analysis is employed to extract valuable information about the influence of kinetic undercooling on
the shape of the emerging fingered structures. Under radial Hele-Shaw flow, it is found that kinetic undercooling
delays, but does not suppress, the development of finger tip-broadening and finger tip-splitting phenomena. In
addition, our results indicate that kinetic undercooling plays a key role in determining the appearance of tip
splitting in rectangular Hele-Shaw geometry.

DOI: 10.1103/PhysRevE.92.043019 PACS number(s): 47.15.gp, 47.20.Ma, 47.54.−r, 68.70.+w

I. INTRODUCTION

The Saffman-Taylor instability [1] is one of the most
studied problems among fluid dynamic systems presenting
the formation and evolution of patterned structures [2]. This
instability arises when a fluid displaces another of higher
viscosity in the narrow gap separating two flat, parallel glass
plates of a Hele-Shaw cell. The lower viscosity fluid penetrates
the more viscous one, leading to the development of an
interfacial pattern resembling a set of fingerlike structures.
This characterizes a phenomenon commonly known as viscous
fingering that is governed by a dynamic competition process
between surface tension and viscous forces or pressure
gradients.

For longitudinal flow in a rectangular channel (rectangular
Hele-Shaw cell) [3–8], typically the system evolves until a
single stable finger is formed. On the other hand, for radial
fluid injection (radial Hele-Shaw cell) [9–14], the fingers tend
to split at their tips and evolve into a complex branched
morphology. In contrast to the radial flow case, displacements
in rectangular geometry normally display no tip-splitting
events. Nevertheless, numerical simulations [3,15,16] and
experiments [6,17,18] for rectangular geometry flow indicate
that fingers may undergo a tip-splitting instability, but in the
late stages of interface evolution and if the speed of flow is
sufficiently high. In this setting, one can say that finger tip
splitting is a basic mechanism of the viscous fingering process.

The dynamic evolution of the Saffman-Taylor problem
is governed by the Hele-Shaw flow equations, described by
a quasi-two-dimensional, gap-averaged Darcy’s law (essen-
tially, fluid velocity proportional to the negative of the pressure
gradient) and fluid incompressibility (divergenceless velocity
field). These fundamental equations are supplemented by two
boundary conditions at the fluid-fluid interface [1–5,9,14]:
a pressure jump, as given by a Young-Laplace equation,
and the continuity (kinematic) condition for the normal
component of the fluid velocity. The pressure jump equation
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is particularly important since it considers the competition
between destabilizing and stabilizing effects acting at the
two-fluid interface. Stabilizing (or regularizing) effects can be
incorporated into the Hele-Shaw moving boundary problem
by adding extra terms into the Young-Laplace boundary
condition. For instance, the inclusion of a term involving
the product of surface tension σ by the interfacial curvature
κ penalizes large curvatures and prevents the formation of
unphysical cusp singularities on the interface [15,19–21].

An alternative regularizing strategy considers the addition
of a different extra term into the Young-Laplace condition,
which disfavors the emergence of large normal velocities at
the interface. This regularization procedure is known as kinetic
undercooling and involves the product cvn, where c is the
kinetic undercooling parameter and vn is the normal velocity at
the interface. It is worth noting that such a kinetic undercooling
regularizing approach has been largely used in the study
of melting and freezing, Stefan-type problems [22–25], and
in particular for investigations of interfacial instabilities and
pattern formation of growing dendrites [23,26,27]. It has
also been utilized in the research of finger-shaped electrical
discharges, known as streamers [28,29].

Interestingly, the study of the Saffman-Taylor problem with
kinetic undercooling has been considerably unappreciated
compared to those equivalent studies that take into account the
stabilizing or regularizing role of surface tension [2,15,19–21].
In the framework of Hele-Shaw flows, a kinetic undercooling-
type condition was considered some time ago by Romero
[30], who carried out a theoretical study that incorporated,
in an ad hoc manner, a contribution linearly proportional
to vn into the Young-Laplace pressure boundary condition.
In Ref. [30], it was assumed that this kinetic undercooling
term was connected to the interfacial curvature along the
transverse direction to Hele-Shaw cell plates. Unfortunately,
no quantitative justification for this particular assumption was
given in [30]. Then, in the early 1990s, Weinstein et al.
[31] addressed this issue and incorporated a dynamic contact
angle model for viscous fingering in a rectangular Hele-Shaw
cell. However, as pointed out in Ref. [32], the asymptotic
analysis implemented by Weinstein et al. relies on a steady
state assumption, so that it is not directly applicable to the
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more general radial Hele-Shaw flow problem, in which the
two-fluid interface varies with time.

Despite the ad hoc nature of the kinetic undercooling contri-
bution proposed in Ref. [30] and the still incomplete approach
proposed in Ref. [31], very recently Dallaston and co-workers
revisited the problem and analyzed the effects of surface
tension and kinetic undercooling in both rectangular and radial
Hele-Shaw cell setups [33–36]. A number of interesting results
were found. For example, their analytical linear stability study
of the radial flow geometry [33] showed that in contrast to
the injection situation (expansion of a less viscous bubble)
where surface tension and kinetic undercooling are both
stabilizing, under suction (contraction of a less viscous bubble)
these two effects act in opposition (i.e., surface tension sta-
bilizes the boundary, while kinetic undercooling destabilizes
it).

In Ref. [34], Dallaston and McCue performed numerical
simulations for bubble expansion and contraction during the
advanced time regime. It was found that kinetic undercooling
tends to delay the formation of fingers during expansion, while
it favors the occurrence of bubble pinch-off during contraction.
Stability analysis, i.e., numerical and exact solution techniques
for the radial and rectangular geometries, were employed in
Ref. [35], where it was verified that fingers form for lower
kinetic undercooling, and that corners arise for sufficiently
high kinetic undercooling values. Finally, in Ref. [36], these
investigators focused on the study of finger formation and
finger selection in rectangular flow circumstances, where it
was demonstrated that kinetic undercooling acts against the
establishment of high velocities and prevents blow-up of
unregularized solutions.

Two main reasons motivated us to pursue the research
presented in this work: first is the ad hoc assumption [30]
that for Hele-Shaw flows, the kinetic undercooling term takes
the specific functional form cvn (a linear function of the
normal interface velocity). Notice that in Refs. [30,33–36],
not much has been said about the physical nature of the
undercooling parameter c and its relation to other important
physical quantities of the problem. These issues still need to be
examined. The second motivation comes from the suggestive
results obtained in Refs. [33–36] which used linear stability
analysis and numerical simulations to study the role played by
kinetic undercooling during early and advanced time regimes,
respectively. So, an investigation about the intermediate stage
of the system’s pattern-forming dynamics that bridges early
linear and fully nonlinear regimes is still lacking.

In this work, first we show that the assumed connection
between the dynamic contact angle and the normal interface
velocity can be derived in a quantitative fashion with the
help of the so-called Hoffman-Voinov-Tanner law [37–42].
Then, we focus our attention on the intermediate dynamic
regime, in which nonlinear effects start to play a role in
determining the most relevant morphological features of the
fluid-fluid interface. We do this by employing a weakly
nonlinear analysis of the problem [7,14] and examine the
influence of the kinetic undercooling term on the shape of
the emerging fingering patterns, mainly on its impact on finger
tip-broadening and finger tip-splitting events. In this framing,
our weakly nonlinear approach allows one to gain valuable
analytical insights into the effects of the dynamic contact angle

on the development of the Saffman-Taylor instability in both
radial and rectangular Hele-Shaw geometries.

II. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

In this section, we describe the injection-driven Saffman-
Taylor problem in a radial Hele-Shaw cell and introduce
the related governing equations. In Sec. II A, we provide a
quantitative derivation of the Young-Laplace pressure jump
boundary condition which considers the inclusion of dynamic
contact angle effects. This consideration plus the use of the
Hoffman-Voinov-Tanner law leads to a kinetic undercooling
contribution that is indeed a linear function of the normal
velocity on the interface [Eqs. (9) and (10)].

Section II B is devoted to the derivation of a second-
order mode-coupling differential equation that allows one to
describe the time evolution of the interfacial perturbation am-
plitudes [Eqs. (11)–(15)]. This nonlinear differential equation
permits the analytical investigation of the impact of kinetic
undercooling on the dynamical evolution and on the main
morphological features of the viscous fingering patterns. The
influence of kinetic undercooling on the fingering instability in
the radial (rectangular) Hele-Shaw cell setup will be discussed
in Sec. III A (Sec. III B).

A. Physical origin of kinetic undercooling in Hele-Shaw flows

We start by describing the physical system of interest.
Consider a Hele-Shaw cell of gap spacing b, in which a
fluid of viscosity η2 is displaced by the radial injection of
a less viscous fluid of viscosity η1. The fluids are immiscible
and incompressible, and fluid 1 is injected at the center of
the cell at a constant injection rate Q (equal to area covered
per unit time). Between the two fluids, there exists a surface
tension σ . We focus on the most unstable Saffman-Taylor
situation in which η2 � η1, so that the viscosity contrast
A = (η2 − η1)/(η1 + η2) ≈ 1.

The governing equations of the effectively two-dimensional
radial Hele-Shaw cell problem are the gap-averaged Darcy’s
law [1,2,9],

vj = − b2

12ηj

∇pj , (1)

and the gap-averaged incompressibility condition,

∇.vj = 0, (2)

where vj = vj (r,ϕ) and pj = pj (r,ϕ) are the velocity and
pressure of fluid j , respectively, with j = 1,2. The radial
coordinate r denotes the distance to the injection source point,
which is chosen as the origin of the polar coordinate system.
In addition, the polar angle is denoted by ϕ.

The irrotational nature of the flow (∇ × vj = 0) allows one
to define a velocity potential that obeys the Laplace equation
∇2φj = 0. In order to describe the dynamics of the evolving
interface, we have to relate the velocity potential φj (r,ϕ) to
the position of the interface R(ϕ,t). This can be accomplished
by using the kinematic boundary condition,

∂R
∂t

=
(

1

r2

∂R
∂ϕ

∂φj

∂ϕ

)
r=R

−
(

∂φj

∂r

)
r=R

, (3)
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which states that the normal components of each fluid velocity
are continuous at the interface.

The problem is then entirely specified by the pressure
boundary condition that is expressed by the celebrated Young-
Laplace condition [1–14]. This relation considers a pressure
jump at the interface �p = (p1 − p2)|R, given by

�p = σκ − 2σ

b
cos θs. (4)

The first term on the right-hand side represents the contribution
of the surface tension coming from the interfacial curvature on
the plane of the Hele-Shaw cell. On the other hand, the second
term on the right-hand side of (4) refers to the effect of the
curvature associated with the interface profile in the direction
perpendicular to the Hele-Shaw cell plates. Here, θs is the static
contact angle measured between the plates and the curved
meniscus [assumed to be circular with radius b/(2 cos θs)].

In fact, Eq. (4) represents the simplest and most traditional
way [1–14] to model the pressure jump in the development of
the Saffman-Taylor instability. However, most previous studies
largely neglect the important hydrodynamic effects related to
the moving contact line. The moving contact line consists of
the contact region of the two fluids with the glass plate (i.e.,
a three-phase line moving in relation to a solid substrate).
This phenomenon yields to a local dynamic contact angle θd

that depends on the local velocity U at which the contact line
moves over the solid plates. In this paper, we are interested to
go one step further and study the impact of θd on the viscous
fingering instability. So, we use Eq. (4) as a starting point and
from it try to add, also in a simple way, the effects related to
the dynamic contact angle.

We begin by considering a velocity dependent expression
for θd that is quantified by the classical Hoffman-Voinov-
Tanner law [37–43],

θ3
d = θ3

s + 
Ca, (5)

where Ca = η2U/σ is the capillary number that measures the
ratio between viscous and surface tension forces, and θd <

3π/4. In addition, 
 = 9ln(Y/Y∞), where Y is a macroscopic
scale related to the gap thickness b, and Y∞ represents a micro-
scopic cutoff length scale where macroscopic hydrodynamic
models break down [43]. As evaluated in Refs. [37,41,43], by
setting Y ≈ b, one gets 
 ≈ 80 − 100. As discussed in detail
in Refs. [37–43], it should be pointed out that Eq. (5) holds
if the following simplifying assumptions are applied: (i) the
capillary number is small (Ca � 0.1); (ii) inertial effects can be
neglected; and (iii) the surfaces are perfect (no heterogeneity),
so that there is no contact angle hysteresis. All of these
conditions hold for our current Hele-Shaw cell problem.

By assuming small capillary numbers in (5) and considering
the leading kinetic correction from the dynamic contact angle,
we obtain

θd = θs

(
1 + 
Ca

3θ3
s

)
. (6)

The influence of the dynamic contact angle on the pressure
discontinuity can be accessed by replacing θs in Eq. (4) with θd

as defined by Eq. (6). Making this substitution and expanding
cos[θs + 
Ca/(3θ2

s )] in the Young-Laplace expression (4)

results in

�p = σκ − 2σ

b

[
cos θs cos

(

Ca

3θ2
s

)
− sin θs sin

(

Ca

3θ2
s

)]
,

(7)

where by assuming that Ca � 1, we get

�p ≈ σκ − 2σ

b

[
cos θs − sin θs

(

Ca

3θ2
s

)]
. (8)

By inspecting Eq. (8), one readily notices that the contribution
of the dynamic contact angle naturally implies a linear
dependence on the interface velocity, when the small capillary
number limit is considered. It is worth noting that this result
is in line with that obtained in Ref. [44] for immiscible fluid
displacements in capillary tubes.

To complete the description of the governing equations
for the radial Hele-Shaw flow when dynamic contact angle
effects are taken into account, we consider the speed of moving
contact line U as given by the normal velocity of the interface
vn, and conveniently rewrite Eq. (8) as

�p = σκ − 2σ

b
cos θs + cvn, (9)

where

c = 2
η2 sin θs

3bθ2
s

. (10)

Equation (9) is one of the central results of our current work. It
clearly indicates the physical connection between the kinetic
undercooling effect (quantified by the term cvn) and the action
of the dynamic contact angle. Recall that as emphatically
pointed out in Sec. I, such a connection has been incorporated
in an ad hoc manner in most previous works on this topic. In
addition, from Eq. (10), one can readily see that the kinetic
undercooling parameter c is now explicitly written in terms
of the static contact angle θs , viscosity of the displaced fluid
η2, gap thickness b, and microscopic length scales of the flow
incorporated in 
.

Before we advance, it should be noted that the influence
of the dynamic contact angle on viscous fingering patterns
has also been analyzed in Ref. [43]. However, this has been
done in a different context. In [43], the instability dynamics
takes place in a rotating Hele-Shaw cell, where a completely
wetting fluid is assumed to be confined between the glass
plate. As discussed in [43], under such circumstances, the
static contact angle could be safely neglected (θs ≈ 0), and
consequently the action of the dynamic contact angle on the
pressure jump condition was given by a term proportional
to Ca2/3. Therefore, in this case, the linear dependence of the
pressure jump condition on the normal velocity of the interface
as expressed by Eq. (9) is not verified.

B. Mode-coupling differential equation including
kinetic undercooling

At this point, we have all of the ingredients to obtain
the second-order, mode-coupling differential equation for the
fluid interface evolution when kinetic undercooling effects
are taken into consideration. Within our perturbative ap-
proach, we can represent the expanding two-fluid interface as
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R(ϕ,t) = R(t) + ζ (ϕ,t), where R(t) = (R2
0 + Qt/π)1/2 is the

time-dependent unperturbed radius, with R0 being the unper-
turbed radius at t = 0. Here, ζ (ϕ,t) = ∑+∞

n=−∞ ζn(t) exp (inϕ)
is the net interface perturbation with Fourier amplitudes ζn(t)
and integer wave numbers n. Our current weakly nonlinear
analysis keeps terms up to the second order in ζ and uses mass
conservation to connect the zeroth mode amplitude to the other
modes as ζ0 = −(1/2R)

∑
n�=0 |ζn(t)|2.

Following standard steps performed in weakly nonlinear
studies of Hele-Shaw flows [7,14], we evaluate the velocity
potential at the fluid interface and use the kinematic boundary
condition (3) to express φ in terms of ζn. By substituting the
result of this calculation and the pressure boundary condition
(9) into Darcy’s law (1), always keeping terms up to second
order in ζ , and then Fourier transforming, we obtain the
equation of motion for the perturbation amplitudes (for n �= 0),

ζ̇n = λ(n)ζn +
∑
n′ �=0

[F (n,n′)ζn′ζn−n′ + G(n,n′)ζ̇n′ζn−n′ ], (11)

where the overdot denotes the total time derivative,

λ(n) = 1

1 + �(n)

{
Q(|n| − 1)

2πR(t)2
− α|n|(n2 − 1)

R(t)3

}
(12)

is the linear growth rate, α = b2σ/(12η2), and the function

�(n) = cb2|n|
12η2R(t)

(13)

accounts for the action of the kinetic undercooling effect.
The second-order mode-coupling terms are given by

F (n,n′) = 1

1 + �(n)

{
Q|n|

2πR(t)3

[
1

2
− sgn(nn′)

]

− α|n|
R(t)4

[
1 − n′

2
(3n′ + n)

]

−�(n)
Q

4πR(t)3
n′(n − n′)

}
(14)

and

G(n,n′) = 1

1 + �(n)

{
1

R(t)
[|n|[1 − sgn(nn′)] − 1]

}
, (15)

where the sgn function equals ±1 according to the sign of its
argument.

Equations (11)–(15) constitute another central result of this
work. Equation (11) is the mode-coupling equation of the
Saffman-Taylor problem in radial Hele-Shaw cell geometry,
when kinetic undercooling effects are properly accounted
for. Note that by setting c = 0 in Eq. (13), one recovers
the usual expressions for λ, F , and G obtained for radial
Hele-Shaw flows without kinetic undercooling [14]. It is
also worth noticing that the linear dispersion relation (12)
coincides with the equivalent expression obtained from the
purely linear analysis of the expanding bubble problem with
kinetic undercooling, previously performed by Dallaston and
McCue [33,34]. The most relevant piece of information that
can be extracted from the purely linear calculation is the
stability behavior of the initially circular fluid interface against
small perturbations.

Since the linear aspects of the problem have already
been thoroughly discussed in Refs. [33,34], in this work we
concentrate our attention on the mode-coupling, nonlinear
contributions expressed by the functions F (n,n′) and G(n,n′)
in Eq. (11). An important feature of our second-order per-
turbative approach is the fact that through the coupling of
the appropriate Fourier modes, one is able to extract key
analytical information about the morphology of the interface
(shape of the fingering structures) at the onset of nonlinearities
[7,14]. We are particularly interested in understanding how
kinetic undercooling influences the mechanisms of finger tip
broadening and finger tip splitting under radial and rectangular
Hele-Shaw flow circumstances. This legitimate nonlinear issue
will be discussed in Sec. III.

III. DISCUSSION

The weakly nonlinear, mode-coupling analysis based on
Eq. (11) is quite effective in providing very useful clues
about the typical shapes of the emerging fingering structures
in Hele-Shaw cell problems, both in rectangular [7] and
radial [14] flow geometries. In this section, we examine how
kinetic undercooling impacts the morphology of the fingered
patterns. Considering the importance of the finger tip-splitting
phenomena for Hele-Shaw flows, one interesting point to be
investigated is to find out if the fingers would tend to be
more wide or narrow when kinetic undercooling takes action.
Fortunately, it has been shown in Refs. [7,14] that to do this,
one does not need to consider the complicated coupling of
an infinite (or a large) number of Fourier modes, but just has
to examine the interaction of two specific modes: namely,
a fundamental mode and its associated first harmonic. In
this way, the basic morphological mechanisms of finger tip
broadening, finger tip splitting, or finger tip narrowing could
already be efficiently captured at the lowest nonlinear order,
and by considering the interplay between just two Fourier
modes. This useful approach will be used in Secs. III A
and III B below. It should be stressed that the effectiveness
of this particular weakly nonlinear strategy has been amply
substantiated by a number of analytical, numerical, and
experimental studies in the Hele-Shaw flow literature (see,
for instance, Refs. [45–53]).

We point out that the theoretical results presented through-
out this work are obtained by utilizing parameter values that are
consistent with those used in typical experimental realizations
of rectangular [1,4,6,8] and radial [9–13] flows in Hele-Shaw
cells, as well as with dynamic contact angles studies [37–43].

A. Kinetic undercooling effects: Radial geometry

To examine the shape of the uprising fluid fingering
structures at the weakly nonlinear regime under the presence of
kinetic undercooling effects in radial geometry, we follow Ref.
[14]. We begin our analysis by rewriting Eq. (11) in terms of co-
sine and sine modes, where the cosine an = ζn + ζ−n and sine
bn = i(ζn − ζ−n) amplitudes are real valued. As in [14], we
choose the phase of the fundamental mode so that an > 0 and
bn = 0. As pointed out earlier, within the scope of our mode-
coupling description, finger tip broadening and finger tip nar-
rowing can be described by considering the influence of a fun-
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FIG. 1. (Color online) Snapshots of the evolving interface shown at equal time intervals for the interaction of two cosine modes (an and
a2n, with n = 5) for increasingly larger values of the kinetic undercooling parameter c. All of these patterns evolve until the same final time,
tf = 3.2 s, with 0 � t � tf . The region colored in gray represents the more viscous fluid 2.

damental mode n on the growth of its first harmonic 2n. Writ-
ing the equations of motion for the harmonic mode, we have

ȧ2n = λ(2n)a2n + 1
2T (2n,n)a2

n, (16)

ḃ2n = λ(2n)b2n, (17)

where the finger tip function is defined as

T (2n,n) = F (2n,n) + λ(n)G(2n,n). (18)

Since the growth of the sine mode b2n is uninfluenced by an

and does not present second-order couplings [Eq. (17)], we
focus on the growth of the cosine mode a2n which is given by
Eq. (16).

Even without explicitly solving Eq. (16), just by inspection
one can assess valuable information about possible shapes
assumed by the emergent interfacial fingers. It is known that
the function T (2n,n) dictates the finger tip behavior [14]. From
Eq. (16), notice that depending on the sign of T (2n,n), the
term of order a2

n can drive the growth of a2n either positively
or negatively. If T (2n,n) < 0, a2

n is driven negatively, making
the outward pointing fingers of the inner fluid 1 tend to be wide
and flat at their tips. This favors the development of finger tip-
splitting events. Reversing the sign of T (2n,n) exactly reverses
the above conclusions. If the finger tip function is positive, then
a2

n is driven positively, a phase that results in narrow outward
pointing fingers of fluid 1.

To begin extracting the most relevant morphological fea-
tures of the emerging fingering patterns by using the weakly
nonlinear approach, in Fig. 1 we plot the interface evolution
for increasing values of the kinetic undercooling parameter
c. All patterns evolve up until the same final time tf = 3.2
s, and we consider the interplay of the fundamental mode
n = 5 with its first harmonic 2n = 10. In this plot, we
consider that Q = 3π cm2/s, η1 = 0, 0.5 � η2 � 7 g/(cm s),
b = 0.15 cm, 10 � σ � 60 dyne/cm, and R0 = 1 cm. The
initial amplitudes are an(0) = R0/100 and a2n(0) = 0. It is
important to point out that although in this work we have
chosen to use moderate values of the kinetic undercooling
parameter [0 � c � 400 g/(cm2 s)], in principle it can assume
larger values. By utilizing the various possible combinations
of experimental data given in Refs. [1,4,6,8–13,37–43], we
estimate that c can reach values of the order 103 g/(cm2 s).

From the inspection of Fig. 1, it is clear the kinetic
undercooling disfavors finger formation in general and, in
particular, restrains the occurrence of finger tip splitting. While
in Fig. 1(a) we have sizable fingers that evidently show finger
tip splitting, as c is increased in Figs. 1(b)–1(d) these fingers
decreased in length, and the finger tip-splitting phenomenon is
no longer observed. Even though finger tip-splitting events are
not analyzed in Ref. [34], these weakly nonlinear findings are
in accordance with their advanced time numerical simulations,
where it has been shown that kinetic undercooling delays the
formation of fingers.

Nonetheless, from Fig. 1, it is not evident if the emergence
of finger tip splitting is either fully suppressed or just delayed
by the action of kinetic undercooling. To investigate this
relevant issue, in Fig. 2 we use the same physical parameters
and the same initial conditions utilized in Fig. 1, but now let the
patterns grow up until the largest time (t = τ ) for which our
weakly nonlinear theoretical results are valid. To determine
these values of τ , we follow an approach originally proposed
by Gingras and Rácz [54] for the linear regime and extend
its range of applicability to the weakly nonlinear stage of
evolution. While plotting the evolving interfaces depicted in
Fig. 2, we stop the time evolution of the patterns as soon as the
base of the fingers starts to move inwards, which would make
successive interfaces cross one another. Since this crossing
is not observed in experiments [2,9–13], as in Ref. [54] we
adopt the largest time before crossing as the upper bound time
for the validity of our theoretical description. The usefulness
and effectiveness of this criterion has been demonstrated in
Ref. [54].

Thus, for our radial injection problem, the instant when
the interfacial velocity becomes negative for the first time
gives an upper limit for the period in which the weakly
nonlinear description is valid. This validity condition can be
mathematically expressed as

[
dR
dt

]
t=τ

= [Ṙ(t) + ζ̇ (θ,t)]t=τ = 0. (19)

Notice that differently from what has been done in Ref. [54],
we evaluate Eq. (19) by taking into account second-order
contributions for interface perturbation ζ (θ,t), as prescribed
by our mode-coupling equation (11).
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FIG. 2. (Color online) Snapshots of the evolving interface shown at equal time intervals for the interaction of two cosine modes (an and
a2n, with n = 5) for increasingly larger values of the kinetic undercooling parameter c. Differently from Fig. 1, here the patterns evolve until
the largest allowed time τ [0 � t � τ ], computed by Eq. (19): (a) 3.2 s, (b) 4.2 s, (c) 5.3 s, and (d) 7.8 s. Note that Fig. 1(a) is identical to Fig.
2(a). The region colored in gray represents the more viscous fluid 2.

What we observe in Fig. 2 is appreciably different from
what we found in Fig. 1: now, despite the fact that c is
increasing, we still verify the formation of wide fingers having
blunt tips. As a matter of fact, in Figs. 2(a)–2(d), we detect
grown fingers that clearly start to bifurcate by splitting at
their tips. This happens even for large values of the kinetic
undercooling parameter, as illustrated in Fig. 2(d). Actually, tip
splitting is most apparent in Fig. 2(d). These findings indicate
that kinetic undercooling delays the onset of finger tip splitting,
but never fully inhibits it.

We close this section by presenting Fig. 3, which illus-
trates a parametric plot expressing the behavior of the ratio
a2n(t)/R(t) relative to an(t)/R(t) as time advances, for the
situations depicted in Figs. 1 and 2. The solid curves describe
the situations illustrated in Fig. 1 as c is varied, when time runs

FIG. 3. Behavior of a2n(t)/R(t) with respect to an(t)/R(t) in the
absence (c = 0) and presence (c �= 0) of kinetic undercooling effects,
for the pattern evolutions depicted in Figs. 1 and 2. Note that c is
given in units of g/(cm2 s). Solid curves refer to the situations shown
in Fig. 1, where 0 � t � tf , with tf = 3.2 s. The points related to
this final time are represented by solid circles. Dashed curves refer to
the situations shown in Fig. 2, associated with the time intervals tf �
t � τ , where τ is the largest allowed time for each c, as calculated
by Eq. (19). For a given value of c, the time t = τ is indicated by an
open circle.

in the interval 0 � t � tf , where tf = 3.2 s. For each value of
c, this time tf is indicated by a solid circle. On the other hand,
the dashed curves are related to the pattern evolutions shown
in Fig. 2, and refer to the time interval tf � t � τ . For each
value of c, the corresponding value of the largest allowed time
τ is represented by an open circle. Of course, when c = 0, tf
coincides with τ , and the solid and open back circles overlap
so that only the solid black circle is shown in Fig. 3.

The type of graph portrayed in Fig. 3 is convenient to
contrast the morphologies for the cases with and without
kinetic undercooling, since the ratio an(t)/R(t) is related
to the average size and overall n-fold symmetry of the
patterned structure, while a2n(t)/R(t) determines the typical
morphology of the finger tip (i.e., if the tips are wide and split,
or if they are narrow and get sharper). By inspecting the solid
circles in Fig. 3, we can verify more quantitatively the damping
effect of the kinetic undercooling that has been visualized in
Fig. 1: for larger values of c, the solid circles indicate smaller
magnitudes of both perturbation amplitudes an(t) and a2n(t)
for the same final time tf of the evolving fluid-fluid interface.
It is also clear that as an(t)/R(t) is increased, a2n(t)/R(t)
tends to become more and more negative. But, this is precisely
the phase of the harmonic that favors finger tip widening and
tip splitting. Furthermore, for any given value of an(t)/R(t),
it is apparent that when c �= 0, the ratio a2n(t)/R(t) is more
negative than for c = 0. This observation more quantitatively
supports our findings extracted from Fig. 2, indicating that
kinetic undercooling indeed delays the occurrence of tip-
splitting events, but does not keep them from happening.

B. Kinetic undercooling effects: Rectangular geometry

By using the weakly nonlinear equations for the radial flow
(12)–(15), we can obtain the corresponding equations for the
viscous fingering problem in a rectangular Hele-Shaw cell
[7,55]. We will refer to this transformation as the “rectangular
geometry limit,” which involves the following operations:
R → ∞ and Q → ∞ such that Q/(2πR) ≡ v∞ and n/R ≡ k

are constant values, where v∞ is the flow velocity at infinity
and k denotes the wave number of the interfacial disturbance.
The rectangular geometry limit results in a mode-coupling
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FIG. 4. (Color online) Snapshots of the evolving interface in a rectangular Hele-Shaw cell shown at equal time intervals for the interaction
of two cosine modes ak and a2k , and two values of the kinetic undercooling parameter c: (a) 0 and (b) 50 g/(cm2 s). The region colored in gray
represents the more viscous fluid 2. The vertical arrow represents the direction of the flow velocity.

equation like the one expressed by Eq. (11), where the linear
and nonlinear contributions are now given by

λ(k) = 1

1 + �(k)
|k|(v∞ − αk2), (20)

F (k,k′) = �(k)

1 + �(k)

[
v∞
2

k′(k′ − k)

]
, (21)

and

G(k,k′) = 1

1 + �(k)
|k|[1 − sgn(kk′)], (22)

with

�(k) = cb2|k|
12η2

. (23)

Notice that the expressions for λ, F , and G are significantly
simplified for the rectangular Hele-Shaw flow case. More-
over, in contrast to the corresponding radial flow equations,
where the linear and nonlinear functions are time dependent,
Eqs. (20)–(23) are constant in time.

In this section, we discuss the role of kinetic undercooling
on the development of tip-splitting phenomena in rectangular
Hele-Shaw cell geometry. As commented in Sec. I, in contrast
to what occurs in radial Hele-Shaw flows, tip-splitting events
are not as common in the rectangular cell setup and usually
occurs when the flow velocity is sufficiently large [3,6,15–18].

As discussed in Sec. III A, in the framework of our weakly
nonlinear analysis, the mechanism of finger tip splitting is con-
nected to the finger tip function (18), which for the rectangular
flow case arises from the coupling of the fundamental mode k

and its first harmonic 2k,

ȧ2k = λ(2k)a2k + 1
2T (2k,k)a2

k , (24)

where

T (2k,k) = − �(2k)

1 + �(2k)

v∞
2

k2. (25)

Throughout this section, we consider that k = k∗ taken when
c = 0, where k∗ is the mode of largest growth rate, obtained
by setting dλ(k)/dk = 0.

One very important aspect of the finger tip function
T (2k,k) [Eq. (25)] is that it vanishes in the absence of
kinetic undercooling effects. In other words, finger tip splitting

[obtained when T (2k,k) < 0] would only arise if c �= 0. This
fact is clearly illustrated in Fig. 4, which plots the time
evolution of the fluid-fluid interface for the case of two
interacting cosine modes ak and a2k . The plot is obtained
in such a way that the amplitude of the fundamental mode
reaches the value ak = 0.6 cm for both c = 0 [Fig. 4(a)] and
c = 50 g/(cm2 s) [Fig. 4(b)]. Here we consider that η1 = 0,
0.5 � η2 � 7 g/(cm s), b = 0.15 cm, 10 � σ � 60 dyne/cm,
and v∞ = 5 cm/s. The initial amplitudes are ak(0) = 1/1000
cm and a2k(0) = 0.

Supplementary information about the tip-splitting behavior
in rectangular flows is provided by Fig. 5. It illustrates how the
finger tip function T (2k,k) varies with the kinetic undercooling
parameter c for three values of v∞: 2.5 cm/s (k∗ = 2.02 cm−1),
5.0 cm/s (k∗ = 2.85 cm−1), and 10 cm/.s (k∗ = 4.04 cm−1).
Since more negative values of T (2k,k) imply an augmented
finger splitting, it is obvious that for a given v∞, the tendency
toward tip splitting increases for larger values of c. This is
consistent with the equivalent radial flow behavior plotted in
Figs. 2 and 3. Finally, in agreement with what has been found
in Refs. [3,6,15–18], in Fig. 5 we can also see that tip splitting
is favored for larger values of v∞.

FIG. 5. Variation of the finger tip function T (2k,k) with the
kinetic undercooling parameter c, for different values of the velocity
v∞. More negative values of T (2k,k) mean enhanced tip splitting.
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IV. CONCLUDING REMARKS

Even though the consideration of kinetic undercooling
effects is somewhat common in the research of Stefan-like
problems involving melting and freezing, and in the study
of streamer discharges, the inclusion of such effects in Hele-
Shaw flow problems has been relatively neglected. One of
the possible reasons for the insufficient attention given to
the influence of kinetic undercooling on the Saffman-Taylor
instability is perhaps the fact that this concept was originally
introduced in an overly ad hoc fashion [30].

In the early 1980s, Romero [30] proposed, without quanti-
tative justification, that a kinetic undercooling-type condition
would arise in the Hele-Shaw context if one considered
the contribution of the transverse interfacial curvature, and
assumed that it was a linear function of the velocity. Then,
in 1990, Weinstein et al. [31] proposed a dynamic contact
angle model, but their asymptotic approach was restricted to
steady state circumstances in rectangular Hele-Shaw cells. The
problem was recently revisited by Dallaston and collaborators
[33–36] who analyzed various interesting aspects connected
to the action of kinetic undercooling effects in both radial and
rectangular Hele-Shaw geometries. Nevertheless, Dallaston
et al. did not address the issue of how to incorporate the
dynamic contact angle into a general Hele-Shaw flow problem
in a more quantitative manner.

Considering the current state of affairs regarding the topic
of kinetic undercooling in Hele-Shaw flows, this work tackles
two main issues: first, we show, by using the Hoffman-Voinov-
Tanner law, that the consideration of the dynamic contact angle

effects does lead to a kinetic undercooling condition which
varies linearly with the normal velocity on the interface. As
a byproduct, our approach allows one to relate the kinetic
undercooling parameter c to other key physical properties of
the problem. A second important point was acquiring a basic
understanding of how kinetic undercooling impacts pattern
formation processes in the the Saffman-Taylor problem, both
in radial and in rectangular flow setups. Our weakly nonlinear
results indicate that in radial cells, kinetic undercooling tends
to delay (without entirely suppressing) the occurrence of finger
tip-splitting events. This result is in line with the numerical
simulation findings of Dallaston and McCue [34]. Moreover,
we have found analytically that kinetic undercooling favors
the emergence of tip-splitting phenomena in rectangular cells,
if the interface velocity is sufficiently high. This last result
is consonant with what has been previously obtained by
numerical [3,15,16] and experimental [6,17,18] studies on this
particular rectangular flow issue.

We hope that our present study will motivate researchers to
further study this rich and still poorly explored topic of kinetic
undercooling effects in Hele-Shaw flows.
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